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The quantum orbital motion of electrons in mesoscopic normal-metal rings threaded by a magnetic
flux produces striking interference phenomena such as persistent currents due to the Aharonov-Bohm
eR'ect. Similarly, when a quantum spin adiabatically follows a magnetic field that rotates slowly in
time, the phase of its state vector acquires an additional contribution known as the Berry phase. We
explore the combination of these two quantum phenomena by examining the interplay between orbital
and spin degrees of freedom for a charged spin- ~ particle moving in a mesoscopic ring embedded in a
classical, static inhomogeneous magnetic field, i.e. , a texture. As a consequence of its orbital motion
through the texture, the spin experiences, via the Zeeman interaction, a varying magnetic field.
This results in a Berry —or geometric —phase, leading to persistent (i.e. , equilibrium) currents of
charge and spin. These mesoscopic phenomena are related to (but should be distinguished from) the
conventional persistent currents that result from magnetic flux through a ring. We develop a path-
integral approach to decouple the orbital and spin motion and, by using an adiabatic approximation,
we compute the equilibrium expectation values of the persistent charge and spin currents and the
magnetization. We find that the persistent currents depend on the texture in a striking manner
through a geometric phase (related to a surface area characterizing the texture) and a geometric
vector (related to the projections of this area). In the special case of a cylindrically symmetric texture
we use a spectrum obtained by Kuratsuji and Iida to obtain exact results that confirm, independently,
the validity of the path-integral approach in the adiabatic limit. We discuss the connection between
the geometric vector and quantum-mechanical correlations, and examine quantum fluctuations and
the zero-point energy.

!.INTRODUCTION AND OVERVIEW

The electromagnetic vector potential, as shown by
Aharonov and Bohm, ' influences the quantum-
mechanical orbital motion of electrons, and other charged
particles, even if the particles move solely through regions
of vanishing electric and magnetic fields. This purely
quantum-mechanical eA'ect manifests itself through the
acquisition of a phase factor which can change the bound-
ary condition on the orbital wave function. If the or-
bital motion of the electron is confined to a multiply con-
nected region, such as a ring, then this Aharonov-Bohm
phase factor can cause striking quantum interference phe-
nomena. In quantum transport, for example, the mag-
netoconductance of disordered doubly connected metal
samples oscillates as a function of the enclosed magnetic
flux.

Equally striking interference phenomena occur in ther-
mal equilibrium. In particular, as pointed out by
Buttiker, Imry, and Landauer, a normal-metal ring in

equilibrium threaded by a magnetic flux will exhibit a

persistent charge current which oscillates with the flux.
Observation of this eA'ect in a sample consisting of ap-
proximately 107 disconnected Cu loops has recently been
reported by Levy et al. Even more recently, Chan-
drasekhar et al. have reported observing the persistent
current in a single Au loop. Phenomena such as these are
restricted to mesoscopic systems, by which we mean sys-
tems whose size is suKciently small that the orbital mo-
tion remains quantum phase coherent throughout. Fur-
thermore, it should be emphasized that the persistent
currents considered here occur in the normal state and
are not a manifestation of superconductivity.

Recognizing the significance of the Aharonov-Bohm
phase factor in conventional persistent currents, we are
motivated, then, to identify an alternative source of
quantum-mechanical phase factor which can produce
analogous equilibrium currents. Now, as observed by
Berry, ' when a quantum-mechanical spin adiabatically
follows a magnetic field which rotates slowly in time, the
phase of its wave function acquires an additional contri-
bution known as the Berry or geometric —phase. To
exploit this geometric phase in the context of mesoscopic
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physics, and thus produce persistent currents, we shall
analyze the equilibrium state of a system consisting of
spin-& particles confined to a mesoscopic ring which we

suppose to be embedded in a s/atic inhomogeneous mag-
netic field, i.e. , a texture such as that depicted in Fig. 1.
Due to their Zeeman interaction with this texture the
particles, as they orbit the ring, are subject to a varying
magnetic field. In the adiabatic limit a geometric phase
then arises, causing persistent currents, but now of both
charge and spin, through a mechanism closely related to
that causing conventional persistent currents.

The Aharonov-Bohm phase emerges exactly from the
form of the coupling between the particle and the elec-
tromagnetic vector potential. In contrast, the geometric
phase arises in an approximation —the adiabatic ap-
proximation —and is not of such general validity. Nev-

ertheless, this adiabatic approximation is applicable to
a broad range of experimentally accessible systems. s In
the present paper we develop a detailed description of the
equilibrium state for spin-2 particles moving through an
arbitrary texture, and obtain explicit expressions for the
resulting persistent charge and spin currents and magne-
tization. Results for the special case of symmetric tex-
tures have been reported in an earlier paper.

We approach the issue of persistent currents caused by
arbitrary textures by constructing a tractable Feynman-
path-integral representation for the thermal propagator.
This representation has the virtue of allowing us to im-
plement the adiabatic approximation in a form related to
that analyzed by Berry, and thus to identify the analog
of the Aharonov-Bohm phase responsible for equilibrium
currents. This type of approach is quite general and will,
we hope, find application in a broad class of problems,
both in thermal equilibrium and in transport.

The primary reason for developing this path-integral
method is that the direct approach via the solution of the
time-independent Schrodinger equation in the presence
of an arbitrary texture is generally intractable. Such an
approach is only possible for the very special case of a
cylindrically symmetric texture, for which we also present
the direct approach below. Results from this symmetric
texture provide independent confirmation of the validity
of the path-integral approach.

We shall find that the path-integral approach, together
with the adiabatic approximation, leads to results for the

persistent currents with a strikingly geometrical charac-
ter. These currents are found to depend on the texture
through the geometric phase, which is related to the sur-
face area on the unit sphere (in the space of magnetic
fields) enclosed by the texture. In addition, the spin cur-
rent is found to depend on some geometric information,
the components of a geometric vector, which are related
to the projection of this surface area on to the associated
equatorial planes.

This paper is organized as follows. In Sec. II we present
an idealized model of a strictly one-dimensional system
consisting of noninteracting spin-2 particles coupled to
an inhomogeneous texture via a Zeeman term. In Sec. III
we introduce the physical quantities upon which we shall
focus our attention, namely the charge current, the spin
current, and the magnetization. In Sec. IV we develop
the path integral for arbitrary textures by constructing
the thermal propagator. This will lead us to a form of
the path integral in which spin and orbital motion are, in
a sense to be made precise below, decoupled, thus allow-

ing us to invoke the adiabatic approximation, following
Berry, for the (imaginary-time) spin dynamics. Then, by
explicitly decompactifying the orbital path integral, we
introduce a convenient winding number representation.
In Sec. V we give detailed results for observable quanti-
ties for textures with constant magnitude but which are
otherwise arbitrary. Here, we also discuss the geometric
vector and its relation to quantum-mechanical correla-
tions, and give a heuristic picture of the origin of the
persistent currents. In addition, we give the results of
the adiabatic approximation to the path integral special-
ized to the case of the symmetric texture. In Sec. VI we

describe the exact solution for the case of symmetric tex-
tures by finding the spectrum of energy eigenvalues and
using them to compute physical quantities. We also give
explicit results for the case of the planar texture and,
furthermore, discuss the limit in which the exact diag-
onalization and path-integral approaches are equivalent.
In addition, quantum fIuctuations and zero-point energy
are discussed here. In Sec. VII we give the results for
equilibrium currents and magnetization for a system of
many noninteracting spin-& fermions. We conclude, in
Sec. VIII, with a summary of our results, and mention
some interesting future directions.

II. THE MODEL

We begin by considering a single particle of mass m,
charge q, spin-&, and gyromagnetic ratio g, confined to
a ring of radius a. The ring is embedded in a specified
static inhomogeneous magnetic field B(8), as depicted in

Fig. 1, and is taken to be strictly one dimensional. We
shall neglect particle-particle interactions. The position
of the particle is specified by the angular coordinate 0,
and the Hamiltonian for this system is then taken to be

FIG. 1. Mesoscopic ring (thick circle) in an inhomoge-
neous magnetic field (arrows) with tilt angle X(8) and twist
angle rl(8).

H = H ' —gpB(8) o. ,

H " = (ps —qaAe) + V(0),
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where pp is the angular momentum operator conjugate
to the coordinate operator 8, ho "/2 (with k = 1, 2, 3)
are the Cartesian components of the spin operator S,
2p = ~q~h/2m (i.e. , the Bohr magneton if the particle is
an electron), and V is an arbitrary potential periodic in
0. We assume that the particle is physically confined to
the one-dimensional ring by an external potential; thus
the kinematic velocity operator transverse to the ring
v~ —(p —qA)~/m vanishes.

