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We develop a theory for the diamagnetic susceptibility (x) of amorphous Si and Ge by analyzing y of
a tetrahedrally bonded model amorphous semiconductor. We adopt a linear combination of hybrids
method, recently developed by us, and derive an expression for y of tetrahedral semiconductors in terms
of matrix elements between hybrids of the same site and hybrids of the same bond. We introduce distor-
tions in the bond angles and construct an orthonormal set for each site for the disordered network to ob-
tain an expression for y(A) in terms of the bond-angle distortion parameter A. Our expression for y(A)
contains three terms: (i) a core diamagnetic term, Y.; (ii) a Langevin-like diamagnetic term due to
valence electrons, y,(A); and (iii) a Van Vleck -like paramagnetic term, y,(A). We calculate y(A), using
various A parameters, and compare our results with the corresponding crystalline values. . is found to
be independent of A and there is also almost no change in y,(A) with a change in A. However, we find
that y, is proportional to S?/(1—S?), where S is the overlap integral between two hybrids forming a
bond. Since S decreases with increasing disorder, x,(A) is appreciably reduced with increasing A. Since
X.(0) and y, (o) are individually large and nearly cancel each other for covalent semiconductors such as
Si and Ge, this reduction of y,(A) in the amorphous phase gives rise to a large diamagnetic enhance-
ment. We expect our results to improve with further inclusion of effects of dihedral-angle disorder and
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bond-length disorder in our formulation.

I. INTRODUCTION

Experiments on amorphous semiconductors reveal
many intriguing yet interesting features associated with
their physical properties.! There is an unusual enhance-
ment in the values of the diamagnetic susceptibility (y) of
tetrahedral and quasitetrahedral materials like Si, Ge,
and CdGeAs, in the amorphous (a) phase relative to
their crystalline (¢) phase. The enhancement is 450% for
Si,? 270% for Ge,? and about 150% for CdGeAs, (Ref. 4)
whereas, in lone-pair semiconductors, such as S,> Se, >
As,S;,” and As,Se,,’ there is no change in the a phase
relative to the ¢ phase. Measurements of dielectric con-
stant (€,), i.e., refractive index (n) in these semiconduc-
tors, show, on the other hand, contradicting results. For
Si and Ge,? there is a small change in n, whereas in Se
(Ref. 8) there is significant decrease in n in the amor-
phous phase compared to the crystalline phase.
Tetrahedral semiconductors show large changes in Y
without any change in €, whereas in chalcogenide semi-
conductors there is no change or very little change in y
but appreciable reduction in €, is observed while going
from ¢ to a phase. This contradicting nature of the
change between the crystalline and amorphous phases, as
well as different types of semiconductors, implies that
these properties are related to the nature of chemical
bonding and presence or absence of long-range order.

White and Anderson® have suggested two possible
mechanisms as sources of diamagnetic enhancement of
amorphous semiconductors relative to the corresponding
crystals. One of these is the increase in the Langevin-
type diamagnetic contribution (Y;..) due to the presence
of large orbits associated with localized states close to the
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mobility edge. The second mechanism is the reduction in
the paramagnetic Van Vleck-type interband contribu-
tion (yy) arising from the loss of long-range order which
leads to a breakdown of k conservation in the amorphous
phase. Assuming the matrix elements of the angular
momentum operator in Yyy are unchanged in both ¢ and
a phases, they have argued that if the minimum of the en-
ergy gap occurs in a restricted region of k space, the
amorphous average will give a smaller value than the
crystalline one. This leads to a reduction in paramagnet-
ic contribution Yyy. One may similarly argue that since
the dielectric constant (€,) can be written in the form of a
sum of matrix elements of the electric dipole operator
over the same energy-difference denominator, the above
mechanism should also result in a reduction of the refrac-
tive index n. However, experimental results contradict
this argument. Therefore, it may be concluded that a
change in the effective band gap is not a major source to
explain the magnetic anomalies in amorphous semicon-
ductors.

