
PHYSICAL REVIEW B VOLUME 45, NUMBER 23

Stochastic Coulomb blockade in a double-dot system
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Coulomb blockade in a system of two dots connected in series is qualitatively different from that of a

single dot. We show that, although the conductance G of a double-dot system reveals oscillations with

the gate-induced potential Vg, a typical period of these oscillations changes with the temperature. If the

capacitance ratio C& /C2 for the dots is an irrational number, the system of peaks in 6( Vg ) becomes in-

creasingly sparse as the temperature decreases. Both the peak-to-peak distance and the activation ener-

gies of the conductance at the peaks that persist are random. However, the distribution function of ac-

tivation energies calculated for a large interval of Vg has a universal shape and may be considered as a

characteristic pattern of a double-dot system. If the ratio Cl /C2 is small, there is a substantial range of
intermediate temperatures in which the ordinary periodic Coulomb oscillations are restored. Numerical

simulations show that for observation of both stochastic and regular Coulomb blockade for the same

sample at different temperatures it is enough to have the ratio Cl /C2 0.5. The existence of a small in-

terdot capacitance C && C„C~is shown to cause, at the lowest temperatures, a splitting of the conduc-

tance peaks that persist into doublets with a constant spacing e'C/C, C, .

I. INTRODUCTION V = (n+ —,'), n =0,+1,+2, . . . .
Co

(3)

Electron transport through a small-size conducting dot
can be affected significantly by the phenomenon of charg-
ing (Coulotnb blockade). ' The simplest type of a struc-
ture consisting of a single dot separated from two leads
by tunnel barriers (Fig. 1) has been studied extensively
both experimentally and theoretically (see, e.g., recent pa-
pers, Refs. 2 —7). Two difFerent manifestations of
Coulomb blockade were under consideration. The first
one is a staircase structure observed in the I-V charac-
teristic. The second one is oscillations of the linear con-
ductance as a function of the gate voltage which controls
the equilibrium charge of the dot. The conductance
peaks are periodic in the gate voltage ' ' with the period
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At these points the low-temperature value of 6 ap-
proaches a constant,

hV =e/Co,
LEAD DOT

~
)& &

LEAD

where Co is the capacitance between the gate and the dot
[Fig. 1(b)]. Oscillations become well resolved at low tem-
peratures,

R,

Vg+ Vsd/2 Co

R2

Vg Vsd/2

ktt T ((ktt Ttt: e /2( Co + 2C), — (2)

where C is the lead-to-dot capacitance. The explicit form
of the linear conductance G vs V dependence at a given
temperature was derived in Ref. 5. The conductance has
a finite activation energy at all values of V except the
points of charge degeneracy,

GATE j

FIG. 1. (a) Single-dot device and (b) the equivalent circuit.
Rl and R2 are the tunnel resistances of corresponding junc-
tions.
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we assume the interdot and the lead-to-dot capacitances
to be equal (Fig. 2), though it is not essential to our con-
clusions. Five continuous polarization charges

q&, . . . , q5 can be introduced for the circuit shown in

Fig. 2, U as a function of these charges having the form

GATE

g2

q2 qs q4 qs
2 2 2+ 2+ 2

2C, 2C2 2C

FIG. 2. Equivalent circuit of a double-dot device. Polariza-

tion charges q„.. . , q5 are continuous ones; charges en&, en2 of
the dots (not shown in the figure) are discrete.

G ( T~0)= ,' G ( T )—)T~ ) .

The conductance (4) remains finite at T~0 because, un-

der condition (3), the Coulomb energy of a dot having n

and n + 1 electrons is the same and hence the passage of a
charge through a dot does not require extra energy.

The situation becomes very different for a sequence of
dots connected in series. The simplest case of two dots is
shown in Fig. 2. If the dots are not identical, the condi-
tion of charge degeneracy cannot be satisfied simultane-
ously for both dots. In this case the conductance behav-
ior becomes much more complicated. The linear conduc-
tance G as a function of temperature T and gate voltage

Vg is studied in this paper. We find that, under
sufficiently mild requirements on the values of capaci-
tances forming the equivalent circuit shown in Fig. 2, a
crossover from a periodic to a quasirandom dependence
G ( Vg ) occurs at low temperatures. This evolution of the
G ( Vg ) function is strongly reminiscent of the oscillatory
pattern observed in experiments on In203 „wires as
well as some features of oscillations investigated in a
GaAs field-effect structure near the depletion threshold.
This allows us to make a conjecture that transport prop-
erties of mesoscopic wires near the crossover from the
metallic to the insulating regime are controlled by the
Coulomb blockade in a system formed by dots with ran-
dom parameters.