We shall refer to the static classical inhomogeneous
magnetic field B = V x A as a texture. This texture can
have an arbitrary configuration, provided that its spatial
variation is not rapid enough to invalidate the adiabatic
approximation that we shall describe below. The device
causing the texture on the ring will typically also cause
a magnetic flux through the ring, which is accounted for
by the minimal coupling to the vector potential A. One
might attempt to produce a texture by, e.g. , locating the
mesoscopic ring between a pair of mesoscopic Helmholtz
coils, with the current in one coil reversed. Alternatively,
the ring could be fabricated from an intrinsically ferro-
magnetic material, or supported on an inhomogeneous,
insulating ferromagnetic substrate.

We emphasize that for inhomogeneous textures the
Zeeman term gpB(8) a couples the spin and orbital de-
grees of freedom. Besides electrons, such a coupling can
also be experienced by neutral particles with spin, e.g. ,

neutrons and He atoms. We have, for the sake of sim-
plicity, omitted from the Hamiltonian any conventional
spin-orbit coupling caused, e.g. , by the potential which
confines the electron to the ring. The Zeeman interac-
tion causes an effective spin orbit coup-ling which should
be distinguished from the consequences of conventional
spin-orbit coupling.

III. OBSERVABLE QUANTITIES

We shall focus our att, ention on three physical equilib-
rium quantities, the magnetization vector h(o'")/2, the

charge current (qh/2xma2)(JO), and the spin current
vector (h /47rma2)(J"&, where k = 1, 2, 3 labels Carte-
sian components. The dimensionless current operators
J" are given by

The reason for focusing on the currents defined above is
that they exhibit the following essential fact: for a generic
texture the equilibrium state is a current-carrying state.
The currents are a manifestation of quantum-mechanical
interference which is geometrically induced by the tex-
ture. We emphasize that these currents are equilibrium
currents and therefore persist indefinitely and cannot be
dissipated. These are not nonequilibrium currents of
the type driven by an external force, and they do not
possess a classical analog. As we shall see, these per-
sistent currents vanish in the classical limit, the high-
temperature limit, and the macroscopic (i.e. , thermo-
dynamic) limit. Thus, they represent truly mesoscopic
quantum-mechanical eA'ects.

The currents described here bear some similarities
with the charge current caused by Aharonov-Bohm
interference, e.g. , in mesoscopic metal rings threaded
by magnetic flux. These similarities can be seen most
clearly within a version of the adiabatic approximation,
given below, in which the geometric phase plays a role
analogous to the Aharonov-Bohm phase. In addition, we
shall find that the spin current is partly characterized by
a geometric vector, which encodes geometric information
about the texture distinct from that contained in the ge-
ometric phase. Finally, it should be emphasized that, in
contrast with conventional persistent currents, the cur-
rents caused by the texture can occur in neutral systems
with spin, such as normal He.

IV. PATH INTEGRAL FOR ARBITRARY
TEXTURES

We now construct a path-integral representation of the
thermal propagator describing the statistical mechanics
of a quantum-mechanical spin- — particle confined to a.2
ring in the presence of an arbitrary magnetic texture.
This propagator, evaluated within an adiabatic approxi-
mation which illuminates the role of the geometric phase,
will be used to compute the partition function, the equi-
librium expectation values of the charge and spin cur-
rents, and the magnetization, introduced in Sec. III.

A. Expectation values and thermal propagator

where p = 0, 1, 2, 3, and where, for the sake of conve-
nience, we have introduced the identity operator 0
For neutral particles q = 0, and it is of course the
mass current (I/2sa~)(pe) rather than the charge current
which is of interest, . The brackets (.) denote equilibrium
expectation values computed in the canonical ensemble,
i.e. , ( ) = Z ~ Tr ( ) exp( —PH), where P = I/k~T mea-
sures the inverse temperature T, the canonical partition
function is denoted by Z, and Tr denotes a trace taken
over single-particle states. Below, when discussing the
consequences of Fermi-Dirac statistics for many-particle
systems, we shall also mention the grand canonical en-
semble.

We consider a particle governed by the Hamiltonian H,
Eq. (2.1), and introduce the following convenient com-
plete set of states:

18; n& = 18& ln& (4.1)

with 0 & 0 ( 2x and o. = +1.These states are simultane-
ous eigenstates of f(8) (where f is periodic) and, say, o

i.e. , f(8) (8) = f(8)(8& and o ~n& = n(n). (Later, in the
calculation of the spin current and the magnetization, it
will be convenient to replace ~n& by a basis in which ei-
ther a or a~ is diagonal. ) Furthermore, we impose the
physical choice that all states are periodic functions of 0.
This choice is obtained through the requirement that the
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G(8, , n, ;8;,n;) = (8, ;n, le- ~(8, ;n, ) (4 2)

in terms of which (0) becomes

orbital state (8) is a periodic function of 8. Of course,
all operators must be periodic, i.e. , they must not take
states out of the physical space of states obeying periodic
boundary conditions.

To obtain the equilibrium expectation value (0) of
some observable 0 we calculate the thermal propagator

B. Decoupling of spin and orbital motion

We calculate G(8f, nf, 8, , n;) by constructing a path-
integral representation for it. In the integrand of this
representation the orbital and spin degrees of freedom
factorize, in the sense that the spin evolves (in imaginary
time) in the presence of an external magnetic field which
depends parametrically on the Feynman path of the or-
bital motion. This representation is achieved through a
straightforward extension of the standard technique1s 1

of inserting the resolution of the identity,

1
(0) = — ) d8, d8f(8' n(0(8f nf)

0 0

2Ã

11 = ) d8 (8; n) (8; n(, (4.4)

x G(8f, n f, 8;, n;) .

(4 3)
I

at infinitesimally separated imaginary-time slices rf
jP/N = je (with j = 1, 2, . . . , N —1) which leads to the
representation

G(8f nf 8;, n;) =(8f nf(e ' e ' (8;;n;)

2') d81 ' ' ' d8N-1 (8f nf (e (8N-1 nN 1)-
0&X" &N-j.

x(8,", n, (e (8, 1, n, 1) (81, n1(e (8;;n;). (4 5)

The matrix elements are then evaluated using

the Baker-Campbell-Hausdorff formula exp ( —eH)

exp ( —gH~' ) exp(egpo B(8)), valid for small e,
which yields

(8,", nf(exp ( —eH)(8, 1., n, 1)

= (8f (exp (-~ H"') (8f-1)

x(, I .(g~~ B(8, 1))I, 1) (4 6)

We focus first on the second factor, the spin matrix
element (nf (exp(egg 6 B(8z 1))(nf 1). Collecting to-
gether the product of these spin matrix elements from
each (imaginary) time slice, and performing the summa-
tions over intermediate spin states, one notices that for
each orbital path (8&) the spin matrix elements regroup
to give a single simple matrix element. In the limit that
the number of slices N is large, this matrix element is
then recognized to be the spin propagator,

(nf IU~(&)ln*) = (nf(Te ' "' "ln*) (4 7)

i.e. , the matrix element of the (imaginary) time-ordered
form of the (imaginary) time-evolution operator for the
problem of a single spin-& evolving according to the
orbital-path —dependent Hamiltonian

where 8(r&) = 8f. This propagator Us(r) satisfies the
Schrodinger-Bloch equation

Us(r) = H'(r) Ue(r-), (4 9)

with initial condition U(t(0) = f, in which ll is the iden-

tity operator in spin space. Using this spin-orbit decom-
position the full propagator G(8f, nf, 8;, n;) takes the
form of an average over Feynman paths 8(r) weighted

by the spin propagator for a spin-z particle evolving in
the presence of a 8(r)-dependent magnetic field.

