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Diophantine equation for the three-dimensional quantum Hall effect
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When the Fermi level lies in a gap, the Hall conductivity of three-dimensional electrons in a periodic
potential is expressed in a topologically invariant form with a set of three integers. If the magnetic fluxes
through the three independent areas of the periodic lattice are rational numbers, one obtains a Diophan-
tine equation relating these numbers and the integers which characterize the Hall conductivity.

I. INTRODUCTION

The quantized Hall effect in two dimensions (2D) has
been extensively studied since the pioneering experimen-
tal work of von Klitzing, Dorda, and Pepper.! Laughlin?
argued from a general gauge principle that the Hall con-
ductivity should be integrally quantized (o,, =ne?/h,
where n is an integer) when the Fermi level lies in a gap
of extended states. Then, from the Kubo formula, Thou-
less, Kohmoto, Nightingale, and den Nijs* (TKNN) de-
rived an explicit formula for the Hall conductance of
noninteracting electrons in periodic systems. This ex-
pression is independent of the detailed structure of the
periodic potential.* The integer is a topological
invariant—the first Chern class of a U(1) principle fiber
bundle on a torus.® It relates to the structure of the mag-
netic subbands and thus depends on the flux ¢ of the
magnetic field through a unit area of the periodic lattice.

The problem of a 2D crystal in a magnetic field is an
old one.® The electron energy spectrum has an extremely
rich structure as shown by Hofstdater.® In fact if ¢ is ir-
rational, it is a Cantor set which consists of infinitely
many “bands” with scaling properties.” For a rational
¢ =p /q, each subband carries an integer Hall conductivi-
ty. If the Fermi level is in an energy gap such that r
bands are completely full, and all others are empty, one
has the Diophantine relation

r=gs,+pt,, (1.D

where s, and ¢, are integers. The Hall conductivity is
given by —t,e2/h.>%

The solution of (1.1), unfortunately, is not unique. In
the weak-potential case we have a restriction [s,| <p /2.
On the other hand, |t,| <¢q/2 for the strong-potential
limit, i.e., the tight-binding case. Thus we do have
unique solutions in these two limits. If a gap closes and
reopens in the intermediate region, however, t, will
change, although it will still satisfy the Diophantine
equation (1.1).

It is interesting to ask whether these results can be gen-
eralized to electron states in a three-dimensional periodic
potential in a uniform magnetic field. In a previous pa-

45

per,’ one of the present authors demonstrated, following
the lines of TKNN, that when the Fermi level is in an en-
ergy gap in the 3D case, the conductivity tensor can al-
ways be written in the form

2
0= Sk Cilk Gy, (1.2)
where € is the unit antisymmetric tensor, and G is a
vector (possibly zero) on the reciprocal lattice of the
periodic potential. Moreover, if the magnetic field B is
varied in magnitude or direction, the vector G remains
constant, as long as the Fermi level remains in the gap.

Since j;=3 0 Ey, (1.2) implies the current is given
by j=(e?/2wh)EXG. Then the consequences of (1.2) are
the following. (1) For an electric field E in an arbitrary
direction, there can be no current component parallel to
E, and so there will be no dissipation. (2) There can be
no current component parallel to G. However, there can
be a Hall current in the crystal planes perpendicular to
G, if G#0. (3) The Hall conductance in each crystal
plane perpendicular to G has a quantized Hall value,
ne®/h. [The value of n is equal to the greatest common
divisor of the three integers ¢, which appear in (1.5)
below.]

The overall question of when there will or will not be
an energy gap between bands in a three-dimensional
periodic potential has not been extensively investigated;
nor has the question of when there will be a nontrivial
vatue of the Hall conductance {GF0). Recently, howev-
er, several authors have calculated the energy spectra for
some simple cases of 3D periodic systems in a magnetic
field, and have indeed found regions of parameters where
energy gaps open up.m_ 12

A quantum-mechanical state closely related to the 3D
quantized Hall state in a periodic lattice has employed as
a description of a three-dimensional chiral spin liquid
state by Laughlin and co-workers.

