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Impurity levels and resonant transmission of acoustic phonons in a double-barrier system
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We study theoretically the resonant transmission of acoustic phonons in a double-barrier system for
phonons consisting of a bulk material sandwiched between periodic superlattices. The phonon transmis-
sion rate and the resonance condition in this system are derived analytically based on the transfer-matrix
method. We show that the phonons in a frequency gap of the superlattices can be transmitted through
the whole system without attenuation, if the frequency of incident phonons satisfies the resonance condi-
tion. Based on the Green s-function method, we also show that the resonant frequencies coincide with

the impurity levels associated with the lattice vibrations localized near the embedded bulk layer.

I. INTRODUCTION

The phonon-dispersion relation in a periodic superlat-
tice is obtained by folding the dispersion curves for a bulk
material back into the mini-Brillouin-zone determined by
the periodicity of the superlattice. ' In the folded disper-
sion relation, frequency gaps are generally formed at the
center and the boundary of the mini-Brillouin-zone. We
can control the size of the mini-Brillouin-zone by chang-
ing the length of the unit period of the superlattice. This
implies that we can also set the frequency gaps in an ex-
perimentally accessible frequency range ( - 1 THz) much
lower than those of bulk solids.

So far, the propagation of acoustic phonons in super-
lattices with various stacking order of constituent layers
has been studied both experimentally and theoretically.
An interesting feature studied recently is the resonant
transmission of phonons in ABA multisuperlattice struc-
tures composed of two kinds of periodic superlattices A
and 8. In the present paper, we study the phonon
transmission in a system where the 8 superlattice is re-
placed by a bulk material. An advantage of this simpler
system is that we can develop analytical calculations for
the resonance condition and elucidate its physical origin.

Thus, the system that we consider consists of a bulk
material sandwiched between the same periodic superlat-
tices. A schematic frequency-band diagram for this sys-
tem is shown in Fig. 1. In this figure, the hatched regions
indicate the frequency gaps of superlattices. The pho-
nons within these frequency gaps cannot be transmitted
through the system. In other words, the superlattices act
as barriers for phonons with frequencies between coL and
~~. Thus, we can regard the system shown in Fig. 1 as a
double-barrier system for phonons in the forbidden gap.
This structure is similar to the double-barrier quantum-
well structure for electrons. This similarity suggests the
possibility for designing various phonon optics devices
such as a phonon mirror, phonon resonator, and phonon
filter suggested by Narayanamurti several years ago. In
the present paper, from the viewpoint of realizing such
devices, we study theoretically the transmission charac-
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FIG. 1. Schematic frequency band along a direction z, per-
pendicular to the layer interfaces of the double-barrier system.
The hatched regions indicate the frequency gaps. The parts SL,
BK, x, and y mean the periodic superlattice, bulk material, sub-
strate, and phonon detector, respectively.

teristics of acoustic phonons in this double-barrier sys-
tem.

The outline of this paper is as follows. In Sec. II, we
first introduce a transfer matrix to formulate mathemati-
cally the dynamics of phonons in a multilayered system.
Next, we present an analytical expression for the phonon
transmission rate by the transfer-matrix method. Then,
the resonance phenomena of phonons in the double-
barrier system are predicted both analytically and numer-
ically. In Sec. III, to analyze the physical origin of the
resonant transmission of phonons through barriers, we
consider a corresponding system in which the width of
both barriers is infinity. In this case, the system we con-
sider is a single-well structure and the equation of motion
for the lattice displacement at interfaces becomes formal-
ly the same as the Schrodinger equation for the one-
dimensional tight-binding model with two neighboring
impurities. We solve the latter equation by using the
Green s-function method and obtain the equations giving
the frequencies of the impurity levels. These equations
are found to be identical to the conditions for the reso-
nant transmission derived in Sec. II. We also discuss the
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number of the impurity levels in a given structure graphi-
cally. In Sec. IV, a summary and conclusions are given.