C. Decompactification, winding number,
and orbital action

To find the precise form of the path integral, we evalu-
ate the orbital matrix elements (8& le

'
(8& 1) follow-

ing Kleinert. We introduce the periodic inner product

(4.10)

(8(8') = ) S(8-8'+2~~)
V=—OO

) J (dp/2eeh) e'e~e '+""""-
V=-OO

H'(r) = —gpB(8(r)) ~ (4 8) thus obtaining
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(dp/2nh) e'" + ")/" (1 —e(p —qp[A8(8) + A8(8')]+ q A8(8') )),

(8~e
' ~8') =e ' ' (8[e '("' '"') ~8')

e ' ( ) (1 —i((—ibad)8) + iqh[c)8A8(8') + A8(8)c/8] + q A8(8') ))(8[8')
—ev(8') (4.11)

where i—:e/2ma . Introducing the midpoint value A8(8') = [A8(8') + A8(8)]/2 and reexponentiating we find

I8') = ) . (dp/2&h)&aP(8
—8'+2xu)/s-(e/2ma )[p-8Ae(8')]' —ev(8') (4.12)

Collecting together the orbital and spin parts, we arrive at the full thermal propagator
2m N-1

G(er, ~r, e', ~)= f «~(er;~slue(p)l~. ;~')
0 "j

OO
~

(dpf /2n h)

x ) ) exp i) pf (8f —8f i+ 2nvf)/h

—) (e [p, —qA8(8, )] —~V(8, )) (4.13)

We absorb the sums over integers {vf} by extending the ranges of integrations over (8f) from (0, 27r) to (—oo, oo),
using the periodicity in 8 of Ae, B, and V, thus obtaining

OO N-1
G(8f, nf, 8;, n;) ) ~ h ~ h

OO

d8, (8f, ~f ~U8(P) ~8;; ~;)

OO

x (dpf /2m h)
—OO

~

N

exp i ) p, (8, —8, i + 2n vt), ~)/h

N-):([p —qA ( )]' — V(8)) (4.14)

In this way, we have decompactified the path integral, in the sense that the formerly compact variables (8&) now
extend over the entire real axis. Consequently, the one remaining summation over integers v can be interpreted as a
summation over the winding numbers of the pathsi is 8(r). Next we integrate out the momenta (pf), yielding

S(P)=ed+2~v
G(8f of 8, ~) = ). &.« ' "' (af~U8(P)~c ),

8(0)=8,
(4.15)

where we have passed to the limit N -+ oo, the subscript e on the measure indicates the extended nature of the paths,
and the Euclidian orbital action S '

[8] is given by

(ma 2 iaqS '
[8] = dr, 8(r) — A8 (8(r)) 8(r) + V(8(r))

)() ( 2h' (4.16)

We note that no approximations have been made at
this stage, and that the form (4.15) clearly expresses
the factorization of the integrand into orbital and spin-
dependent degrees of freedom.

D. Adiabatic approximation and Berry's phase

To calculate the spin matrix element (o;f ~U8(P) ~n;) for
an arbitrary texture, i.e. , to solve the problem of the
(imaginary-time) motion of a quantum-mechanical spin

in the presence of the magnetic field B(8(r)), we use
the adiabatic approximation. This approximation is
valid (as we shall explicitly confirm below for the case
of the cylindrically symmetric texture) provided that the
Bohr frequency (d~ = 2gpB/h far exceeds the orbital fre-
quency ~o = Ib, /h, where 6 = h /2ma2 measures the
smallest splitting of the orbital energy levels (thus setting
the energy scale for the orbital aspect of the problem),
I is the magnitude of the maximum (half-integral) or-
bital angular momentum quantum number contributing
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significantly to the partition function, and B is the mini-
mum magnitude of the magnetic field. More precisely,
one needs gpB/14» gl —~N~2, where the texture-
dependent vector N is the average of the direction of
the magnetic field, and is defined in Sec. V D. The term
gl —~N~2 accounts for the fact that the adiabatic ap-
proximation is exact for the trivial case of homogeneous
textures (for which ~N~ = 1) regardless of the values of B
and lA. The implied physical requirement, then, is that
the spin of the particle should precess around the local
magnetic-field direction many times during each orbit of
the particle around the ring.

In order to make the adiabatic approximation we intro-
duce an alternative complete set of spin states ~B(8), n)
which are eigenstates of B(8) o, i.e. , B(8) o ~B(8), n) =
nB(8) ~B(8), n). Note that for each position 0 & 8 & 2n
such a set of states is introduced. We choose ~B(8), n) to
depend only on the direction n(8) = B(8)/B(8), where

B(8) is the magnitude of the magnetic field. As stated
above, we impose the physical choice that all states obey
periodic boundary conditions. To obtain this, we require
that both the orbital state ~8) and the spin state ~B(8), n)
are periodic functions of 8. Now, B is a periodic function
of 8. Thus, ~B(8), n) is periodic provided that ~B, n) is
a single-valued function of B. Although it is not possi-
ble to construct a basis ~B, n) which is a single-valued
function of B globally (i.e. , over the entire surface of the
unit sphere of magnetic-field directions n), it is possible
to adopt a basis which is single valued locally (i.e. , over
a texture-dependent patch on the unit sphere). More
explicitly, let us consider the arbitrary texturezo

IB(8) ) = ln) ~ —,'X(8) + I
— )" ""' s -', x(8)

(4.18)

These states are not globally single valued because they
are not single valued at y = n. We mean by this that
there is more than one ket for a given value of the field,
i.e. , for all rf E 0

B(p = z, g + g') = B(Z = ir, p), (4.19a)

IB(X=~ 9+~') n) AIB(X=~ ~) n) (4»b)
There are infinitely many other bases which may be cho-
sen, e.g. , if one wishes to consider a texture in which

y = x is encountered. The physical results are of course
independent of the choice of basis.

Following the ideas of Berry, but considering imag-
inary (rather than the usual real) -time dynamics, we
examine the evolution of instantaneous eigenstates of
H'(r), i.e. , states which solve the instantaneous eigen-
problem

B(8) = B(8) [sing(8) cosy(8) e~+ sing(8) sing(8) eu

+ cos y(8) e,] (4.17)

in which g and g must be chosen such that B(8) is peri-
odic in 8, and (e~, eu, e, ) forms a Cartesian orthonormal
basis. One may, e.g. , choose to associate with this texture
the basis of locally single-valued eigenstates

H'(r) IB(8(r)),n) = —nW B(8(r)) IB(8(r)),n)

(4.20)

(4.21)

and using the instantaneous eigenvalue equation, (4.20),
one finds that

l9, F (r) = i (B(8(r)),n~ 8,~B(8(r)), n) (4.22)

Integration for a given Feynman path 8(r) then gives the
geometric phase

F~(P) = —Im dr (B(8(r)),n~ cIr ~B(8(r)), n),
0

(4.23)

where we have used the fact that the real part of
(B(8(r)), n~ cl, ~B{8(r)),n) vanishes due to normaliza-
tion. Thus the spin propagator becomes

(B(8f) nf IUD(P)IB(8 ) n )

P

6, , exp~ iF, (P) + n; gp dr B(8(r)) ~.
0

(4.24)

The Kronecker 6 expresses the fact that in the adia-
batic approximation an instantaneous eigenstate with
spin projection aligned along the magnetic-field direc-
tion remains an instantaneous eigenstate. With respect
to the local spin quantization axis "up" and "down" spin
states are not mixed, i.e. , spin-flip processes are excluded.
It should be noted that even though we are consider-
ing Schrodinger-Bloch (i.e. , imaginary-time) dynamics,
rather than the usual Schrodinger (i.e. , real-time) dy-
namics, the geometric phase I' (r) does indeed turn out
to be a real number. On the other hand, the dynamical
factor becomes a Boltzmann factor, growing or decaying
exponentially. In the real-time Berry propagator the
dynamical and geometrical aspects of the evolution oper-
ator cannot be unambiguously distinguished beyond the
leading-order adiabatic approximation~. It would be in-
teresting to examine whether this ambiguity survives the

We then assume that a system prepared at time r = 0
in a nondegenerate instantaneous eigenstate ~B(8(0)),n)
evolves, according to the Schrodinger-Bloch equation,
into the instantaneous eigenstate of H*(r) with the same
quantum number n, namely ~B(8(r)), n), and in the pro-
cess acquires two factors, a Boltzmann factor due to
Zeeman splitting, exp[ngp Jo'dr'B(8(r'))], and a geo-
metric (i.e. , Berry) phase factor, exp[iI' (r)]. The latter
factor is determined through the requirement that the
state ~Q) = Us(r) ~B(8(0)),n) does indeed satisfy the

Schrodinger-Bloch equation 0, ~g), = H'(r—) ~g)„in
the adiabatic approximation. Thus, inserting the adia-
batic ansatz

T

~Q), ~B(8(r)), n) exp iI' (r) + ngp, dr'B(8(r'))
0
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transformation to imaginary time dynamics.
Using the expression for (B(0g), nglUe(P)lB(0, ), n;),

Eq. (4.24), the complete thermal propagator can thus be
written as

e.g. , the set given in Eq. (4.18). Next, construct the pe-
riodic gauge parameter A~ (0) = Jo d0' [A~(0') —nP~],
where the geometric Pux nd ~ is defined by

G(0y, ny, 0, , n;)
1

27r
d0 A~ (0), (4.28)

x ) e(p)=e, +2~~
—s.'"[e]

e(o)=ei

= ). (n~lB(6) n)(B(0*) nln*)