Recently, we have developed a theory for the magnetic
susceptibility of tetrahedral semiconductors,'®!! by in-
troducing a model using a linear combination of hybrids.
We have constructed a basis set for the valence bands
which is a linear combination of sp® hybrids forming a
bond in which their relative phase factors, previously
neglected, have been properly included. We have also
constructed a basis set for the conduction bands which
are orthogonal to the valence-band functions. We have
constructed localized Wannier functions'? from our
Bloch functions and have shown that the bond orbitals
used in the earlier theories'*'* are not a proper choice for
the Wannier functions of the valence band. We have
shown that the basic assumption in the bond-orbital mod-
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els, i.e., that the localized Wannier functions have the
character of the chemical bonds, is equivalent to ignoring
the relative Bloch phase factor e (where d; is a bond
length) between the hybrids forming a bond. However,
since d; —d; (j7]') is a lattice vector, the relative phase
factor plays an important role in solids, unlike in mole-
cules where it could be neglected. We have derived a
general expression for x of intrinsic semiconductors by
using a finite-temperature Green’s-function formalism.
We have used our basis states in our general expression
for ¥ and have obtained an expression for Yy of
tetrahedral semiconductors.'%!! Our results have agreed
well with the experiment.'> We note that our expression
for y is origin independent and free from any scaling pa-
rameter, unlike the earlier theories. The significant
feature to note is that our expression for the Van
Vleck-type susceptibility (x,) for elemental tetrahedral
semiconductors such as Si and Ge is proportional to
S?/(1—S?) (where S is the overlap integral), unlike the
earlier theories.!>'* Since S and, hence, Xps decreases
with increase of disorder, we note that our theory for
crystalline phase with suitable modifications can explain
the large diamagnetic enhancement in amorphous Si and
Ge. This view is supported by our calculations'® for a
two-dimensional model semiconductor which shows large
diamagnetic enhancement in the a phase compared to the
¢ phase.

In the present paper we formulate a theory in an at-
tempt to analyze and explain the experimental results for
the magnetic susceptibility (y) of amorphous tetrahedral
semiconductors such as Si and Ge. In view of the
difficulties associated with the analysis of White and An-
derson, as mentioned earlier, we attempt to tackle the
problem of diamagnetism in amorphous systems from a
different angle. We assume that in the amorphous phase
these semiconductors can be adequately described by the
random-network model of Polk.!” In this model the
nearest-neighbor coordination is maintained both in the
¢, as well as in a phases. Noncrystallinity is assumed to
be mainly due to deviations in tetrahedral bond angles.

We have constructed an orthonormal set of orbitals for
the disorder network by introducing distortion in the an-
gle between different hybrids at a site. We have used
these orbitals and adopted a suitable averaging technique
to obtain an expression for the magnetic susceptibility
x(A) of the model amorphous semiconductor in terms of
the bond-angle distortion parameter A. We note that
there is very little change in the Langevin-type diamag-
netic term Y,(A) and an appreciable reduction in the Van
Vleck -type paramagnetic term Y,(A) due to the propor-
tionality factor S2/(1—S?). Since x,(0) and x,(0) nearly
cancel each other for elemental semiconductors such as
Si and Ge, the change in y,(A) drastically changes the
total values of y(A), leading to a large diamagnetic
enhancement.

The remainder of the paper is organized as follows. In
Sec. II we construct the basis sets for the valence and
conduction bands using a linear combination of hybrids
formalism. We also derive an expression for Y of
tetrahedral semiconductors. In Sec. III, we introduce
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distortion in the bond angles and construct an orthonor-
mal set of hybrids for each site for the disorder network.
We obtain an expression for ¥(A) of the model amor-
phous semiconductor in terms of the bond-angle distor-
tion parameter A. In Sec. IV we present our numerical
calculations and analyze our results. In Sec. V we sum-
marize our results and discuss the salient points of our
theory.

II. TETRAHEDRAL SEMICONDUCTOR
IN THE CRYSTALLINE PHASE

A. Linear combination of hybrids formalism

We develop a method using a linear combination of hy-
brids for the tetrahedral semiconductor in the crystalline
phase. We consider a diamond lattice where each atom is
surrounded tetrahedrally by four nearest-neighbor atoms
and vice versa. The primitive cell contains two basic
atoms I and II. At each site i, we construct four sp3 hy-
brids hjl(r—R,-) pointing from atom I to the nearest-
neighbor atom II along the direction j (j=0,1,2,3) and
four other sp? hybrids h}(r —R; —d;) pointing from these
nearest neighbors to atom I. We choose one of I atomic
sites as the origin. R, is a lattice vector for site i and d; is
a nearest-neighbor vector. We construct the Block-like
tight-binding sums for the valence-band basis functions
by taking a linear combination of sp® hybrids forming a
bond