II. TRANSMISSION
IN THE DOUBLE-BARRIER SYSTEM

In this section, we study the transmission of acoustic
phonons in a double-barrier system. In particular, we
consider the case where the wave vector k of the phonons
is perpendicular to the layer interfaces of the system. In
this case, three phonon modes are decoupled from one
another if the interfaces are a mirror-symmetry plane.
For simplicity, we consider this case and treat only one
mode of phonons, e.g. , the longitudinal mode. Further-
more, we adopt the continuum model for the lattice vi-
brations. This model is valid for sub-THz phonons be-
cause acoustic branches in the phonon-dispersion relation
for most of the semiconductor superlattices are liner in k
( = ~k~) in the frequency range below I THz.

In Sec. II A, we present the general expression for the
phonon transmission rate in the double-barrier structure
by calculating the products of transfer matrices analyti-
cally. In Sec. II B, we present a numerical example for
the phonon transmission based on our formula.

A. Analytical expressions for the transfer matrix
and transmission rate

A schematic picture of the double-barrier system is
shown in Fig. 2. The structure grown on a substrate x
and having a detector layer on top of it is divided into
three parts, which are called SL, BK, and SL. Two SL
parts have the same structure consisting of alternate
stacking of semiconductors A and B, while the BK part
consists of the bulk semiconductor A. The thicknesses of

detector (y)

FEEÃEEÃEEXEEPEÃEÃEE/i

where the transfer matrix T~ for the whole system can
be written as a product of the transfer matrices for three
parts SL, BK, and SL,

Tw—:Tst. (N ) Ta~ Tst (N ), (4)

with N indicating the number of periodicity of the SL
parts. The transfer matrix TBK for the BK part is given

by

the A and B layers in the SL parts are denoted by d ~ and

de, respectively, and D(=d„+de) is the unit period of
the SL part. The thicknesses of the BK part and the
whole system are denoted by D' and L, respectively.

In the continuum model, the lattice displacement U, (z )

and stress S,.(z) for the acoustic mode are expressed in
terms of linear combinations of the transmitted and
rejected waves:

ik,.z „—ik,.zU;(z)=c e ' +c,"e

t ik,-z „—Ik,.zS;(z)=icoZ;(c e ' —c;"e '
) .

Here, i is an index specifying constituent layers; c and c
are the amplitudes of the transmitted and rejected waves,
respectively; k; is the wave number; Z; =p; U; is the
acoustic impedance given by the product of the mass den-
sity p; and the sound velocity v;;co=k, U,- is the frequency.

The lattice displacement U;(z) and stress S;(z) should
be continuous at each interface of adjacent layers. These
boundary conditions can be expressed in terms of the
transfer matrix and lead to the relations among the dis-
placement UD(L) and stress SD(L) at the detector-SL in-
terface, and Us(0) and S&(0) at the substrate-SL inter-
face;
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with y=k„D'. The transfer matrix Ts„ for the SL part
with N periods is expressed as

Tst. (N ) =(Te T„)
where the transfer matrices T„and T~ for the constitu-
ent layers A and B have the similar form as Tzz,
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FIG. 2. Schematic picture of the double-barrier system. This
system is divided into three parts: SL, BK, and SL. Two SL
parts have the same structure consisting of alternate stacking of
semiconductors A and B, while the BK part consists of the bulk
semiconductor A.
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with a =k„dz and P =kedge. Thus, we have
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TH Tg =
coZ

1

coZ g
(9)

pression is lengthy. Thus, we write down here only the
expression of Tz for ~(p+A. )/2~ &1 because this is the
case of our main concern:

where

ZA
A, =cosa cosp — sina sinp,

B
(10)

T
coZ~ c

where

1

coZ g

d (18)

ZA
o =sina cosp+ cosa sinp,

8

r

p G 2xe+ 1
1
— ~ p 6 —2xe

2 2 sinh8 2 2 sinh8
Zg

g= —sina cosp — cosa sinp,
ZA

Zg
@=cosacosp — sina sinp .