(4.25a)
lB(0), n) e'A-i'1 lB(0), n) . (4.29)

and we have used the fact that the right-hand side of
Eq. (4.28) is proportional to n, which we confirm below
in Sec. V D. Then transform to a new set of spin states

in terms of an effective action S' [0],

A'(0) = —Im (B(0),nl OslB(0), n),
we obtain

(4.26)

r.(p) =
P ey+27t l/

dr A~ (0(r)) 0(r) = d0 A~ (0),

(4.27)
where v is the winding number defined above. At this
point it is convenient to adopt a gauge in which A is
constant. This can always be achieved by suitably ad-
justing the phases of the spin states lB(0), n) in the fol-
lowing way. First, find any set lB(0), n), periodic in 0,

l

g:"[0]= S "'[0] —ir. (P)+n drgpB(0(r)).
0

(4.25b)
At this point we mention the well-known fact that the
Feynman path 0(r) is continuous but typically nondiffer-
entiable. In general, this roughness induces rapid vari-
ation in B which causes a violation of the assumption
of adiabaticity. Such an objection can be raised for any
quantum-mechanical application of Berry's phase based
on the adiabatic approximation, as there are, strictly
speaking, no classical dynamical variables. Nevertheless,
we shall assume that, as with many path integrals (see,
e.g. , Ref. 16, p. 39), the dominant contribution to the
path integral comes from near-classical, smooth paths,
and hence, that this roughness does not invalidate our fi-

nal results for the persistent currents and magnetization.
Indeed, as we shall show explicitly below, this assump-
tion is certainly valid for these quantities in the case of
the symmetric texture. However, there do exist physical
quantities for which this assumption breaks down. This
issue will be discussed in more detail in Sec. VI E.

Next comes an important step which exploits the
topology of the ring. For a given path 0(r) we decompose
the expression for the geometric phase, Eq. (4.23), into a
sum of v identical terms, one for each time the path winds
around the ring, together with a term which accounts for
the fact that the path is not in general closed. ~ Defining
a spin-dependent geometric gauge potential

For these states A& will be independent of 0. The geo-
metric flux g& associated with A& is gauge invariant in
the sense that it is invariant under A& ~ A& —OsA& for
any periodic gauge parameter A& . It can be interpreted
geometrically in terms of the solid angle 0 subtended by
the texture B(0) at the origin of the space of magnetic
fields, r i.e. , exp(2+i/&) = exp( —iO/2). Thus p& repre-
sents certain geometric information about the texture.
Together with some further geometric information which
we shall introduce below, P& describes the physical con-
sequence of the texture B(0) in the adiabatic limit.

In the gauge in which A& is constant the geometric
phase factor takes the particularly simple form

exp[iI' (P)] = exp[in(2irv+ 0~ —0, ) P~], (4.30)

P
dr Ae (0) 0(r) = (2+v+ 0y —0, ) P'

h
(4.31)

Putting all the pieces together we find that the propa-
gator takes the form

in which it should be noted that 0; and OJ are restricted to
the interval (0, 2s). Furthermore, this form for I' makes
explicit the fact that the only dependences it has on the
path are the winding number v and the initial and final
points 0, and Oy. Hence I' is a topological term and,
as such, does not affect the classical equation of motion
obtained from the effective action, Eq. (4.25b). In par-
ticular, the phase factor containing I factorizes out of
the path integral for a given winding number, produc-
ing a phase factor to which only the interference terms
between winding number sectors are sensitive. Finally,
we note that as a consequence of the gauge transforma-
tion Eq. (4.29) the transition amplitudes in the propaga-
tor (4.25a) acquire additional phase factors.

We now briefly return to the electromagnetic gauge
potential Ae to which analogous remarks apply. In par-
ticular, it is always possible to make a periodic gauge
transformation from an arbitrary periodic gauge poten-
tial A& (0) to a gauge potential which is constant on the
ring and produces the same electromagnetic (dimension-
less) flux P™.Adopting such a gauge one finds

e(p)=e~+a~v
G(0y, ng, 0;, n;) = ) e' -t '1 ' - ' (nylB(0y), n)(B(0;), nln, ) ) .

a=+1 ()='
(4.32a)

gefr [0]
I'ma'

dr 2 0(r) + i(2irv y 0y —0, )4 + V(0(r)) + n gp&(0(r))
i 2h

(4.32b)
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We have introduced the total spin-dependent (dimension-
less) flux 4, given by

that this derivation can be readily extended to many-
body problems with particle-particle interactions.

(4.33)

which combines the familiar electromagnetic contribu-
tion and the purely geometrical Berry flux. This form of
the effective action makes explicit the close analogy be-
tween the geometric flux nP~ and the Aharonov-Bohm
flux q»em, and thus one should anticipate the existence
of equilibrium currents caused by nP~ analogous to the
conventional ones caused by P'm. This completes our
derivation of the thermal propagator for a spin-& par-
ticle confined to a one-dimensional ring in the presence
of an arbitrary magnetic texture, within the adiabatic
approximation. The derivation presented here is, then,
more general than that contained in Ref. 10, in that we
are not restricted to highly symmetric textures. We note

I

V. OBSERVABLE QUANTITIES FOR TEXTURES
WITH CONSTANT MAGNITUDE IBI

A. Thermal propagator

In this section we shall use the thermal propagator in
the adiabatic approximation, Eq. (4.32a), to compute the
partition function, the charge current, the spin current
and the magnetization. To perform explicitly the path
integral derived in the preceding section, we make two
simplifying assumptions: (i) that V = 0, and (ii) that
the magnitude of the magnetic field B is independent of
8. As the decompactified (i.e. , extended) path integral,
Eq. (4.32a), now corresponds to free motion it can be
performed exactly, giving

G(8f nf 8;, n, ) ) e' ' ~l ' '~ ' (nf IB(8f), n)(B(8;),nIn;)
a=+1

x exp[npgpB+ i(8f —8, )4 —e (8f —8;) /2]V x~/2&res[&r4 + biz (8f —8, );2&ri&c~],

(5 1)

where K~ = ma2/Ph is a dimensionless parameter which
measures the ratio of the thermal energy and the spac-
ing between low-lying energy levels for a free particle
on the ring. For a ring of radius 3000k and a tem-
perature of 10mK, z is of order unity. In addition
we have introduced the Jacobi 8 function~s 6s(z;t) =

exp (i&rtv2 + 2ivz).

B. Canonical partition function

2'
Z= ) d8G(8 n 8 n), (5.2a)

- ~2&r~ ) e ~~" 6s (&rC&;2&ri~ ), (5.2b)

) ) e (5.2c)

where the effective single-particle energy spectrum is
given by

Using 8s(z;t) = (—it) 'f'exp(z /i&rt) 6s(z/t; —1/t),
an identity which follows from the Poisson summation
formula, we find that the partition function becomes

within an effective Hamiltonian framework, we see this
interpretation once again, with the gauge potential oc-
curring explicitly in the spectrum.

C. Charge current

From the definition of the charge current, Eq. (3.1), one
can see that it can exactly be obtained as the derivative
of the partition function with respect to the electromag-
netic flux gem. Using the adiabatic approximation for
the partition function, Eq. (5.2c), we find

(J)= ' lnZ- —) (n —C )
0 1

el)em Z
A &Cl'

(5.4)

This current is a manifestly periodic function of P™and
P&, with period unity, vanishing whenever 24y are both
integral. Figure 2 shows the dependence of the charge
current on P'm and P» at low but nonzero temperature.

Next we examine the charge current in the low-
temperature limit. As in this limit PgpB )& 1, we need
only retain terms with o. = 1. Furthermore, it is conve-
nient to use the propagator expressed in terms of 63, and
to make use of the result

h
(n —C& ) —n gf& B . (5 3) 8, ln 6s(z; t) = 4 ) sin(2vz),

- (-q)"
=1

(5.5)

Whereas the integral summation index v refers to wind-
ing numbers of real-space trajectories, the index n refers
to the associated orbital angular momentum quantum
numbers. Earlier, in Sec. IV D, we saw that the La-
grangean framework led te the interpretation of the ge-
ometric flux as a spin-dependent gauge potential. Now,

where q = exp ixt. As g = 2+i z2 the denominator

(1 —q ") becomes (2&r~) v+ O(~~), for ~ ~ 0. Thus,
in the lew-temperature limit and in the adiabatic ap-
proximation the charge current is given by the saw-teeth
function
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case of degenerate Fermi systems, where both o. = 1 and
—l contribute, such an offset also occurs, as we plan to
discuss in detail in a forthcoming paper.