In Sec. II, we analyze the electrostatic energy of the
two-dot system and derive the conditions favoring con-
ductance through the system. The structure of a single
conductance peak at low temperatures is studied in Secs.
III and IV, the effect of small interdot capacitance being
explicitly discussed in Sec. IV. Numerical results for the
crossover from a periodic to a random peak structure are
presented in Sec. V. In Sec. VI, we calculate the distribu-
tion function of activation energies of the conductance.
If the ratio C, /C2 for the dots (see Fig. 2) is irrational,
the function has a universal shape. Possible relations to
experiments are discussed in Sec. VII.

II. WHEN DOES THE CONDUCTANCE
OF A TWO-DOT CHAIN PEAKY

q3+q5 —
q&

= —n&e,

q4+q2 —q5= —n2e .
(6)

The equilibrium charges q; at given n „n2are found
from (6) and from the condition that the energy U is a
minimum

BU/Bq, =0, i =3,4, 5 .

The resulting energy as a function of the discrete vari-
ables n, and n 2 has the form

U(n ],np ) = U]] n ] + U22n 2+ U]pn ] n2
2 2

with coefficients

—eVg(a]n]+a2n2), (8)

e (2C+C;5; )

2(3C +2CC]+2CC2+C]C~)

CC ] +CC2 +C
& C2 +CC

a;=
3C +2CC& +2CC2 +C& C2

(9)

(10)

In Eq. (9), summation over repeated subscripts i and j is
not assumed. Use of the reduced form (8) of the potential
energy that depends only on two charges n „n2is justified
in the study of transport phenomena only if the relaxa-
tion time to equilibrium in each dot is much smaller than
the dwelling time of the tunneling electron in the dots.

The simplest case corresponds to relatively small cross
capacitances between dots and leads,

C «C, , C2 .

These conditions are also easily met in experiments with
semiconductor microstructures. We will carry out the
analysis of Coulomb oscillations assuming condition (11)
to be valid. In zero-order approximation in C, Eqs.
(8)—(10) are then reduced to the form

+ Vg(q, +q2) .

Here C, and C2 are capacitances between the dots and
the gate, C is the value of intercapacitances (lead-to-dot
and dot-dot). The first three terms represent the classical
charging energy of individual capacitors. The last term
arises from the gate voltage Vg applied to the capacitors
C, and C2. The discreteness of dot charges implies two
constraints on q&, . . . , q~:

To answer this question, we should find first the depen-
dence of the electrostatic energy U on the discrete
charges n, and n2 of the dots. For the sake of simplicity

h)n, 52n 2
2 2

U(n], n~)= + eV (n]+n2) . —
2 2

Here

(12)
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2

C,

2

2

(13)
—(n1+1/2)
e
c)

—(n2+1/2)
C2

?

At low temperatures, a system with potential energy (12)
favors certain values of n&, n2. Passing of a charge re-
quires a subsequent change of these values by one.
Hence, the linear conductance is comparable to its high-
temperature value only if these changes of n&, n2 cause
sufBciently small variations in the potential energy:

?%

??: "

( U(n„nz)—U(n, + l, n2)[ & T,
IU(~g, n~+1)—U(ng, n2)I & T .

(14)
(a)

Taking into account Eq. (12), conditions (14) can be
rewritten:

—(n1+1/2)c)
—(n2+1/2)
C2

~eVg (n—(+—,')b, , ~

& T,
~eV —(n2+ —,')b2~ & T .

(15a)

(15b)

62/2& T «6, /2, (16)

the energy spectrum for the larger dot 2 can be regarded
as continuous [Fig. 3(a)]. That is why the total resistance
R is small each time V is in the vicinity of any step of a
sparsed "ladder" corresponding to the smaller dot 1 [Fig.
3(a)]. In other words, when condition (16) is met, the
discreteness of charge on dot 2 is not important, and dot

Conditions (15) can be easily satisfied at high tempera-
tures for any value of V . The Coulomb blockade starts
to be important at low temperatures, T &5&,62. A
significant di6'erence of the two-dot system from a
single-dot one, is that two conditions (15) on a single pa-
rameter V should be met simultaneously. This becomes
increasingly difftcult when T is low enough and C& /Cz is
an irrational number. For significantly difFerent capaci-
tances, C& «C2, conditions (15) for two different temper-
ature regimes are demonstrated in Figs. 3(a) and 3(b). At
intermediate temperatures,

T/e

ll

(b)

FIG. 3. The ladder of V~ values favoring the tunneling into
dots, C& &&C2. If two rungs of different ladders belong to the
same strip, charge easily passes through the system. (a)
T ~ e /C2, (b) T &&e /C2, the system of favorable V~ becomes
sparsened.