ZA

(12)

(13}

(&—p)(g —a) .
siny,

4sjnh 8

b —+ (G H
2NH G H

2NH)—

2 sinh8

(19)

The analytical expression for (TzT„) is presented in

Ref. 3; the result is
+ 1 — siny,cr( —o )

2sinh 8
(20)

Ts„(N)=
S(N )+C(N)

2

HHZ„(S(N )

oS(N)1

coZ g

S(N)+C(N)
2

(G 2NH G H
2NH)—

2 sinh8

1+ siny,
2sinh 8

(21)

where

(14)
G 2me+ 1+ P 6 —eve

2 2 sinh8 2 2 sinh8

sin(NH)
sinO

p+A
2

r

+ (Ap)(,g—cr)—
4sinh 8

(22)

for & 1
p+A,

2

N+, sinh(NH} f p+A,
sinh8 2

. sinh(NH)
sinh8

cos(NH) for
@+A,

2

C(N)= 'cosh(NH)

Here, 8 is defined by

@+A,for & 1
2

( —1) cosh(NH) for & —1 .p+A,
2

(15}

(16)

CT

G+ =cosy+ . siny .
2 sinh8

(23)

The upper sign corresponds to the case (p+A, )/2 & 1 and
the lower sign to (p+A, )/2 & —l. In terms of a, b, c, and
d, the transmission rate t of phonons through the whole
system is expressed as

Zp
4

2 2 (24)

A X

The details of the derivation of the above equation is
presented in Ref. 3.

B. A numerical example

cos8= @+A,
2

for
p+A,

2

h8 P+
2

p+A,coshe= —~
2

for & 1
@+A,

2

for p+A,
& —1.

2

(17)

The frequencies satisfying the condition ~(p, +A, )/2~
&1[~(p+A, )/2~ &1] are inside the frequency gaps
(bands). By inserting Eqs. (5) and (14) into Eq. (4), we can
obtain the transfer matrix T~ for the whole system. The
calculation of T~ is straightforward but the explicit ex-

As a numerical example, we choose (100) A1As/GaAs
superlattices for the SL parts and AlAs for the BK part.
The unit period of the SL parts consists of (6 ML
A1As)/(6 ML GaAs), and the number of period is N = 12.
The thickness of the BK part is the same as the SL part
(i.e., D'=ND). The other parameters are as follows: the
thickness of one monolayer (ML) in the SL part is 2.83 A
in the [100] direction for both A1As (= A) and GaAs
( =B) (i.e., dz =dz =2.83 A); the mass density and longi-
tudinal sound velocity are 5.36 g/cm and 4.71 km/s for
GaAs, and 3.76 g/cm and 5.65 km/s for A1As (i.e.,
pz =3.76 g/cm, pz =5.36 g/cm, vz =5.65 km/s,
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FIG. 3. Frequency dependence of the longitudinal phonon
transmission rate in a double-barrier system. The parameters
used are in the text.

FIG. 4. The longitudinal phonon transmission rate (solid
line) and the function G (dotted line) within the lowest fre-

quency gap in the double-barrier system.

where

4
P2+ Q

2
(25)

us =4.71 km/s).
In Fig. 3, we show the frequency dependence of the

longitudinal phonon transmission rate through the whole
system calculated from Eq. (24). We find a large dip
(0.72 —0.80 THz) in the given frequency range. This dip
is due to the Bragg reAection of the phonons in the SL
part. The frequency at the center of this dip predicted by
the first-order Bragg condition v= —,'(d„/u„+ds/u~)
is 0.76 THz. This value is in good agreement with the
frequency at the center of the dip in Fig. 3.

In addition to the appearance of this dip, the most no-
ticeable feature in transmission is the existence of two
sharp enhancements within the dip. To see the details of
this structure, the transmission rate in the dip is enlarged
in Fig. 4. These enhancements in transmission corre-
spond to the resonance characteristic of the system we

study.
Here, we discuss the origin of these resonant transmis-

sions quantitatively based on the analytical expression for
the transmission rate derived in Sec. IIA. Because our
interest is in the phonons in the gap of the SL part, we

may calculate the transmission rate for i(@+A,)/2i) 1.
The relevant transfer matrix in this case is given in Eqs.
(18)—(23). Inserting Eqs. (18)—(23) into Eq. (24), we can
obtain the exact expression for T~ under the condition
i(@+A,)/2~ ) 1. The result is

with o. =(Z, /Z„)o and g=(Z„/Z„)g. Here, we have
assumed for simplicity that the substrate and detector are
the same semiconductors, i.e., Zx=Z . Hence, as the
number of periods N of the SL parts becomes larger, both
P and Q increase exponentially, or the transmission rate
becomes zero in proportion with e . This is valid as
far as the coefficients G+ of e in Eqs. (26) and (27) are
nonzero. However, if these coefficients are zero, that is,