(J 0

O. l6

-O. l

D. Spia current

To compute the equilibrium expectation value of the
three Cartesian components (J") of the spin current, we

apply Eq. (4.3) and use the thermal propagator given in
Eq. (5.1). Standard manipulations, involving the peri-
odic matrix element

(8lpsl8') = —ihojs(8l8') = ibad—s ) b(8 —8'+ 2z.v)

FIG. 2. The (dimensionless) charge current (1 ) as a func-
tion of the electromagnetic flux P' and the geometric flux P
at temperature T = I mK for a ring of radius a = 3000 A and
for a magnetic field of magnitude B = 50 G.

(5 7)

and integrations by parts (in which periodicity eliminates
the boundary contributions), produce the following ex-
pression for the spin current:

-o -o 1 - ( I)"
(J ) ~ (J )o —) sin(2nv4+) = —4+,

7l V
@=1

(3) - ) e Ps" F 6s(xC 2s i~ )

(5.6) +NK 8s(xC; 2z.iK )

where the last equality holds for —
2 & 4+ ( 2. At the

end points 4+ ——+2 of this interval the current is zero,
and for values of 4+ outside this interval the current
should be periodically extended. Of course this result,
Eq. (5.6), also follows directly from Eq. (5.4). However
t, he summation form in Eq. (5.6) clearly exhibits the peri-
odicity in 4+ and demonstrates that all winding numbers
contribute at T = O. Figure 3 shows the dependence of
the charge current on P' and P& at zero temperature.

We mention that in cases dominated by either n = 1

or —1 the electromagnetic flux P' is simply augmented
by the geometric flux nP&. As a consequence, the oscil-
lation of the conventional persistent charge current with
respect to electromagnetic flux is offset by a shift which
is geometric in origin. We further mention that in the

(5.8a)

F=—1
27r

d8 [ (ic)s(B(8),~l) o lB(8), o)

—Im (B(8),n lo.
l B(8),n}

x(B(8),~la, lB(8), ~}j, (5.8b)

N=-
27r

d8 (B(8), n
l

a.
l B(8),n) . (5.8c)

Direct evaluation of F and N using the explicit form of
the matrix elements given in Eq. (4.18) shows that they
are indeed independent of. o. and real, and are given in
terms of the texture by the compact averages

1F = ——
4'r

d8 n(8) A c)sn(8), (5.9a)

1
N = — d8n(8),2' o

(5.9b)

( 0

0.16

where n = B/B, and where A denotes the usual vector
product. In terms of these simple averages of the texture
the spin current takes the final form

-O. l

(J) =F+ N~ lnZ,

=F+N —) n(n —4 )e
1

z

(5.10)

(5.11)

FIG. 3. The zero-temperature (dimensionless) charge cur-
rent (J )s as a function of the electromagnetic flux P™and
the geometric flux Ps.

This current is also periodic in P' and P& with period
unity, vanishing when 2P'm and P~ are both integral (as
should become clearer from the following discussion of
F).

The texture-dependent quantities F and N have simple
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interpretations. The latter is simply the mean value of
the unit vector n pointing in the direction of the magnetic
field. As such, it is no] a purely geometrical quantity;
textures which visit identical collections of values of the
magnetic field do not necessarily give identical values of
N. In other words, the textures B(8) and B(f(8)) (with
f being a reparametrization) do not necessarily give rise
to the same N. On the other hand, F is purely geomet-
rical, as can be seen by rewriting it as

1 1F = —— nAdn = —— dS, (5.12)
471. c az 2x z

where the surface E lies on the unit sphere and has the
closed curve t." as its boundary, ~g and we have made use
of the (vector) Stokes theorem. The element dS is the
outward normal surface element which becomes n dO on
the surface of the unit sphere, where dQ is the surface
area element. The surface integral representation shows
that the kth component of the geometric vector F~ c;in
be interpreted (up to a constant factor) as the area of
the projection on to the plane orthogonal to the kth co-
ordinate axis of the surface E, as shown in Fig. 4. (See
also Ref. 30.) Alternatively, F" can be interpreted as
the flux through E of a uniform vector field V = e~.

In contrast, the Berry flux, which is also a geometrical
object, is simply the area (rather than the projected area)
of the surface E, and is given by

1 1
dS n = — d8 [cosy(8) —1j Bsg(8),4' g 4x o

(5.13)

where the last expression follows from Eqs. (4.18) and
(4.28). Alternatively, P& can be interpreted as the flux
of the vector field V = n (= B/B on the unit sphere)
through the surface E, i.e. , the flux through Z due to a
fictitious monopole located at the center of the sphere.
It should be noted that the geometric vector F provides
information about the geometry of the texture which is
independent of that provided by the geometric phase.
One can see this by noting that it is possible to change
the texture in such a way that P& changes but F does

not. In addition, it is worthwhile introducing a natural
extension of the Berry flux, P~(x), obtained by locating
the monopole not at the center of the sphere but instead
at the position x. Then

1
P~(x) = ——

4~
dS. n

/x —nf' (5.14)

(a}

(b}

(c)

so that P~ = P~(x = 0) and F = 2(V'P" (x))(x = 0).
Thus the Berry flux and (twice) the geometric vector
are the zeroth- and first-order coefficients in the Taylor

FIG. 4. Geometrical interpretation of the flux Ps and the
vector F. The geometric flux corresponds to the area of the
shaded part of the spherical surface E. The component F
of the geometric vector corresponds to the area of the shaded
part of the equatorial plane, i.e. , to the area of the projection
of E on to the equatorial plane.

FIG. 5. Two textures related by a global rotation, each
represented in two ways: (i) as the magnetic field around a
ring [(a) and (c)], and (ii) as trajectories on the unit sphere
[(b) and (d)].
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expansion of P~(x) about x = 0. It would be interesting
to find physical realizations of the second- and higher-
order coeKcients in this series.

Yet another interpretation of the geometric vector F
can be given using an analogy with the Biot-Savart law.
First, introduce a fictitious current I flowing along a
closed real-space path Cd prescribed by x(0) = n(0) d
which lies on the surface of a sphere of radius d. This
path is specified by the texture through n(g). Then the
fictitious magnetic field H produced at the center of this
sphere by the current loop is given by H = —(po I/d)F .

Finally, in the low-temperature limit the spin current
acquires the particularly simple form

(5.15)

where the low-temperature limit of the charge current
(J )0 is given in Eq. (5.6). This result follows from
Eqs. (5.11) and (5.4) upon retention only of terms with
ct: 1.

E. Magnetization

To compute the equilibrium expectation value of the
magnetization (o) we again apply Eqs. (4.3) and (5.1),
now obtaining

a,n

(5.16)

In the low-temperature limit the magnetization is given
by

F. Quantum correlations and interpretation

The spin current (J) provides a useful tool for ex-
amining the origin of the quantum-mechanical correla-
tions at low temperatures. In particular, we now show
that the geometric vector F lends itself to an interpre-
tation precisely in terms of these correlations. To see
this, we notice that the spin current can be written as

(J) = (Jo o). Then, using Eqs. (5.15) and (5.17), it fol-
lows that in the low-temperature limit

(5»)
Clearly the geometric vector represents the quantum-
mechanical correlation between the orbital and spin de-

grees of freedom. Thus, Eq. (5.18) reveals the existence
of an effective coupling between orbital and spin motion
induced by the geometry of the texture.

The notion of spin-orbit coupling provides a useful

(5.17)

Equations (5,9a), (5.9b), (5.13), and (5.10) show that for
textures related by a global (i.e. , 8-independent) rotation
the corresponding spin currents are related by the same
rotation, and similarly for the magnetizations. This, of
course, is a refiection of the vector character of the op-
erators J and o. Two textures related by such a global
rotation are depicted in Fig. 5.

heuristic picture of the processes responsible for persis-
tent charge currents in the absence of an electromagnetic
fiux P' . First, consider the case in which the texture
gives a nonzero value of N. Then, by Eq. (5.17), the spin
is polarized, i.e. , there is a nonzero magnetization and,
through the coupling between spin aod orbital motion,
the orbital angular momentum can acquire a nonzero ex-
pectation value. In other words, as a consequence of the
geometric phase —a purely quantum-mechanical object—one sense of orbital motion can become energetically
preferred over the other. As the particles carry charge,
the system would then exhibit an equilibrium charge cur-
rent. On the other hand, the spin current is simply a
measure of the correlation between spin and orbital mo-
tion reflecting the coupling between them.