Montambaux and Littlewood'* presented a physical
situation in which the Fermi level is pinned in a gap, in
the absence of any disorder. This is the magnetic-field-
induced spin-density-wave (SDW) subphases of a 3D
quasi-one-dimensional  conductor. = However, their
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description neglected the lattice periodicity along the
direction of highest conductivity —an approximation val-
id for low fields. There it has been stressed that an in-
teresting situation could take place as soon as the field is
not aligned along one of the crystallographic axes. This
is essentially due to the fact that we have three parame-
ters ¢, ¢, and ¢, (instead of one ¢ in 2D), which are the
magnetic fluxes in units of & /e through the three in-
dependent areas of the periodic lattice. (In this paper, we
choose e >0, so that the electron charge is —e.)

Montambaux and Kohmoto!® considered a simple
geometry in which the field B is perpendicular to the a-b
plane and the c axis is tilted with an angle 6 in the B-b
plane, where a,b,c are a set of vectors which span the
Bravais lattice. Note that there is no magnetic flux
through the b-c plane in this geometry. They obtained
explicit energy spectra and the quantized Hall conduc-
tivities when the Fermi energy lies in a gap for a tight-
binding model where the hopping strength in the b and ¢
directions is weak, compared with the hopping in the a
direction.

Montambaux and Kohmoto also proposed a generali-
zation to three dimensions of the Diophantine equation
(1.1). Specifically, they considered a ‘“‘rational” magnetic
field B, which has the form

1k
vy e

LI LB L

a dp q.

) (1.3)

where v is the volume of the unit cell,

vo=a-(bXc), (1.4)

and p, and g, are integers (a=a,b,c) with g, >0. The
reciprocal lattice vector G which enters (1.2) for the con-
ductivity tensor may be expanded in terms of the elemen-
tary reciprocal lattice vectors dual to a,b,c as

G=—(t,G,+1,G,+1.G,.), (1.5)

where ¢, are also integers. Then the Diophantine equa-
tion proposed by Montambaux and Kohmoto states that
there exist integers r and s, such that r is the number of
filled bands and
L=5s +tap—“+tbp—b+tcp—c
Q 9 9» gc

where Q =g,9,q,.

In the case where q,, g,, and ¢, have a common divi-
sor, the unit cell chosen by Montambaux and Kohmoto is
not the smallest possible unit cell in direct space. By
choosing the smallest cell in direct space, and hence the
largest cell in reciprocal space, we find that the value of Q
in (1.6) may be chosen to be the least common multiple of
945 9> and g.. With this choice of unit cell, the number
of filled bands r will of course be smaller (by an integer
factor) than for the choice of Montambaux and Kohmo-
to.

Although Montambaux and Kohmoto derived (1.6) in
some special cases, they did not give a general proof of
this relation. It is the primary purpose of the present pa-
per to supply such a proof. Specifically, we study generic

’ (1.6)
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cases for 3D electrons in a periodic potential in a uniform
magnetic field. Namely, the primitive vectors a, b, and ¢
are not necessarily orthogonal to each other, and the
magnetic field B is aligned in a general direction. In Sec.
II, following Ref. 12, we derive the three-dimensional
Hall conductivity formula (1.2) by using a particular
choice a’,b’,c’ for primitive vectors of the Bravais lattice,
which are in general linear combinations of the original
vectors a,b,c. With this choice, the expansion
coefficients ¢,,, t,,, and t.. of the reciprocal lattice vector
G in the Hall conductivity formula have the meaning of
topological invariants—namely, the Chern numbers. In
Sec. III we show that the Diophantine equation (1.6) ap-
plies for an arbitrary choice of the primitive vectors
a,b,c.

II. QUANTIZED HALL CONDUCTIVITY
IN A THREE-DIMENSIONAL
PERIODIC POTENTIAL

We describe here the derivation of the three-
dimensional quantized Hall conductance formula (1.2) for
noninteracting electrons in a periodic potential. In order
to make this paper self-contained and to establish our no-
tations, we elaborate the proof presented in Ref. 9. The
proof is a generalizaton to three dimensions of the argu-
ments of TKNN for the two-dimensional case.’

We first note that if the Fermi energy is located in an
energy gap, Or in an energy region that contains only lo-
calized states, then there can be no dissipative current
flow for a weak electric field in any direction. It follows
that the diagonal elements of ¢ must vanish for any
choice of coordinate axes, and hence o is purely antisym-
metric. Therefore we may write

2.1

where D is a vector whose value we wish to determine.