‘U,>:“‘71‘N— ;ij(k)elk‘R"
X[k} (r—R,)+hAr—R,—d;)e 1,
2.1)
where
f/k)={2[1+S cos(k-d;)]} ~'/*. (2.2)

S is the overlap integral between the two hybrids forming
a bond. The basis functions for the conduction bands are
obtained by constructing functions orthogonal to |v; ):

—_ 1 C, "k'Ri
|cj>—ﬁ ;fv(k)e

[(1+Se™)hl(r—R,)

—(S+e™ )
Xh}r—R,—d;))], (23
where s
Fk)= (1+Se ") _ /
2(1—8?)[1+S cos(k-d;)|(1+Se " /)
2.4)

The eigenfunctions corresponding to valence (n) and con-

duction (m) bands are
¢n(k,r)=2aj,,(k)|vj) (2.5)
J

and
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Y (k,1)= 3 a5, (k)lc;) (2.6)
J

Here the a’s are elements of 4 X4 unitary matrices satis-
fying the relation

vT
2(1]” k)a ) 8”’ ’
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B. Diamagnetic susceptibility
of crystalline semiconductors

We obtain an expression for the magnetic susceptibility
of crystalline tetrahedral semiconductors by using our
basis states [Eqgs. (2.5) and (2.6)] in the expression for x of

S af (Kt (k)=5.. @7 the intrinsic semiconductors recently derived by us'! and
“~m m s which can be written as
J
2h sh
B"vd 1
X= aBz 2 nr?z QVZHSBB+QI:VIIQ};H Qfl n +an r’r/m I’lin’QSz'n
nk
ta pB Y, ,OS%.
QTaPY T%yQSj:ﬂ“"ZQl‘g‘ 3 P.y Q Qnumum Qm n
Em'n
2P Qe Pl @n i Qb Pl Qv 08
Em’n’ Emn .
r

Here Q%,=— [UAVEU,dr, hoz=€,5h7, h=eB/2fc, % S =[1+5 cos(k-d,)]""
E,,=E,—E, and P, /# are the matrix elements of k
the velocity operator between ¢, and ¢,,, U, and U, are 1 _
the periodic part of the Bloch function, (n,n’, etc.) and =ﬁ > cos(k-d;)[1+S cos(k-d;)]
(m,m’, etc) denote the valence and conduction bands, k
and repeated indices imply summation. In order to
evaluate the matrix elements between different hybrids and
occurring in the expression for x [Eg. (2_.8)],]8w.e have o 1 sin2(k- d;) 013
adopted a Hall-Weaire-Thorpe approximation, ° i.e., we TN 2 [1+S cos(k-d, )][1+Scos(k d,)] . .

have calculated only matrix elements between hybrids of
the same site and between hybrids of the same bond.
Since the Hall-Weaire-Thorpe model yields a poor
description of the conduction band, we have assumed the
completeness relation

3 Im) (ml=1—3 [n){(n| (2.9)

(thereby neglecting the core states) to express the
conduction-band states. We have also made an average-
energy-gap ansatz (E,) for the energy-gap denominator
and obtained an expression for x as

X=Xc+tXo X, (2.10)

where Y, and Y, are Langevin-like diamagnetic terms due
to core and valence electrons and Y, is the Van
Vleck -like paramagnetic term

N s xR
Xo 2mc2§§ AL IS RS AL

+Bj(hj1![x(x —df)
yly—anllh}}, (@11
2Ns2
Xp=— ¢ S CylChiIL R (2.12)
JsJ

2c2E,(1—S?)

Here

It may be noted that we have essentially obtained the
valence-electron contribution to the magnetic susceptibil-
ity as a sum of contributions due to localized orbitals. In
Eq. (2.11) the first term is the contribution due to matrix
elements between intrasite hybrids while the second term
is the contribution due to the matrix elements between
two hybrids of adjacent sites forming a bond. In Eq.
(2.12) the contribution is due to matrix elements between
intrasite hybrids only. We are interested in analyzing the
variation of y with disorder by introducing distortion in
bond angles. Therefore, we have obtained a simple ex-
pression for Yy of the crystalline semiconductor by
neglecting the terms of less phys1cal importance and of
one order less in magnitude!® in the general expression
for y in deriving Egs. (2.11) and (2.12). However, the
effect of all the terms in Eq. (2.8) has essentially been in-
corporated by matching Egs. (2.11) and (2.12) with the
experimentally separated values'® of y, and X, in the
final estimation of the enhancement factor.