Second, consider the case in which the texture gives
a vanishing value of N. In this case the spin is unpo-
larized, i.e. , the magnetization is zero. Despite this, the
spin and orbital motion are still coupled through the ge-
ometric phase and thus the quantum fluctuations in spin
and orbital angular momentum are correlated. For exam-
ple, fluctuations which produce a positive z component
of spin and a negative z component of orbital angular
momentum (or vice versa) give a larger contribution to
the partition function than those with parallel z com-
ponents. Hence, their product —the spin current —is
typically negative. On the other hand, in the absence of
a magnetization there is nothing to bias the orientation
of the orbital angular momentum fluctuations and thus
there will be no charge current.

One should not take this picture too literally: as F,
N, and P~ are independent one can construct textures
for which the magnetization vanishes and yet there is
a nonzero charge current, and vice versa. For example,
the texture obtained by reparametrizing the cylindrically
symmetric planar texture, i.e. , y = x/2 and g = 0 —sin 8,
gives P~ = —

2 and N g 0. Thus this texture produces a
magnetization but no charge current.

That our effective spin-orbit coupling and spin currents
are essentially equivalent can be envisaged in the follow-
ing way, as suggested by Goeppert-Meyer. Consider a
pair of dancers performing a Viennese waltz around a
ballroom. As they orbit around the dance floor they also
spin about their center of mass. Typically they spin in
the sense opposite to their orbital angular momentum.

Finally we remark that the persistent currents de-

scribed here vanish in the limit that the ring becomes
large. This can be seen from the normalization of the
physical (i.e. , dimensionful) currents given at the be-

ginning of Sec. III. Considering M noninteracting and
nondegenerate particles on the ring, we find the charge
(or spin) current to be proportional to Mqh/ma2 (or
Mh /ma ). In the thermodynamic limit, i.e. , M, a ~ oo
with constant density M/2~a, the currents vanish. Thus,
we regard these currents as mesoscopic phenomena.
Furthermore, the electromagnetic fields which these cur-
rents produce vanish in the classical limit h ~ 0; thus
they are purely quantum mechanical in origin. On gen-
eral grounds it is clear that the currents also vanish
in the high-temperature limit. However, whereas the
charge current calculated using our adiabatic approxi-
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mation does vanish in the high-temperature limit, we do
not find that the spin current vanishes in this limit, due
to the temperature-independent geometric vector F. No
significance should be attached to this result because the
realm of validity of the adiabatic approximation does not
include high temperatures (ceo ) cue) and hence its pre-
dictions are untrustworthy for them.

Similarly, one might expect that these quantum-
mechanical persistent currents should vanish if calculated
using a thermal propagator from which contributions due
to paths with nonzero winding number have been omit-
ted. The reason is that the eA'ective action of Feynman
paths which do not wind around the ring is independent
of electromagnetic or geometric fiux. Indeed, we find
t;hat in this case the charge current vanishes, but that
the spin current does not, once again due to the presence
of the geometric vector. Similarly, no significance should
be attached to this result because the realm of validity of
the adiabatic approximation does not include uo & ~~,
i.e., large angular momenta, and hence its predictions are
untrustworthy for small winding numbers.

Thus, for the case of cylindrically symmetric textures
the partition function and the charge current are given by
Eqs. (5.2c) and (5.4), respectively, the only simplification
being that the geometric phase reduces to

Ps =
2 (cosy —I). (5.20)

F = —~eg sin

N = e, cosy.

(5.21a)

(5.21b)

This leads to expressions for the components of the spin
current and magnetization given in Ref. 10, i.e. ,

Note also that Eq. (5.2c) reduces to the exact partition
function when the tilt angle y vanishes. Similarly, the
low-temperature limit of the charge current is given by
Eq. (5.6), with the value of P~ obtained from Eq. (5.20).
These results have been given in Ref. 10 (see Ref. 32).

To calculate the spin current for cylindrically symmet-
ric textures we first compute the texture-dependent vec-
tors F and N using Eqs. (5.9a) and (5.9b), thus obtaining

G. Symmetric textures in the adiabatic
approximation

In Sec. VI we shall compute observable quantities
for the case of cylindrically symmetric textures by ex-
actly solving the time-independent Schrodinger equation.
Here, we collect the results of the path-integral adiabatic
approximation for such textures so that they may be
compared with the exact results presented below.

Cylindrically symmetric textures are those which can
be written in the form

B(8) = B (e, cos y + e„siny), (5.19)

or can obtained from such a form by a global (i.e. , 8-
independent) rotation of B(8). Here, (e„,es, e, ) forms
an orthonormal basis for a cylindrical polar coordinate
system on the ring, and the texture is then parametrized
by the magnitude of the field B and the tilt angle y (i.e. ,

the angle by which the texture departs from the vertical
direction). Figure 6 depicts a cylindrically symmetric
crouton-shaped texture. This form can be obtained from
the arbitrary texture, Eq. (4.17), by choosing y(8) = y
(a constant) and rl(8) = 8.

(J ) —
&

sin g+ —cosy ) n(n —4 ) e

a,n

(5.22)

(cr ) —cosy ) eve
-3 1

Z
(5.23)

This concludes the calculation of physical quantities
based on the path-integral adiabatic approximation. We
now turn to the particular class of textures, considered in
the present subsection within the path-integral adiabatic
approximation, for which exact results are independently
available.

with the other components (Ji) and (J ) vanishing. Fig-
ure 7 shows the dependence of the spin current (Js) on
4em and y at low but nonzero temperature for the case
of the symmetric texture. Similarly, the magnetization
is given by

6.283

FIG. 6. Mesoscopic ring (thick circle) in a cylindrically
symmetric crouton-shaped inhomogeueous magnetic field (ar-
rows) with constant tilt angle x.

FIG. 7. The (dimeusionless) spin current (J ) as a func-
tion of the electromagnetic flux P™and the tilt angle X for
the case of the symmetric texture at temperature T = 1 mK
for a ring of radius a = 3000 A and for a magnetic field of
magnitude B = 50 0.
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VI. EXACT SOLUTION FOR SYMMETRIC
TEXTURES

So far, we have developed an approximate path-
integral method which allows us to deal with arbitrary
textures. Instead, we now turn to a direct approach via
the solution of the time-independent Schrodinger equa-
tion. While this approach is generally intractable, the
very special case of a cylindrically symmetric texture is
readily solvable. By following this scheme we are able to
confirm independently the validity of the path-integral
approach in the adiabatic limit.

A. Symmetric model with source terms

problem H~]]/) = E~@) for the Hamiltonian given in
Eq. (6.1) with a Zeeman term which is proportional to

cr B(8) + (o B = B [(T cos8siny+ 0' sin Hsing

+o ((+ cos y)j. (6.2)

Following Kuratsuji and Iida, the solution of this
problem is elementary, due to the conservation of the
z component of the total angular momentum L3

p(] + (h/2)o, where p(] is the orbital angular momen-

tum, which follows from the rotational invariance about
the z axis. Thus, it is convenient to work in the basis of
simultaneous eigenkets of Ls and (rs, namely

In this subsection we consider symmetric textures and
solve the model described by Eq. (2.1) in the sense that
we obtain the exact spectrum of energy eigenvalues. The
solution for this spectrum is due to Kuratsuji and Iida. '

We then use this information to compute the partition
function, and derive from it the charge current, spin cur-
rent, and magnetization. We achieve this via the intro-
duction of suitable source terms which allow us to avoid
the computation of eigenfunctions and matrix elements.
To this end we consider the Hamiltonian

H = (J)() —hg' —h(o ) —g]uB(9) cr (gp—Bo
277l Q

(6.1)

i.e. , Eq. (2.1) without the potential term V(//) (to pro-
duce cylindrical symmetry), with the symmetric texture
given in Eq. (5.19), and with source terms h(o to gen-
erate the spin current and (gpB(rs to generate the mag-
netization. The components k = 1, 2 of the spin current
and magnetization vanish due to rotational invariance;
thus, no source terms are needed to generate them. The
Longuet-Higgins model of Jahn-Teller molecules bears a
formal resemblance to the present model, Eq. (6.1), but
of course describes a quite difFerent physical system.

B. Eigenvalue spectrum for symmetric textures

The aim is now to find the exact eigenvalues of the
Hamiltonian (6.1), i.e. , we must address the energy eigen-

L i/;8) = h/i/;8),

(T i/;8) = 8 i/;8),

(6.3a)

(6.3b)

where / = +1/2, +3/2, . . . and 8 = +1. We shall also use
the basis ~0; 8) given in Eq. (4.1), with the corresponding
wave functions

(8;Ri/;8') = 1 ~(&-xj2)e
2

(6.4)

Note that the total angular momentum quantum num-
ber l is half-integral; this follows from the addition of
an orbital and a spin angular momentum, the former
being integral, by virtue of the single-valuedness (under
0 ~ 9+ 27r) of the wave functions, and the latter being
half-integral.