G, =O for "@+A,
(28)

or

6 =0 for
p+A, (—1

2
(29)

is satisfied, the transmission rate has a finite value,

t=4 Zx ZA+
ZA Zx

o —
g (g—o ) siny

2sjnh 0

—2

(30)

for a large N. Therefore, Eqs. (28) and (29) should be
known as the resonance condition. The physical origin of
the resonance will be clarified in the next section.

In Fig. 4, we show the frequency dependence of 6
(relevant to the frequency range shown in Fig. 3). As ex-
pected, we can find a good coincidence of the frequencies
at the sharp enhancements in transmission with the fre-

P=G e'~&+G —e+ (26)

Q + 0
I G 2N8 G e 2NH)—

2 sinhO Z

Zx ZA+ x+
ZA Z

rr —g (g —o ) siny,
2sinh 0

(27) FIG. 5. Discrete levels induced by the sandwiched bulk ma-

terials.
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method, we show that this is indeed the case.
In this section, we consider the case where the number

of the period N of the SL parts becomes infinity, i.e., the
widths of both barriers are infinity. As discussed in Sec.
IIA, the continuity conditions for the lattice displace-
ment and stress can be expressed as

Un+ 1

Sn+1 NZA 0»

1
~n

COZEN

U„

S„ (31)

z

FIG. 6. The profiles of the real part of the amplitude of the
phonons within the gap.

quencies satisfying 6 =0. The very small deviation be-
tween frequency satisfying G =0 and the location of the
transmission peak is due to the finite number of periodici-
ty (%=12) of the SL part assumed, i.e., the terms of
e in Eqs. (26) and (27) have small but still seizable
contributions. If N becomes larger, the deviation be-
comes much smaller.

Our results show that even phonons inside the frequen-
cy gap of the SL part can be transmitted through the
whole system when they satisfy the resonance condition
(28) or (29). A scheinatic picture for this result is shown
in Fig. 5. The hatched regions indicate the frequency
gaps for the SL parts. The frequencies co& and m2 stand
for the resonance frequencies at which the sharp
enhancements in transmission occur. The diagram of
Fig. 5 is very similar to the double-barrier quantum-well
structure for electrons in which the resonant tunneling
occurs.

The profiles of the real part of the amplitude of the
phonons within the gap (coL (co (co&) are shown in Fig.
6; these profiles correspond to co=co, , co& &co&co2, and
co=co2. In the case co/co„co2, the real part of the ampli-
tude decays as the phonons propagate through both of
the SL parts, implying that the phonons cannot propa-
gate through the system if the barriers are appropriately
thick. However, for co=m, , co2, the profiles of the ampli-
tude have quite different shapes from those at co&co„co2,
and the phonons can propagate through both barriers
without attenuation. This behavior is characteristic of
the resonant transmission.

III. IMPURITY LEVELS OF PHONONS

In Sec. II B we considered the phonon transmission in
the double-barrier system. We can regard the BK part as
an impurity embedded in the perfect periodic superlat-
tice. In this picture, it is expected that the resonance fre-
quencies given by the solutions of Eqs. (28) and (29) agree
with the frequencies of impurity levels of phonons gen-
erated by the BK part. Based on the Green's-function

Here, Un and Snare the displacernent and stress at the
nth interface, respectively; A,„,cr„, g„, and p„are the ele-
ments of the transfer matrix associated with the segment
of the system located between the nth and the (n+1)th
interfaces. When the relevant segment is the BK part,
the transfer matrix is given by Eq. (5), i.e.,

A/=IJ/=cosy, cr/=siny, g/= —siny, (32)

where we assume that the BK part is located between the
Ith and the (I + 1)th interfaces. On the other hand, when
this segment is a unit period of the SL part, the corre-
sponding transfer matrix is given by Eq. (9), i.e., for n %1,

p„=p, cr„=cr,

From Eq. (31), we have

On
U„+ i =A,„U„+ S„,

coZ g

On —i
Un =A,„ i U„ i+ S„

coZ g

S„=coZwg» iU» i+8» —iS» —i .