One can define three fluxes ¢,, ¢,, and ¢, (instead of
one ¢ in 2D) through the three elementary plaquettes of
the periodic lattice. The areas of these plaquettes are
given by a; Xa, (a; and a; are a, b, or ¢). The flux is
written, in units of the quantum 4 /e, as

(2.2)

so that the uniform field B is totally characterized by
these three quantities.
The primitive vectors in the reciprocal lattice are given
by
G,=27m(bXc) /v, ,
G,=2m(cXa)/v,,

G, =2m(aXb)/v, .
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Since G, is perpendicular to the b-c plane, one has
B-G,=27B:(bXc)/vy=(2mh /vye)p, and similar rela-
tions for G, and G,.. So B is written

B=L (g ate,b+d.0).
Uo e

(2.4)

We shall first consider the case of a “rational magnetic
field,” where ¢,, ¢,, and ¢_ are rational, i.e.,

Dq
¢ =,
‘g,
Py
=, (2.5)
b 7
D
é.=—,
‘g

where p, and g, are integers with no common factor.
Let Q be the least common multiple of ¢g,, g,, and gq,;
then we may write ¢,=n,/Q, ¢, =n,/Q, and ¢, =n,/Q
where n; are integers. Let p be the greatest common fac-
tor of n,, n,, and n,, then we have n,=pm,, n,=pm,,
and n;=pm;. Thus we have

d’a:%ml ’
=L, (2.6)
¢b Q 2
:-Em
¢c Q 3
From these (2.4) is written
h1p
B:—— ! ’ *
¢ v Qc 2.7
where
¢'=m,a+m,b+msc (2.8)

is a lattice vector. By definition m, m,, and m; do not
have a common factor and there is no vector on the Bra-
vais lattice which is a submultiple of ¢’. Then one can
find a’ and b’ such that a’, b’, and ¢’ are a new set of
primitive lattice vectors (see Appendix). The fluxes in the
new set of primitive vectors are given by (2.2) with a, b,
and c being replaced by a’, b’, and ¢’. Then (2.7) implies

¢a’=¢b':0 ’

—2
s=5

For electrons in a uniform magnetic field, one may
define a set of translation operators Sy which translate
the wave function by the vector R and multiply it by a
postion-dependent phase factor, and which commute
with kinetic energy.!> Two operators, Sg and Sg., have
the property

SRSR' :SRISRei2”¢ N

where ¢=B-(RXR')e/h.
If we now consider the operators S,, (Sy)2=S, and

(2.9)

(2.10)
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S, it is straightforward to see that they each commute
with the Hamiltonian, and they commute with each oth-
er. Thus we may choose eigenfunctions of the Hamiltoni-
an in the form

Y n()=e" "y (1), 2.11)

where u, , is invariant under the operators S, Sy, and
S and n is a band index. The absolute value |u, ,| is a
periodic function of r in the “magnetic Bravais lattice”
generated by a’, Qb’, and ¢’ and we shall normalize u, ,
in the unit cell of this lattice. The wave vector k may be
restricted to a magnetic Brillouin zone of the form

f2

k=/1Gu+75 Gy +/3Ge, (2.12)

where f, f,, and f; range from O to 1, and G, G, and
G, are the fundamental reciprocal lattice vectors of the
original lattice, given by (2.2) with a, b, and c being re-
placed by a’, b’, and ¢’. The phase of u, , gives the fiber
of the principal U(1) bundle over the two-torus which is
the magnetic Brillouin zone, except possibly for some iso-
lated points in the Brillouin zone where two bands be-
come degenerate. They give singularities on the magnetic
Brillouin zone. (This assumes that the potential has no
special symmetry other than translation.)

If the Fermi energy lies in an energy gap between two
bands n and n +1, then the conductivity tensor is given,
according to the Kubo-Greenwood formula, by

e’ Qup, duy,
0= d3k dir | —=r X
% | Esf "ok, ok,
au:n’ aukn’
- 2.
ok; Ok; ’ @13

where the space integral is over a unit cell of the magnet-
ic Bravais lattice, and the k is over the magnetic Brillouin
zone (see Fig. 1). The k integral is written

fd3k=foldf3(Gc,-c')/c’fs(fa)dzk
=2n [e' [af, Jo 8%

where S(f;) is a surface which is parallel to the G,-G,
plane in the magnetic Brillouin zone (see Fig. 1). From
(2.1) and (2.13) we obtain