III. TETRAHEDRAL SEMICONDUCTOR
IN THE AMORPHOUS PHASE

A. Orthonormal sets for the disordered network

The orthonormal set of orbitals that take part in the
tetrahedral bonding are sp> hybrids. In order to achieve
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amorphous phase,!” we introduce disorder in the atomic
positions which, in turn, introduces disorder in the bond
angles and bond lengths but still preserves the nearest-
neighbor coordination. Since the bond lengths do not
change appreciably!® on energetic grounds, in the present
calculation, we consider disorder in the bond angles
only.!” We construct modified sp> orbitals® for two
nearest-neighboring sites for arbitrary bond angles 6 and
dihedral angles ¢. First we assume one of the bond orien-
tations (say j=0) along the z axis and write the pair of or-
bitals forming the bond as

,‘/
ayn1=1s(r)+S2p,(r)

and

V3
a%(r—do)=%s(r—do)——2—3p2(r—d0) ) (3.1
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where site I is at the origin and d, is the bond length
along the j=O0 direction. s and p are the atomic orbitals.
The other three hybrids at each site are generated from
the corresponding hybrids [Eq. (3.1)] by making ap-
propriate rotations. For example, the hybrids at site I,
al(r), al(r), and al(r) (for j=1, 2, and 3) are generated
from al(r) by giving arbitrary rotations of a;, a,, and a;
about the y axis, followed by subsequent rotations ¥,
(3m+1,), and ({7+1;) about the z axis, respectively.
Similarly the hybrids a3(r—d,), a3(r—d,), and
a3(r—d,) are obtained from a3(r—d,) by giving rota-
tions —f,, —B,, and —f3; about an axis passing through
atom II and parallel to the y axis, followed by rotations
m+¢,, 3m+¢,, and I +¢; about the z axis, respectively.
Since the p functions transform as the D!’ representation
of the full rotation group we have

V3 V3 V73
a }(r)=%s (r)— —2—3—sina1cos¢,px(r)+—2—3sina,sim/;1py(r)+ —3cosa1pz(r) )

aj(r)=1s(r)+ %(cos¢2+\/§ siny, )sina, p, (r)+ l;i(\/? cosy, —siny, )sina, p, (1) + %cosazpz(r) ,

1

and

2

(3.2)

aj(r)=4s(r)+ ‘—1—3—(cos¢3—\/Ssinllt3)sina3px(r)— %(\/3 cosy; +siny;)sinasp, (r)+ —‘lecosogpz(r)

V73 V73 . V73
al(r—dy)=1s(r—dy)+ —53—sinB,cos¢1px(r—do)— —2—3sinﬁlsm¢,py(r—d0)— T3cos,31pz(r—d0) ,

a%(r—d0)=5s(r—do)—1/4—3(cos¢2+\/§ sing,)sinB, p, (r—d;)

3~ V3
—l/4—3—(\/3 cos¢2—sin¢2)sinﬁzpy(r—d0)——2—3—cos[32pz(r—do) ,

(3.3)

V73 ~ .
a%(r—do)=%s(r—d0)—73(cos¢3—\/3sin¢3)smB3px(r~—do)

+ —?(sin%-&-\/@ cosd3)sinB; p,(r—dg)— %—icosmpz(r—do) .

We note that the bond angle is the angle subtended by
two bonds at a common site. Whereas, the dihedral angle
(¢) is the angle between the second-neighbor bonds when
projected onto a plane perpendicular to the common
bond (as shown in Fig. 1). From our construction, we
note that the dihedral angle ¢ between the hybrids, for
example, a/(r) and a}(r—d,), for j=1, 2, and 3, is
(m+¢;—¢;), where (¢;—¢;) is the distortion in the
dihedral angle from the corresponding crystalline value
7. We note that if we set the bond angles a;, a,, and a;
and B, B,, B; equal to the tetrahedral angle
ar=cos”!(—1) and the dihedral angles equal to 7, then
the hybrids of sites I and II occupy the staggered
configuration of tetrahedral symmetry which corresponds
to the crystalline phase. In this phase, the hybrids at
each site also become orthogonal to each other. Howev-
er, in the present case [Egs. (3.1)—(3.3)], because of arbi-

trary bond angles and dihedral angles, the orbitals at
each site are no longer orthogonal to each other. We
therefore adopt a symmetric orthogonalization pro-
cedure?! to obtain orthonormal sets of hybrids for each
site. The orthonormal set of orbitals for site I can be ex-
pressed as