2 is equivalent to a massive lead. As a result, the total
resistance is given by the sum of R3 (Fig. 2) and the resis-

tance of a single-dot system like that shown in Fig. 1(b),
with the capacitance Co replaced by C, . (The values R

„

R2, and R3 shown in Fig. 2 denote the tunnel resistances

of corresponding junctions. } The expression for the resis-

tance of a single-dot system was derived in Ref. 5. After
adding the constant term R 3, this result takes the form

k~ T e Vs (n + 1/2) b,2—
R ( Vz, T)=2(R &+R2) g sinh

eVg (n +1/2—)h, k~T
+R3 .

Hence, the total resistance R ( V ) experiences sharp
periodic oscillations with the period e/C, .

However, in the low-temperature limit given by in-

equality

T «e /2C2, (18)

only some of the levels of dot 1 are available because of
restrictions imposed by condition (15b), see Fig. 3(b).
Hence, in the temperature regime (18), some of the peaks
that are present in (17) still show up, but the number of
nonsuppressed peaks is reduced at low temperatures, the
system of peaks becoming increasingly sparsed.

III. STRUCTURE OF A SINGLE PEAK
AT LOW TEMPERATURES

~(n, + I )b, ,
—(n~+ —,')b~~ &&h~ (19)

is satisfied and hence conductance may not be suppressed
even at low temperatures (18). Because we are studying

Here we discuss the structure of a particular peak in
the conductance that "survives" under condition (18). As
is obvious from the previous discussion, this requires
anomalous closeness between two rungs belonging to two
"ladders, "as shown in Fig. 3(b). Hence, we will calculate
the conductance assuming that, for a particular pair
(n &, n2 ) under consideration, the condition
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the peak in G ( V ), both deviations

v, = —eVg+(n, + —,')6, ,

v2 = —e V + (n2+ —,
' )b2,

(20)

Here R& is a tunnel resistance for the junction between
the lead and dot 1, c.,~2] are kinetic energies of an electron
in the lead and dot 1,f(e) is the Fermi distribution func-
tion,

which show the difference between the current value of
V and two closest rungs of two ladders [Fig. 3(b)], are
also assumed to be small,

Ivil Ivil «e /C2 . (21)

X 5(E,—c2 —vi) .a
BE&

(22)

Calculating the resistance of three junctions (Fig. 2)
connected in a series, we assume that tunneling does not
violate thermal equilibrium in each dot. In other words,
electrons are thermalized after each act of tunneling, so
that subsequent acts are completely incoherent. This
means that the resistances of three junctions add to each
other. To determine each resistance, one has to calculate
the current I caused by a small bias V applied to a junc-
tion. This calculation is a straightforward one at low
temperatures (21) because the current is due to transi-
tions between states with only two different charges for
each dot. For example, transitions n

&
+ 1~n, and

n, ~n, +1 determine the current between the lead and
dot 1:

I = — f d s, f d e[ 2w&+ (1—2w, )f ( ez) ]
eV

1

Wi =
1+exp( —v, Ik~ T)

(23)

2k~ T
R,(T,v, ) =R, sinh(v, Ik~ T) .

U)

The resistance of a junction between dot 2 and the lead
(i.e., junction 3) can be obtained by substitution

R, , v, ~ R,3v2in (24). Calculation of the resistance be-

tween the dots is also similar; the only difference is that,
instead of (23), a probability of having simultaneously
given charges e(n, +1) and en2 on the dots should be
used. The final answer for the sum of resistances of three
junctions has the form

is the probability for dot 1 to have a charge en, . Expres-
sion (22) follows directly from the "golden rule" if one as-
sumes that dot 1 can be only in two charge states. The
use of the Fermi distribution f (e) for a given number of
electrons in the dot (i.e., for a fixed charge of dot) is

justified when this number is large. We have also allowed
the spacing of the kinetic energy in dot 1 to be much less
than the Coulomb spacing e /C, . Integration in (22)
brings us the following result for the resistance of this
junction, affected by the Coulomb blockade:

2k~ T 2k~ T
R(T, vi, v2)=Ri sinh(v, /k&T)+Rz {sinh[(vz —v, )/k&T]+sinh(vz/ksT) —sinh(v, /k&T)I

V) V2 U)

2k' T
+R3 insh(vz/k~ )T.

U2

(25)

The resulting resistance (25) has, at low temperatures and apart from a prefactor, an activated form,
W o- exp( —s/ks T), with the activation energy E given by

e =max(E„Ez,E3), (26)

where activation energies e„ez,e3 correspond to the resistances %„%z,%3 defined by three terms in Eq. (25), respective-

ly. For the first and third term in Eq. (25), these energies are given by E, = lv, I
and e2= lv2I. For the second term we

have

E~=max( lvi I, lvi —
v~ I, lv~ I ) . (27)