In the (~/; 8)) basis the matrix elements of the Hamil-
tonian are given by

(/; HiHi/'; 4')

—b((+ cosy)
l, l' + —bsin y

P+ + b((+ cosy),
(6.5)

where Ey = (/6 1/2 —(/)' 6(), where A = h /2ma has
been defined at the beginning of Sec. IV D, and where
b = g/JB/b, is the dimensionless magnetic field. The
exact energy eigenvalues are then readily found to be

E, ((, () = d((i —p' )~+ —(1+2() —a ((I —g' )( +1(2)+b(/+cosy)]'+6~sin y ), (6.6)

where a = kl. We emphasize that this exact solution can be obtained only for highly symmetric textures, such as
the cylindrically symmetric one considered here. Below, we shall discuss various limiting cases of this exact solution,
in order to make contact with the path-integral solution and to discuss the validity of the adiabatic approximation.

C. Partition function, charge and spin currents, and magnetization

We now use the exact spectrum, Eq. (6.6), to compute the partition function for a single particle, from which we

can construct exact expressions for the equilibrium charge and spin currents. In the presence of the source terms the
canonical partition function is given by
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Z(gq)= ) ) e-
l—+1/2, +3/2, . .. a=+1

e-~~~&+2'& /4

t=+ i/a, +3/2,
e ~ ~' ~ ~ cosh / — ' 1+2 +b +cosy +b2sin

(6.7a)

(6.7b)

To compute the charge current we use the expression
given above in Eq. (5.4) and obtain

P~~ is integral. Under these conditions the spectrum
takes the simple form

(6.8) F-, .= 4 l'+ & 4- & (6.14)

in which the energy spectrum follows from Eq. (6.6) as

Ei ~ = Ei ~(g = 0, ( = 0), the partition function is given

by Z = Z(( = 0, t,
" = 0), and the derivative is explicitly

given by

Bp. Ei = —6 2(l —Q™)

n(l —P' + bc soy)

(l —P™+ b cos y) + b2 sin y)
(6.9)

The spin current is obtained by taking the derivative

with respect to (, giving

212m

2Z, 1 gl2+ $2
(6.15)

In the low-temperature limit the spin current becomes

and thus the charge current and the magnetization can
be seen to vanish for all temperatures, using Eqs. (6.8)
and (6.9), and Eqs. (6.12) and (6.13). The charge current
and the magnetization also vanish for this texture in the
path-integral adiabatic approximation, as follows from
Eqs. (5.4) and (5.22).

On the other hand, the spin current does not vanish

for this texture (and electromagnetic flux) and is given

by

(J ) = (2PA) 'rl( ln Z((, 0)

= -(2a Z)-' ) a, E,.g, o) . .e-i'~ -,

where

OgE( ~((, 0)

(6.10)

J p
——— —1+

2 v 1+4b~)
(6.16)

Now, the adiabatic limit is independent of the low-

temperature limit. If, additionally, we take the adia-
batic limit (which at low temperatures reads b )) 1; see

Sec. VI E), then Eq. (6.16) reduces to (J )p —2, i.e. ,

precisely to the result found from the path-integral ap-
proach, Eq. (5.22), applied to the planar texture.

2n (l —P™)(l —P™+ 6 cosy)

(I —P™+ 6 cos y) + b~ sin

(6.»)
with the other two components vanishing by symmetry.

The magnetization is given by

(o ) = (pgIJ, B) 0~ lnZ(0, ()

(gpBZ) ') B—qE~ (0, () e ~+', (6.12)

where

egg B (l —P' + b c soy)la0) ( p=
(l —P™+ b cosy) + b~ sin

(6.13)
with the other two components vanishing by symmetry.

E. Equivalence of the exact diagonalization and
path-integral approaches in the adiabatic limit

The path-integral approach to the investigation of per-
sistent currents using the adiabatic approximation has
the virtue of being able to handle arbit;rary textures. On
the other hand, the analysis of cylindrically symmetric
textures given in the present section has the virtue of be-
ing exact. It is therefore worthwhile to explore the regime
amenable to both methods in order to verify the validity
of the adiabatic approximation scheme. It is natural to
anticipate that the adiabatic approximation is accurate
for large magnetic fields in order to satisfy the criterion,
discussed at the beginning of Sec. IV D, that the preces-
sion frequency ~~ should far exceed the orbital frequency
~~. With this in mind we shall examine the exact solu-
tion in the limit

A)!sing( « gpB (6.17)
D. The planar texture

For the sake of illustration we now give the results of
the exact solution for the case of the planar symmetric
texture, for which y = s/2, under the restriction that

and confirm that in this limit we recover the results ob-
tained in Sec. V.

The expansion of the spectrum is most easily accom-
plished by rewriting it in the following way:
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E( ((,g) = &[(I—P' ) +(1+2() /4] —nbA+1+2(cosy+(z (6.18)

2

(6.19)

where we have retained the magnetization source term only to leading order. One now recognizes the exist, ence of
a combination of variables (I/b) sing which will serve as a suitable small parameter. Expanding the square root in

Eq. (6.19) in powers of (I/b) sin y we find, after a little algebra,

Et ~((, () A[I+ 1/2 —P' —o(1+2()P~ —n(] + 6((+ 1/2) sin y —agpB(1+(cosy), (6.20)

where Pa is given in Eq. (5.20), and we have omitted
terms of order (I/b)s and (I(/b).

Thus, to leading order and in the absence of source
terms, we find that t;he spectrum becomes

El, a ~I+1/2, a + 4»in 2 (6.21)

i.e. , precisely that identified from the adiabatic ap-
proximation, Eq. (5.3), apart from an overall
dependent (but quantum-number-independent) constant

(6/4) sin y which we shall discuss below. In addition to
the spectrum E~ (0, 0) we also need the derivatives

Bp.-EI ~(0, 0) = —24(l + 1/2 —C ~), (6.22a)

Dg E~ ((, 0) 6 sin y —2E cos y n(I + 1/2 —4 ),
(6.22b)

Ot. E~ ~ (0, () ng p B cos y—. (6.22c)

Inserting the first of these derivatives into Eq. (6.8) we

recover the charge current, Eq. (5.4), with the geometric
phase given by Eq. (5.20). Inserting the second derivative
into Eq. (6.10) we recover the spin current, Eq. (5.22).
Inserting the third derivative into Eq. (6.12) we recover
the magnetization, Eq. (5.23).

Thus, for b ~l sin y~ && 1 the exact diagonalization re-

produces the currents and magnetization in the symmet-
ric texture found in Sec. V using the path integral and
adiabatic approximation. In other words b ~

~l sin y~ && 1

defines the adiabatic limit. It is instructive to eliminate
the quantum number t from the adiabaticity criterion in
the following way. Due to the Boltzmann factor, e.g. ,

in Eq. (6.8), there is a cutoff I, in the angular momen-
tum quantum numbers t so that only those t for which

~I~ I, contribute significantly in the calculation of ob-
servables. Bearing in mind the fact that I is half-integral,
so that ~I~ cannot be smaller than z, we see that I, =
max ( —,I/gPh, ). Hence, the adiabaticity criterion be-
comes b )& I,

~

sin y~. If PE & 4, then the criterion reads
b )& ~sing~/+PA, i.e. , PgpB )) QPA~siny~. On the
other hand, if PA ) 4, then it reads b »

~ sing~/2, i.e. ,

2gpB » A~ sing~. In particular, in the low-temperature
limit the criterion for adiabaticity is independent of tem-
perature.

We have shown that, in the case of the symmetric tex-
ture, the criterion for the validity of the path-integral
adiabatic approximation is that b ~I~+1 —~N~z && 1,
where we have used Eq. (5.2lb). It is therefore reason-
able to suppose that this criterion also applies to arbi-

Irary textures, with N given by Eq. (5.9b), provided the
t, extures are not too rough.

F. Quantum fluctuations and zero-point energy

Until now, we have focused our attention on physical
quantities for which the adiabatic approximation is reli-
able. Not surprisingly, there are physical quantities, pri-
marily associated with quantum fluctuations, which are
not correctly obtained using the path-integral adiabatic
approach, even within the adiabatic limit. The reason for
this is that, as mentioned in Sec. IV, the adiabatic ap-
proximation for the spin propagator is only accurate for
slowly varying magnetic fields. However, there are cer-
tainly paths in the path integral which are rough. These
rough paths cause the spin to experience a rapidly vary-
ing field and hence not to evolve adiabatically.

Let us explore this issue a little further by rewriting
the integrand of the propagator in Eq. (4.15) as

exp( —S ~, [0]) = exp( —S '
[0] —S' [0]),

where (6.23)

S', [0] = —ln (nf ~Ue(P) ~(x') .