S(f3)

FIG. 1. The magnetic Brillouin zone.
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_wh )
D-c'—?—ZE,-ij,-jck.

ijk
=3 [ldfsontsfs), .14
where
1 . :
ol )= [g, @7k [ VX iy Vi 1757
(2.15)

If the Stokes theorem is applied naively to the k integral
over the surface S(f;), then o,.(f;) represents the net
phase change of u, ,. around the perimeter of S(f;) and
is necessarily an integer times 27. However, this argu-
ment is rather incomplete. If there are no points of de-
generacy between the band n' and any other band, this
integer is a topological invariant, and is independent of
f3. The essential point here is that the magnetic Bril-
louin zone is topologically a three-torus. Thus the cross
section S (f;) is a two-torus and in general it is not possi-
ble to define a global phase on it. Then the phase of the
state defines a principal U(1) bundle over the two-torus.
Now the expression in (2.15) represents 27 times a Chern
number of the fiber bundle which is necessarily an in-
teger. A detailed account of this point can be found in
Ref. 5. If there is a point of degeneracy between n’ and
another band, the value of o,.(f3;) may change discon-
tinuously, as a function of f;, but the sum of the contri-
butions of the two bands will not change. Since we have
assumed that there is an energy gap between bands n and
n +1, so that there is no point of contact between them,
it follows that ¥ ,.<,0,(f3) is an integer, independent of
f3, and that the quantity c¢’-D is an integer multiple of
2.

In a similar manner, we may prove that a’-D and
Ob’-D are also integer multiples of 2. Moreover, by
choosing a different magnetic Brillouin zone, where the
roles of a’ and b’ are interchanged, we can establish that
b’-D is itself an integer multiple of 27. It then follows
that D is a vector G on the reciprocal lattice generated
by G,,, G, and G as

G=—(1,G, +1,Gy+1.G,) . (2.16)
The magnetic Brillouin zone is a three-torus. Each band
has three topological invariants (first Chern numbers) on
the two-tori obtained by slicing the three-torus in three
different manners. The three integers 7,., ., and ¢, are
the sums over these integers over the filled bands. Avron,
Seiler, and Simon'® found that every quantized invariant
on a d-dimensional torus 7¢ is a function of the
d(d —1)/2 sets of TKNN integers obtained by slicing T°¢
by the d(d —1)/2 distinct T2 In 3D, the three TKNN
integers are precisely related to 7, t;,, and ¢,

Finally, we must consider irrational values of the mag-
netic field B. It can be shown that if E lies in an energy
gap for some specified B, then it must be also inside the
gap for all magnetic fields in some neighborhood of B.!”
The value of G cannot change, however, as long as Ej is
inside a gap.!””!® Therefore the value of G throughout
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the neighborhood is determined by the value at the ra-
tional magnetic fields, and is a vector on the reciprocal
lattice, as claimed.

III. DIOPHANTINE EQUATION

When the Fermi energy is in an energy gap, there ex-
ists a relation between the antisymmetric conductivity
tensor o,; and the derivative of the electron density p
with respect to the magnetic field B, which is an exten-
sion of three dimensions of the well-known Widom-
Streda formula!® for the two-dimensional quantized Hall
conductance. The three-dimensional version of this for-
mula may be written in the form

=g, 0P
O..=—ec.. , (3.1
ij ijk d Bk
where the derivative is to be taken with the Fermi level p
fixed inside the gap.

The simplest derivation of this formula follows the
lines of Widom’s argument. When the Fermi level lies in-
side a gap, it is reasonable to assume that the frequency-
and wave-vector-dependent conductivity tensor aij(k,w)
is analytic in the limit k —0, @ —0, with a finite limiting
value (possibly zero) which is independent of order of
limits taken. Let us consider the ground state of the sys-
tem in a time-independent magnetic field and electrostat-
ic potential which vary slowly in space, and deviate only
slightly from their average values, such that the Fermi
level u remains in the gap at all points in space. If the
thermodynamic potential Q=FE —uN is considered to be
a functional of the magnetic field B(r) and the electro-
static potential ®(r), then the electron charge density
and current are given by

_ 80
ep(r)= 50(r) ’ (3.2)
J(r)=VXm(r), (3.3)
where
___%0
m(r) 8B(r) (3.4

[Strictly speaking, since B is required to be purely trans-
verse (i.e., V-B=0), only the transverse part of 62 /6B is
well defined, but that is all that is needed to determine
the current.]