As a result, for e from Eq. (26) we get E=ez, i.e., the transport is always dominated by the dot-dot resistance %~, and

the net activation energy is given by Eq. (27).
Hence, as it follows from Eqs. (20) and (27), the dependence lnG—:—iud| vs V should have a flat top in the interval

min[(n, + —,')b, (ni+2—,')b2] &eV &max[(n, + —,')bi, (n2+ —,')b2], (28)

where the activation energy c. is constant and equals to

lv, —vol=I(n, + —,')b, ,
—(nz+ —,')heal—:b, . (29)

The conductance drops exponentially in V on both sides
of this plateau, as is shown in Fig. 4(a) for the case

I

(n, + —,')b, &(n~+ —,')b2.
As we shall show, the transitions between the same

charge states (n, , n, +1 and nz, nz+1) determine the
conductance for the interval of gate voltages correspond-
ing to Ivy I & 62—b, . Beyond this interval, another charge
state of dot 2, n2+2 or n2 —1, becomes important de-
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pending on which energy is larger, ( n, + —,
'

)6, or
(n2+ —,

' )b2, so that plot 6 vs V has another plateau with

a larger activation energy e=h2 —b [Fig. 4(b)]. In order
to demonstrate the existence of this auxiliary plateau, one
can, of course, repeat the calculations cited above taking
into account six instead of four charge states of the two-
dot system. This method, however, becomes increasingly
tedious for more complex configurations of dots. Here
we demonstrate another approach which allows one to
account easily for all relevant (at low temperature) states
of the system and to operate directly with activation en-
ergies instead of derivation of the resistance ab initio.

At first, we note that Eq. (27) coincides with the well-
known expression for the activation energy of the
equivalent resistance between two sites in a hopping sys-
tem of noninteracting electrons. ' In order to make this
analogy complete, we consider the system of one-electron
levels shown in Fig. 5. Here the filled and empty states of
the level 1 (or level 2) correspond, at definition, to the
charges n, +1 and n, (or n2+1 and nz), respectively.

LEAD

~2(fi2+ ~ /2)

5) (n)+1/2)

h,2(n2—1/2)

LEAD
i

2'

2'

LEAD

E2

—E)

—E2

LEAD

af

U
C:

Q
CQ

—(h,2
—h,)—

6,
&
{n&+1/2)

I

eVQ

FIG. S. (a) A diagram of the equivalent one-electron levels il-

lustrating the structure of conductance "peak" in the two-body
system plotted in Fig. 4. Absolute values of level energies
shown in the left correspond to the degeneracy points in Vg of
charge states of dots (Fig. 3). Open and solid circles display the
levels filling in the ground state for the position of Fermi level
p—:eVg shown by dash-dotted line in the figure. (b) Equivalent
circuit of the hopping system. Activation energies of the resis-
tances are given by (32).

U

Q

-y,-U)—

—LU2

/tt
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/

/

J~

C t

(a)

eVg

Ei = U(ni+ 1,n2) —U(n i, n2),

E2 U(ni n2+1) U(ni n2)

Ez =U(n„nz)—U(n„n2—1),
(30)

The additional level 2' (ascribed to the same site as level
2) is introduced to account for the charge state n2 —1

which corresponds to empty level 2'. The Fermi level p
is equal to eV, the absolute values of energies of all the
levels being determined by corresponding points of
charge degeneracy in V . Each of these energies counted
from the Fermi level is equal to the work required to
bring the next charge from a lead to the dot and is given
by

that yields

FIG. 4. Structure of a single conductance "peak" G vs Vg at
low temperatures for a double-dot device. Here A&=e /C& is
supposed to be much larger than 62=e /C2. The conductance
G is normalized to its high-temperature value. (a) "Peak" shape
in the absence of interdot and dot-to-lead capacitances (C =0,
Fig. 2), 5 is given by Eq. (29). (b) Transformation of the upper
plateau in (a) due to the dot-dot Coulomb interaction (CWO),
cf., Sec. IV. Here 6 is the spacing between two levels shown in
Fig. 6(a). The effective interdot repulsion energy U=e C/C& C2
is inside the interval 6/2 (U (A. The dashed and dotted lines
are plotted for the critical values U =5/2 and 5, respectively.

E, =u» E2 =u2,

E2. =u2 —A2,
(31)

for levels 1, 2, and 2', respectively. To be consistent, we
should prohibit level 2 being filled when 2' is empty.
However, lifting this restriction does not change the low-
temperature results in which we are interested.