DS'[0' + r/] = S'[0' + rl] —S'[0'] (6.24)

within the adiabatic approximation, DS' is sensitive to

For the sake of simplicity we shall assume that B(0) and

V(0) are constants. Following the usual scheme, we ex-
amine the stationary point of the action, i.e. , the solu-
tion of bS = 0. Assuming the validity of the adiabatic
approximation, we see that bS' = 0 and thus does not
influence the classical equation of motion for 0(r) If we.
find, as one usually does, a smooth classical path 0"(r),
then this procedure is at least self-consistent. Contin-
uing with the usual scheme, we examine the quantum
fluctuations r/(r) around the classical path by analyzing
S[0' + r/] = S ' [0' + r/] + S' [0' + q]. Now S "b is
quadratic and therefore presents no difficulties. By con-
trast, we are unable to compute 5' for an arbitrary path.
Whereas it was reasonable to evaluate 5' within the adi-
abatic approximation in solving the classical equation of
motion, such an assumption may no longer be valid for
calculating S'[0"+ r/) because r/(r) is typically rough. In

particular, this means that rather than vanishing identi-

cally, as does
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typical fluctuations g and therefore modifies the action

DS[0" + iI] = S[0"+ iI] —S[0"] (6.25)

controlling these fluctuations. Writing the propagator
Eq. (4.15) schematically in terms of the fluctuation path
integral for a given winding number v, i.e. ,

(6.26a)

(6.26b)

VII. EQUILIBRIUM CURRENTS
FOR MANY FERMIONS

We shall now consider persistent currents and magneti-
zation in a many-particle system of spin-2 fermions, con-

we recognize that our path-integral calculation in Sec. IV
essentially replaces DS by DS 'b. However, the inclusion
of DS' generally modifies the fluctuation contribution
to the partition function Z. If this modification should
contain a term which is independent of v, then such a
term could be interpreted as a state-independent addi-
tive correction to the energy spectrum due to quantum
fluctuations, i.e. , zero-point, energy. Now, the adiabatic
expansion of the exact spectrum for the symmetric tex-
ture, Eq. (6.21), difFers from the spectrum identified from
the path-integral approach (given in Sec. IV) by the con-
stant term (6/4) sin g. The origin of this discrepancy
lies in the omission of DS from the analysis of the quan-
tum fluctuations.

For the calculation of quantities such as the persistent
currents and magnetization, this additive constant in the
spectrum cancels and is therefore irrelevant. However,
for other quantities, such as the mean-square z compo-
nent of the total angular momentum L = ps + (h/2)o's,
this cancellation does not occur. To see this, we consider
the planar symmetric texture y = n /2, with P~~ = 0, for

which the exact diagonalization gives (L ) = 0 (see the
beginning of Sec. VI D). Next, we consider the square of
the total angular momentum, and compute its expecta-
tion value at zero temperature, obtaining

(6.27)

where (Js) is given in Eq. (6.16) and

r' B r' &

((ps)'), = —lim — ln Z = —1—
1+4b')

(6.28)

Thus, we find the exact result ((Ls) ) = h /4, a re-
sult which of course also holds in the adiabatic approx-
imation (i.e., b » 1) of the exact spectrum, Eq. (6.21).
However, in the path-integral adiabatic approximation
we obtain, using Eqs. (5.22) and (5.2c), ((pq) ) h /4

and thus ((Ls) ) = 0. This example involving mean-
square quantities shows explicitly that the path-integral
adiabatic approximation can be unreliable for quantities
which are sensitive to quantum fluctuations or zero-point
energy.

.0 qh 1 BE
2s ma~ 2b, By™
r' & 1 BE

4s maz 2A BP~

h 1 BE
S N.

2gpBB

(7.1a)

(7.1b)

(7.1c)

To address the applicability of the adiabatic approxi-
mation in Fermi systems we introduce the Fermi orbital
angular momentum number n~ = ge„/b,. Then crite-
rion (6.17) shows that the adiabatic approximation can
be applied to all occupied states of the Fermi sea pro-
vided that np « b, i.e. , hv~/2L && gpB, where v~ is
the Fermi velocity and I = 2ma is the circumference of
the ring. Equivalently, this requires that the orbital level

splitting at the Fermi surface beF 2i/ep b, be much less
than the Zeeman level splitting 2gpB.

For the sake of illustration, consider a system with the
following parameters, consistent with the experimental
configuration of Chandrasekhar et al. :s a single Au loop
of circumference I 7.5 pm, Fermi velocity v~ 1.4 x
10s ms i, and g 2. Then the criterion for adiabaticity
to be maintained throughout; the Fermi sea is that the
applied magnetic field exceed approximately 6.6 T. If the
Au loop were replaced by one made of GaAs, then the
Fermi velocity woul. d be reduced to approximately 3 x
10 ms; correspondingly the magnetic field required to
maintain adiabaticity would be reduced to approximately
1.4 T.

Following the arguments described in Ref. 4, and ap-
plying them to Eqs. (7.1a), (7.1b), and (7.1c), we find
that the order of magnitude of the charge current for
a typical texture is given by j qv~/L and, simi-
larly, for the spin current ~j~ „hv~/2L As a con-.
sequence, for the experimental system of the single Au
loop described in the preceding paragraph one may, e.g. ,

tinuing to neglect particle-particle interactions. Within
the grand canonical ensemble and at nonzero temper-
atures this would amount to replacing the Boltzmann
weight Z exp ( —Pe, ) by the Fermi-Dirac distribution

f(e, ) = [exp P(e; —p) + 1] ', where p is the chemical
potential and e; is the single-particle energy spectrum.
In particular, for the symmetric texture the exact solu-
tion has a spectrum given by Eq. (6.6). For arbitrary
textures the exact spectrum is not available, but in the
adiabatic approximation it is given by Eq. (5.3). We
shall focus here on the results for the many-particle cur-
rents and magnetization in the adiabatic approximation.
In addition, we shall restrict our attention to fixed par-
ticle number M, which corresponds to the typical ex-
perimental arrangement, and to T = 0. This amounts
to populating a Fermi sea up to the Fermi energy cF .
The many-particle ground state energy is then given by
E = Q„E'„,where the summation includes the M
lowest-lying single-particle energy levels, consistent with
the Pauli principle. According to Eqs. (5.4), (5.10), and

(5.16) the (dimensionful) many-particle charge currentj, spin current j, and magnetization s can be expressed
in terms of F by
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anticipate an electric field caused by the persistent spin
current, with magnitude 2 x 10 Vm at a location
roughly 2 pm along the loop axis from the loop center.
The detailed development of these estimates is somewhat
involved and is planned to be described in a forthcoming
paper. In Ref. 9 we shall also estimate the magnitudes of
the static magnetic and electric fields produced, respec-
tively, by the persistent charge current and spin current
and, in particular, their dependence on the texture and
the electromagnetic flux.

VIII. SUMMARY AND OUTLOOK

In this paper we have considered an idealized model of
a mesoscopic ring containing noninteracting spin-

&
parti-

cles coupled to a static inhomogeneous magnetic field via
a Zeeman term. We have constructed a path integral for
the thermal propagator, in which spin and orbital motion
are decoupled, in the presence of an arbitrary texture.
Within an adiabatic approximation for the (imaginary-
time) spin dynamics, and for textures with constant mag-
nitude but arbitrary local orientation, we have computed
the persistent charge current, spin current, and magne-
tization. We have identified a geometrical aspect of the
texture —the geometric vector —which, in addition to
the well-known Berry phase, characterizes the spin cur-
rent. We have discussed an exact diagonalization for the
case of symmetric textures, and have analyzed the limit
in which this approach and path-integral calculation are
equivalent. In addition, we have discussed the roles of
quantum fluctuations and zero-point energy. Finally, we
have given results for persistent currents and magnetiza-

tion for a system of many noninteracting spin- 2 fermions.
The results developed in this paper can be applied to

a range of physical systems including systems of charged
particles, such as normal metals and semiconductors, and
neutral particles, such as normal He and He- He mix-
tures. Detailed numerical estimates of the magnitudes
of the magnetic and electric fields produced by persis-
tent currents is planned to be presented, inter alia, in
a forthcoming paper. Applications to elastic, optical,
and superfluid systems may also be anticipated. Fur-
thermore, the techniques developed here are also appli-
cable to nonequilibrium phenomena such as the recently
predicted Berry-phase-induced magnetoconductance os-
cillations in multiply connected structures, and other
real-time interference phenomena. Finally, in the spirit of
Hannay's classical analog of the Berry phase, it would
be interesting to find a classical analog of the geometric
vector.
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