(33)

(34)

Eliminating S from these equations, we obtain the equa-
tion governing the lattice displacernent,

T

1 1
Un+ )+ U„

&n ~n —
&

+ U„. (35)
On On-i

Here, we introduce the following parameters:

0E=p+A, , V= . —1,
siny

c, =A, —0. coty, c2=p —u coty .

With this notation, Eq. (35) can be rewritten as

Ui, +s, U, +(1+V)U, +,=EUi,

(1+V)U, +e2Ui+i+ Ui+&=EUi+

U„,+ U„+,=EU„(n&l,1+1) .

(36)

(37)

H =HO+Hi, (38)

where Ho is the periodic tight-binding Hamiltonian with
the site energy 0 and unit transfer integral,

These equations are mathematically equivalent to the
Schrodinger equation for the one-dimensional tight-
binding model with neighboring two impurities. For this
model, the Hamiltonian can be written as
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Ho= & [In+»&n I+In &&n+lf ] (39) Thus, we obtain from Eq. (48)

and H, is the perturbation arising from the two neigh-
boring impurities,

H, =E, ll &&II+E,Ii+1&&l+ll

&alTla& =(aIH) la)+&alH, la)

X ( a I Go I a ) ( a IH q I
a & + ' '

= &aIHila& [1—&alGola& &alH) la& j

+ v[ll &&I+ 11+II+»&II ] . (40) (51)

Here, each state ln ) is an atomiclike orbital centered at
the site n, or originally the amplitude of the phonons at
the nth interface; c.

&
and c.2 are the site energy of the 1th

and (I+1)th impurity sites, respectively, and V is the
transfer integral between the two neighboring impurity
sites. The eigenvalues and eigenfunctions of the periodic
tight-binding Hamiltonian Ho have the well-known form

det[1 —(al Go la) (alH, la & j =0 . (52)

The Green's function Go defined by Eq. (44) can be
written in terms of the eigenfunction

I q ) of Ho as

From Eqs. (46) and (51) we find that the poles of G are
given by

e~ =2 cos(qD ), (41) (53)

Iq)= 1 eiqnD n
N

With the use of Eqs. (42) and (53), the matrix elements of
Go are

where q is the wave number restricted in the first mini-
Brillouin-zone.

Our purpose is to obtain the discrete levels induced by
the two impurities. The most convenient way to find
these discrete levels is to find the poles of the Green's
function G corresponding to H. The Green's function is
defined by

(
~

fG f

~

) E —c,
q q

e IqD(I —j)
dq

2m. —~iD E—2 cos(qD )
(54)

This integration can be carried out analytically and we
have

G(E)=(E H) '=(E— Ho H, )— — (43)

Go(E ):(E Ho)— —

We can expand G in terms of H
&

and Go as

G = [1 (E —Ho) 'H—
, ] '(E —Ho)

(44)

Similarly, we define the Green's function Go in the homo-
geneous system associated with Ho: &ilGolj &=

[E/2 )/(E/2) —1]'—
2V (E/2) —1

[E/2+ Q(E/2) 1]l
—jl

2+(E/2) —1

E
for —) 1

2

for —& —1
E
2

(55)

or

= [1 GOH, ] 'GO-

Go+ GoH& Go+ GoH& GoH& Go+

G =Go+GoTGo

(45)

(46)

As in Eq. (17), we define 6 by

E
for —) 1

2 2
cosh| =

E E
for —& —1

2 2

(56)

where the t matrix T is defined by

T =H&+H& GoHi+H& GoHi GoHi+ (47)

[Eq. (56) is the same as Eq. (17), because E is defined by
p, +A,]. Then, Eq. (55) is rewritten as

Taking account of the explicit expression of H, [Eq.
(40)], we can write

T=H~+H& & ln &(nlGO g Im && inlH, +

(
—8)/i j/—

2 sinht9

(
—8)fi —jf

2 sinhO

E
for —) 1

2

for —& —1
2

(57)