Obviously, the transport in the system occurs either via
levels 1 and 2 (path i) or via 1 and 2' (path It). Now, with
the use of the diagram shown in Fig. 5(a), and taking into
account that the levels below the Fermi level p=e Vg are
almost always occupied and the levels above it are almost
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always empty, the origin of the plateaus and slopes in
Fig. 4(a) becomes obvious. When p, is situated between
levels 1 and 2 (Fig. 5), the activated hop 1~2 controls
the transport (which, for certainty, is considered from the
left lead to the right one) .The activation energy e is then
equal to the difference E2 —E1 which, of course, does not
depend on the position of the Fermi level p [the upper
plateau in Fig. 4(a)]. Then, when p is shifted below level

1, an electron has to pass through the system by two suc-
cessive hops upward in energy, LEAD —+1~2, followed

by the final hop downward in energy from level 2 to the
right lead. The highest energy is acquired by the electron
on site 2. Hence, the value of c is equal to c=E2 =U2 in-

creasing with decreasing V . This manifests itself as the
sloped segment between plateaus in the lnG vs Vg plot in

Fig. 4(a}. The lower plateau appears in the plot when p is
still between levels 1 and 2' but already far enough from
level 2 to make path II dominate. In this case, c is deter-
mined by two successive activated hops LEAD —+1 and
2' —+LEAD, so that e=E, +( E2 ) =—b z

—&.
The value of the activation energy c for our system of

levels at any p can be readily evaluated in a formal way
following the standard hopping recipe: to each pair of
levels on adjacent sites a resistance with the activation
energy

e;, =max( IE; I, IE, I IE; —E, I ) (32)

should be ascribed. Here E, ,E are the energies of levels

i,j counted from the Fermi level. In our case, the ener-

gies of levels are given by Eqs. (31) (for leads, E =0 by a
definition). The total resistance is determined by the
equivalent circuit shown in Fig. 5(b). Because of the ex-

ponential difference between resistances, the net activa-
tion energy c. is equal to one of the energies c;. indicated
in Fig. 5(b). As a result, we get

e =mill( e i 2, E i~, }, (33)

The final dependence lnG = —s/kz T vs Vg is shown in

Fig. 4(a) for the case when level 1 is situated below and
close to level 2 [as it is assumed in our level diagram in

Fig. 5(a)]. In this case, as one can check by means of the
same approach, other levels of dot 2 do not contribute to
the low-temperature transport. (We recall that, in our
consideration, the condition C, «C2 is supposed to be
met. ) The hopping approach suggested above turns out to
be especially convenient when studying effects of interdot
capacitance, which are the subject of the next section.

IV. EFFECTS OF COULOMB INTERACTION
BETWEEN THE DOTS

The previous consideration was based on the Coulomb
Hamiltonian (12) which was written in the zero-order ap-
proximation for small values of the interdot and interlead
capacitances C (Fig. 2). Let us now return to the initial
form of the Hamiltonian (8). Suppose the capacitance C
is small but finite: C «C, , C2. Taking into account in

where e, 2 is given by the right-hand side of Eq. (27), and

(34)

Eq. (8) the first-order corrections in C leads to three kinds
of changes with respect to the zero-order form (12).

First, the diagonal coeScients U» and U22 become
slightly different from b, , /2 =e /2C, and b,2/2
=e /2C2, respectively. This causes only a minor renor-
malization of the spacing of both Coulomb "ladders"
(Fig. 3) and cannot be important in the general case of in-
commensurate capacitances.

Second, the coefficients a; in Eq. (8) are no longer equal
to unity nor to each other: a;=1—C/C; (in our case
Cz) C, and a2) a, ). The main effect of this is that the
energy U(n, +l, n2) —U(n„n2+1) required to activate
an electron from dot 1 to dot 2 becomes V dependent
and changes as eVg(C/C2 —C/C, ). Because, as we have
seen in Sec. III, this activation energy dominates the total
conductance in the region of a "plateau" (Fig. 4), the
latter acquires a small finite slope

8 lnG eC 1

BV k T C,
1

C2
(35)

Below we shall neglect both of these effects and d~ell
on the most interesting features arising from a finite off-
diagonal coefficient U, 2 in (8), which is equal to

e C
U12= U:—

1 2

the Coulomb Hamiltonian (8) taking the form

(36)

n n
1 2U(n„n~)=bi +b~ + Un, n2 —eV (n, +np) .

2 2 g

(37)

Consider again the equivalent system of one-electron lev-

els in Fig. 5(a). Because we shall be interested in the fate
of the upper plateau only [Fig. 4(a)], we restrict ourselves

to levels 1 and 2. The important difference from the situ-

ation studied before is that the energy, e.g., of level 1

defined by the first equality in (30) and by Eq. (37), de-

pends now on the charge state of dot 2: whether it is n 2

or n2+ 1 (or, in "one-electron" language, whether level 2

is empty or filled). This is because the third term in the
Hamiltonian (37) is equivalent to the Coulomb repulsion
between electrons placed on these two levels. For
definiteness, we denote now by E, the energy of level 1

for the state when level 2 is empty (i.e., charge n2 on dot
2), and by E~ the energy of level 2 for the state when level

1 is filled (charge n i + 1 on dot 1). This filling corre-
sponds to the ground state of the system at the Fermi-
level position shown in Fig. 6(a). As follows from Eqs.
(30) and (37), E, and E~ are equal to