Now, if we consider a situation where B is a constant,
and ® varies slowly in space, we may write, to lowest or-
der in the variation 8P,

30)
5B5D

5Q
8B(r)

=const+ SP(r) . (3.5)

If we also write j;=—3,0,;V;®, then (3.1) follows
directly from (3.2)-(3.5).

If (1.2) and (3.1) are compared, one obtains
0p/0B=—(e/27mh)G. When this equation is integrated,
we find

_const e
Vo 2mh

B-G, (3.6)
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where const is a constant which is independent of B.
Since G is a vector on the reciprocal lattice [see (2.16)]
one can write G=—(t,G,+1,G,+t.G,). Using (2.3)
and (2.4) we obtain

vop=const+t, ¢, +t,d, +1t.b. . (3.7

Let us first obtain the density of electrons p. Since the
volume of the magnetic Brillouin zone is (27) /v,Q, the
density of electrons in a single band is given by 1/v,Q.
Thus, when there are r bands below the Fermi energy, the
density of electrons is

1
vo @
Next we shall show that const is an integer. Since Q is
the least common multiple of g,, g,, and gq,, one can
write Q =n,q, =n,q, =n.q,, where n,, n,, and n, are in-
tegers. Thus from (2.5), (3.7), and (3.8), we have
r=constXQ+n,p,t,+n,pyt, +n.p.t. and constXQ
has to be an integer. If const is a fraction n/m, then Q
must be a multiple of m. When the magnetic field is
varied without making a point of contact, however, Q
changes and it cannot stay as a multiple of m. Therefore

const is an integer s and we finally have

p (3.8)

=S +ta¢a +tb¢b+tc¢c

Q~

mor By B

a b c

(3.9)

which is nothing but the Diophantine equation (1.6) stat-
ed in Sec. 1.

Now if a’, b, and ¢’ are chosen as the primitive lattice
vectors, we have ¢, =¢, =0 [see (2.9)] and (3.9) is re-
duced to
LA & 3.1
0 s +t, 0’ (3.10)
which has the same form as the 2D Diophantine equation
(1.1).%% To see this in greater detail let us choose the z
direction to be parallel to B. Since ¢’ is parallel to B,
(G,),=(Gy),=0 and (G),=—(t.G,),=—t.X2mw/c'
and from (1.2) one has

_ 82 tc’
ny - 7 ? .
Thus (3.10) and (3.11) are almost the same as the 2D for-
mulas. Here we want to emphasize that though (3.10)
looks like a special case of (3.9), actually it is completely
equivalent to (3.9). To see this we note that from the ex-
pressions of B-G one easily obtains

(3.11)
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tc'¢c'=ta¢a +tb¢b+tc¢c . (312)
Moreover from (2.6) and (2.9) one has
to=mt,+m,t,+mst, . (3.13)

The solution of the Diophantine equation (3.9) for G
[see (1.5)], unfortunately, is not unique. This, however,
must be so since G depends on the periodic potential
(weak-potential limit, tight-binding limit, etc.).

We speculate that the solution of (3.10) is unique with
restrictions |s| <p/2 in the weak-potential limit and
|2.| <Q /2 for the tight-binding limit in analogy with the
2D case.

The current is determined by the conductivity tensor
with components being o,,=—o0,,, 0,=—0,, and
0, =—0,, (0, =0,,=0,,=0) which are given by the
reciprocal lattice vector G [see (1.2)]. Thus in order to
specify the current we still need to calculate the other
components of the conductivity tensor which are given
by the integers ¢, and t,..

Moreover, the conditions for existence of an energy
gap are nontrivial in the 3D case.
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APPENDIX

Let g be the greatest common factor of m; and m,. By
hypothesis, there is no common factor of g and m,. Then
one can choose four integers s, 55, 53, and s, such that

Symy=sym;=q, (A1)
Som,+s,g=1. (A2)
Finally, we may choose
a'’=s;a—s,C, (A3)
b'=s,b— (SZ"” lc— 2 (A4)
q q

The vectors a’, b’, and ¢’ can themselves be used as a set
of primitive vectors for the Bravais lattice.
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