=H, +H, la)(aIG, Ia)(alH, + (48)

c, V
&afH, fa&= (50)

where la) denotes the row vector (II ), II+1) ) and the
matrices (alGola) and (alH, la) are

& I
I Go II ) ( I

I Go II+1 &

( I + 1
I Go II ) ( I + 1

I Go I
I + 1 )

&alG, la)=
go

(58)

By inserting Eqs. (50) and (58) into Eq. (52), the equation
which gives the poles of G takes the form

1 —2g, V+(g, —go)( V —E,e2) —(e, +E2)go=0 . (59)

and the matrix (alGola) defined by Eq. (49) can be writ-
ten as

go
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Finally, substituting Eqs. (36) and (57) into Eq. (59), we
obtain

3. 0

0
cosy+ . siny =0,

2 sinhO
(60}

2. 0

where the upper sign corresponds to the case where

(p+ A, )/2) 1 and the lower sign to (p+A, )/2 ( —1.
Equation (60) is identical to the resonance condition
G+ =0 [see Eqs. (23), (28), and (29)] given in Sec. II.

We also discuss the number of discrete levels given by
the solutions of Eq. (60). Equation (60) is rewritten as

l. 0

0. 0

-1.0

0—coty =+
2 sinh8

(61)
-2. 0

1 —GOH) =0,
we can write for the nth state ( n I,

(n I(1 GOH, ) =0 . —

This equation is rewritten as

& n
I

=
& n I GOH,

=&nlGOI~) &~IH& Ia&&~I

(62)

(63)

=g„(c,(lI+ V&l+1I)+g„,(V(1I+c (1+1I} .

(64)

Therefore, the nth component U„= (n Ib } of the eigen-
function

I
b ) of H is expressed as

U„=g i(ciU&+ VUgg+i}+g i —i(VU&+c2Ul+i) .

(65)

Green's function g„depends on the site index n as

In Fig. 7, we show the frequency dependence of both
sides of Eq. (61) within the frequency gap. The right-
hand side of Eq. (61) is a monotonically increasing or de-
creasing function of frequency ranging from —~ to ~
(sinh8=0 at the edges of the gap). The left-hand side is a
monotonically increasing periodic function of y =k&D,
whose period in inversely proportional to D . Hence, in
each frequency gap there exists at least one intersection
between these functions, or the solution of Eq. (61). In
the present case, there exist two intersections which give
the solutions of Eq. (61), i.e., the discrete frequencies co&

and co2. If the thickness D' of the BK part increases, the
period of —coty decreases. Therefore, the number of the
intersections increases. (If we double the thickness D',
three intersections emerge, or there exist three impurity
levels for D'=2ND. ) On the other hand, if D' decreases,
the number of the intersections decreases. This result is
similar to the fact that the number of bound states of
electrons in a single potential well structure increases
with increasing well width.

Next, we calculate the amplitude of phonons at the fre-
quencies corresponding to the discrete levels. Because
these levels are obtained from the equation [see Eq. (45)]

-3. 0

0 .72 0 .74 0 .76 0 .78
Frequency (THz)

FIG. 7. Graphical solutions of Eq. (61).

g„-e '"' [see Eq. (57)]. Consequently, the amplitude at
the interface of each layer decays exponentially on either
side of the impurity site. That is, phonons at the impuri-

ty level exhibit a localized character.

IV. SUMMARY AND CONCLUDING REMARKS
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In the present work, we have derived analytical expres-
sions for the transmission rate and the resonance condi-
tion in the double-barrier system for phonons. The re-
sults show that the phonons in the frequency gaps of the
SL part are transmitted through both barriers without at-
tenuation, when the frequency of the incident phonons
coincides with that of discrete levels. These levels are
caused by lattice vibrations localized at the sandwiched
bulk material. We have also derived an equation giving
the frequencies of these impurity levels.

These results signify that the double-barrier system we
consider is analogous to the double-barrier system for
electrons in which resonant tunneling occurs. This sirni-

larity suggests the potential for designing various phonon
optics devices. In particular, the sharp resonant
transmission in a wide frequency gap can be used to
design a phonon resonator for the detection or generation
of monochromatic high-frequency phonons. Our analyti-
cal expression for the transmission rate will be useful for
this purpose.
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