E, =b, ,(n, + —,
' }—eV +ni U,

Ei =62(nz+ —,') —eV +(n, +1)U,
(38)

respectively.
As before, we shall consider an anomalously close pair

of levels with the spacing A=E2 —E, « 62. This condi-
tion is automatically met for "peaks" of the conductance
surviving at sufficiently low temperatures. Before dis-



45 STOCHASTIC COULOMB BLOCKADE IN A DOUBLE-DOT SYSTEM 13 475

cussing transport in this system, we note that standard
formalism of the hopping theory based on Eq. (32) does
not help any more since (32} does not take into account
the Coulomb correlations between electrons on different
sites. However, the picture of one-electron states shown
in Fig. 6(a) is still very useful because it permits one to
monitor explicitly a charge passing through the system
and, in this way, to evaluate the activation energy.

Suppose, at first, the repulsion energy U is very small,
U«h. Then, as in the previous discussion, the hop of
an electron from level 1 to level 2 entirely controls the net
activation energy c provided the Fermi level p is situated
between the levels, i.e., E, &0, E2&0. After this hop,
due to the change of the level occupations, the one-
electron level 1 shifts up and the level 2 shifts down by U,
as shown in Fig. 6(a). Then the hops 2—+LEAD and
LEAD~1 return the system to the initial state. Hence,
the value of c is equal to E=Ep E] U, where the last
term can be understood as a negative energy of the exci-
ton created in the act of the dominating hop 1~2. As a
result, the lnG vs V~ plot reveals a plateau with the ac-
tivation energy 6—U. Thus, a small interdot interaction
does not result in a qualitative change of the "peak"
shape.

s=E2 E, —U—+min(E, + U, U E2)—

=min( E„Ez—) . (39)

Thus, the value c depends on each energy E&,E2, counted
from the Fermi level, separately rather than on their
difference and hence is p dependent. Expression (39) is
obviously valid until both arguments in the first
minimum are positive, i.e., until the following condition
holds:

Suppose now that U)h/2 and p is approximately
equidistant in energy from both levels, i.e., —E, =E2. It
is easy to see that, in this case, after the first hop 1~2
takes place, level 2 "sinks" under the Fermi level, and
level 1 ascends above it [Fig. 6(b)]. Now, in order to con-
tinue the charge transfer, another activated hop is neces-
sary: Whether the same electron should hop from "2" to
the lead with the energy increase U —E2, or another elec-
tron hops from the left lead to "1"with the energy in-
crease U+E, [two dashed arrows in Fig. 6(b}]. The final

hop (LEAD~1 or 2~LEAD, respectively) returns the sys-
tem to the initial state and proceeds with energy decreas-
ing. One of these two processes, which is the cheapest in
terms of energy, is responsible for the charge transfer in
the system. The net activation energy is given by the sum
over two hops

LEAD LEAD lp p l&U (40)
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U;

I
I

I
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I
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I
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I

E2

—E)

FIG. 6. Illustration of transport through a two-dot system
with a finite cross capacitance C (Fig. 2). Two closest levels 1,2
belonging to the different dots and responsible for a conduc-
tance maximum G( Vg) are shown [analogous to levels 1,2 in

Fig. 5(a)]. EfFective interdot repulsion energy U—:C/C, Cz,
where C «Cl C2 ~ Open and solid circles denote empty and
filled levels, respectively. The Fermi level p=e Vg is shown by a
dash-dotted line. (a) U & 6/2. The only activated hop 1~2
controls the conductance. Coulomb shifts of levels after this
hop are shown by dotted lines and arrows. (b) U )6/2 and p is
close to a middle point between levels. As a result of Coulomb
shifts, both levels cross p. An additional activated hop is need-
ed to complete the charge transfer (one of those that are shown
by dashed arrows).

where po is the middle point between levels 1 and 2. Out-
side the interval (40) for )u, , the only activated hop is again
1~2, and c is equal to 5—U.

The resulting G vs Vs dependence is shown in Fig. 4(b).
The flat top of the conductance maximum is now split
consisting of two identical plateaus separated by a valley
with the depth (U —5 2/) /&kT. The valley appears for
the first time at the critical value of the repulsion energy
U =6/2, at the center of the plateau. With U increasing,
it expands until, in the limit U =6, it occupies the whole
width of the incipient plateau. In this limit, the valley is
surrounded by two sharp peaks with @=0 at their maxi-
ma. [Obviously enough, the case when U) b, is impossi-
ble, in principle, because it would mean a negative activa-
tion energy c. In other words, the state shown in Fig.
6(b) would not be a ground state of the two-level system:
bringing the electron from "1"to "2," one would get a
gain in the energy and would obtain the true ground state
with the new spacing 2U —5 & U between the levels. ]

As we already mentioned in previous sections, the tern-
perature decrease selects the conductance peaks with
smaller and smaller activation energy. As becomes clear
from the present discussion, at very low temperatures,
T « U/k~, only those sparse pairs of levels will reveal
themselves in the 6 vs Vg plot for which the condition
6—U & kz T is met. It means that all survived peaks will
look like that shown in Fig. 4(b) by a dotted line: They
will be split in V by a constant quantity 5Vg = U which
neither varies from one peak to another nor depends on
V: as is clear from its definition (36), U is determined by
the geometry of the conducting channel only. Such a be-
havior was experimentally observed in Ref. 11.
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V. CROSSOVER FROM THE STOCHASTIC
COULOMB BLOCKADE TO PERIODIC OSCILLATIONS
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In Secs. II—IV we studied analytically two limiting
temperature regimes of oscillations G ( V ) for the case of

strongly different capacitances, C, «C2. Two questions
arise in this context: (l) How robust are these results re-
garding the increase of the ratio C, /Cz? (2) How does
the crossover in temperature between stochastic and
periodic oscillations in G ( V ) occur.

As follows from the discussion in Sec. IV, a small cross
capacitance C is important only in the limit of very low
temperatures when it causes splitting of the conductance
peaks. That is why, in answering on the above questions,
we neglect with C. We have made numerical simulations
of G(Vg) for a number of ratios C, /C~=b, 2/b, , at
different values of normalized temperature, T/62. We
find that the above-presented classification of conduc-
tance oscillations holds for C, /C2 0.4, i.e., in a surpris-
ingly large interval of values C, /C2. As an example for
an "irrational" value C&/C2=0. 36. . . is given in Fig. 7
for four different temperatures. The scale for the conduc-
tance 6 is the same on all four plots, and it is easy to see
that a few peaks are almost temperature independent.
The density of high peaks (with G O. S at their maxima)
grows with the temperature (linearly at small T) and satu-
rates at T=0.45, /k~ reaching the maximal value: one
peak per interval b, V =e /C, . Peaks at the mentioned
temperatures are still very well pronounced: the peak-
to-valley ratio for the conductance is equal to 10.

The oscillation patterns shown in Fig. 7 are obtained in
a simple approximation which accounted for the hops via
two rungs of the sparse ladder and four rungs of the
dense one, see Fig. 3. The equivalent resistance for each
pair of levels was calculated with the use of formula (2S).

In addition, direct numerical simulations using a
Monte Carlo method were also performed. For a small
interdot capacitance C, results are shown in Fig. 8(a); the
traces obtained are similar to those in Fig. 7 which are
found by simplified calculations.

We have also simulated the case of a large capacitance
C &&C&,C2, which is relevant to experiments. The tem-
perature region for a pronounced Coulomb blockade
effect is determined only by C. At the same time, there
are two more scales e /C„e/Cz which govern the depen-
dence of the activation energy on V . At intermediate

0.9 -'

T = 0.15
IIIIIIIIIIIIIliJ~I)IJ«t, ....

a '
LIthlhlhlh(IllllIhllihI. ~oo -K ~
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V

FIG. 7. Peak structure 6 vs V~ at four different temperatures
T. Conductance G is plotted in arbitrary units which are the
same for all four plots; Vg and T are measured in units of e/C,
and e'/C, k&, respectively.

FIG. 8. (a) Numerical simulation of the conductance vs Vg of
a double-dot device with C &&C„C&at four temperatures. The
parameters used in simulation are C =11.2 aF, C, =0.82 fF,
C2 =4.36 fF. Each trace is offset from the previous one for clar-
ity. (b) Numerical simulation with C)&Cl C2. The parameters
are C =0.55 fF, Cl =11.2 aF, Cz=1.92 aF.
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temperatures, T& 0.6e /Cks, both scales show up in the
oscillatory pattern. Unlike the case of a small C, here the
basic distance between the conductance peaks is deter-
mined by the smaller of these two scales. If C& && C2, the
larger scale appears as a modulation of peak heights, see
Fig. 8(b).

VI. THKRMOFINGERPRINTS OF THE
STOCHASTIC COULOMB BLOCKADE

W
p(E)= f d(eVg)5(e, —s( Vg)), W~ ~ (41)

or

(42)

where the angular brackets mean averaging over a large
number of "periods. " As it follows from Sec. III and Fig.
4(a), for each period

—1
dc

d (eV~)
=e(E—min(A, h, —b, ))

+(5(s—b, )+5(a+6,—52))b, , (43)

where 8 is a unit-step function. The distribution func-
tion of 6 over different "periods" depends on the algebra-
ic properties of the ratio C, /Cz=b, 2/6, . For an irra-
tional C, /C2, the value of 6 is equally distributed in the
interval 0 & b & b,z/2. In this case, the averaging of (43)
is straightforward and gives

4E./6, if c&dl, /2

1+2(1—s/b2) if b2/2&a&62

1 if A2 & c. & 6, /2(e)=

0 if c.)h, /2 .

(44)

Note, that p(E) has a characteristic peak at
s=h2/2=e /2C2 (see Fig. 9). This feature in p(s) exists
as long as C2/C& is a noninteger number. The zero value
p(0) =0, however, holds only for irrational C, /C2.

At low temperatures, conductance has an activated
temperature dependence under the conditions of
Coulomb blockade. For a single-dot device, the activa-
tion energy depends on the gate voltage linearly within
the period, changing from zero to e /2C. So the distri-
bution function p(s) of the activation energies s deter-
mined from the ouerall dependence G( Vg, T) (not only
from peaks and valleys) is a constant in the interval
0&a &e /2C and zero for s~e /2C. For a double-dot
device, the situation is quite different. We can again in-
troduce a "period" in V as an interval (e/C, )n
& Vg & (e/C, )(n +1). The dependences of activation en-

ergy E( Vg ) are similar in different "periods, " but this en-

ergy does not reach zero value on each period, the
minimal value being determined by b„Eq.(29). Accord-
ing to the definition, the distribution function is

0
hg/2a2 a)/ap 1/2

FIG. 9. Distribution density p of activation energies for the
6 vs Vg dependence shown in units of 6&/2+ 62/4, see Eq. (44),
where 6, =e /C& and 62=e /C2. An irrational value of
C& /C2 is assumed.

VII. CONCLUSIONS

We have studied Coulomb blockade in two dots con-
nected in a series. It turns out that the behavior of the
linear conductance G of this system is entirely different
from that of a single dot: At low temperatures, the
periodic structure in the G vs gate voltage gives way to a
system of random peaks. At first glance, emerging pat-
terns of G( Vs) (see Fig. 7) are similar to those observed
in quasi-one-dimensional hopping transport systems
Peaks in G ( Vs ) become more sparse as the temperature
is lowered (the average distance between peaks grows as
I/T), different peaks decaying with different activation
exponents. However, there are strong differences even in
this low-temperature regime between these two types of
fluctuations. In a double-dot system, each particular
peak does not significantly change its position when the
temperature is changed. Distances between peaks are
proportional to a "basic segment" with a length deter-
mined by the capacitance of the smaller dot. In addition,
the distribution functions of lnG are entirely different.
For a hopping system, such a function is a smooth
one ' two-dot structure has a distribution function ex-
hibiting a sharp feature. The position of this feature de-
pends on the capacitance of the larger dot. Finally, in the
studied system, the absolute derivative d lnG/dV for
sloped parts of the peak structure does not change from
one peak to another. In a hopping system, this slope is
random and fluctuates for different peaks a few times. '

This effect has been shown to result from Coulomb shifts
of energies of localized states responsible for the trans-
port in the course of recharging of other states randomly
distributed in the sample. '

Above we assumed that the difference between capaci-
tances C& and C2 is large. If these values are, on the con-
trary, almost equal to each other, another effect occurs:
G( Vg) exhibits beatings with the period larger than the
period of "filling oscillations;" the ratio of periods is
equal to C, /~C, —C2~. This kind of pattern was ob-
served experimentally on a system of (almost) equivalent
dots in Ref. 16, see upper inset in Fig. 2 therein. Analysis
of this figure implies

~ C, —C2 ~

=0.1C, .
We have studied in detail the case of relatively small
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interdot capacitance, C «C&, C2. This is adequate to the
experimental realizations. ' '" Though small values of C
do not lead to drastic changes in the G( V ) dependence
in the high-temperature part of the stochastic regime,
there is one qualitative consequence of nonzero C that
can be revealed at low temperatures: The inter dot
Coulomb interaction generates a splitting of those con-
ductance peaks that survive at low temperatures [see Fig.
4(b)j. This kind of behavior was observed in a number of
traces measured on GaAs heterostructures. "

The results can be generalized in the case of large
C )C] C2 ~ Our conclusions about stochastic oscillations
at low temperatures based on Eqs. (8)—(10) remain
correct and are supported by numerical simulation as
well. However, periodic structure in G ( V ) at intermedi-
ate temperatures is no longer perfect: The system crosses
over from almost Vg-independent conductance at high
temperatures directly to oscillations with fluctuating
values of its maxima at low T. It is noteworthy also that
conductance peaks in the case under discussion do not
have flat tops even at T~O, see Sec. V. This type of

G(Vs, T) dependence was observed on some samples in
the experiments on In&03 wires.

We have discussed purely incoherent electron trans-
port in the system. Coherent tunneling should modify
conductance at the highest peaks that are formed by al-
most perfect resonance between the electron states of
both dots. As a result, in the limit of very low tempera-
tures, the peak conductance increases and may exceed its
high-temperature value.
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