0j/(n)=aj(r)—1 F aj(r)Sj; +3 3 al(0)S),S)
7 e

(3.4)

where

[a)*(r)a}(ndr for j#j'

S
7o for j=j'. 3.5

Similarly the orthonormal set of four orbitals for site II
(with nearest-neighbor vector d;) can be expressed as
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FIG. 1. Schematic representation of the sp’ orbitals: the

bond angles (a;,B;) and the dihedral angles ¢ for two of the
four orbitals on each of the neighboring atoms [here we show,

for example, the angle ¢ between al(r) and a}(r—d,),

p=m+é—].

Oj-z(r—do):ajz(r—do)—%Zaj r—dy)S
i
+3 2 aj(r—dy)S}. S}, , (3.6)
where
s — f 2"‘(r—do)a (r—dydr, jFj'
i i
0, j=j" (3.7
It may be noted that we have assumed that S jlj and S jzj ,

the overlap integrals between two intrasite hybrids, are
small and, therefore, kept up to second order in Sjj, in
Eqgs. (3.4) and (3.6). Further, since the deviations of the
bond angles from the tetrahedral angles (a;) are small!’
(about 10%) we write aj=aT+7/j and B;=a;+8; and
expand the orthonormal orbitals in terms of these devia-
tions. Keeping up to second order in y; (7/1,7/]}/, +) and
8, (61, 8;6;) we obtain the orthonormal set of hybrids for
each site for the disordered notwork (see Appendix).

B. x of the model amorphous semiconductor

We obtain an expression for y of the model amorphous
semiconductor in the amorphous phase by using our dis-
order basis states [Eqgs. (3.4) and (3.6)] in the expression
for x, and x, [Egs. (2.11) and (2.12)]. We assume that
the average energy gap E, is unchanged in the a phase,
since the leading term in E, in the Weaire-Thorpe model
is 2|V,| and is not likely to change if the bond length
remains the same. We note that our orthonormal set of
orbitals is constructed by taking arbitrary bond angles
and dihedral angles. However, in the present work we
wish to study the effect of bond-angle disorder on the
magnetic susceptibility of tetrahedral amorphous semi-
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conductors. Therefore, in the calculation of y we have
taken the dihedral-angle distortion (¢;,¢;) equal to zero.
We carry out a configuration averaging over the distribu-
tion of the bond-angle distortion (y j,8 ;> ete.). In the
averaging process we have used

(y;7;0=(8;8;,)=A8, ,

where 8 ;. is the Kronecker delta. The expression for the
magnetic susceptibility of the model semiconductor in the

amorphous is obtained as

X(A) =X, +X,(A)+x,(4), (3.8)

where

l‘(x2+y IO])
J

+B;(A){0/(r)]
X[x(x—=df)+y(y —d})]
X|0}(r—d;))} (3.9)

and

S/ (A
—S7(A)]

eIN s C;(A
2.2

m-c°E, 7 [1
G'#))

X,(8)= |<0 IL,I0L)]? .

(3.10)

Here S;(A) is the overlap integral, which can be ex-
pressed as

S(A)=S(0)(1—23A). (3.11)

S(0) is the overlap integral between two hybrids forming a
bond for A=0 (crystalline case). A4;(A), B;(A), and
C,y(A) are coefficients dependent on the disorder parame-
ter A through S;. Summation over j refers to summation

over four nearejst-neighbor bonding coordination in the
disordered phase where d; is a bond length along that
direction. In Eq. (3.9) the first term is the contribution
due to intrasite hybrids while the second term is the con-
tribution due to the hybrids between adjacent sites form-
ing a bond. We note that for tetrahedral semiconduc-
tors'® (Si,Ge) the magnitude of the second term is about
1% that of the first term and is within 5% of the total
magnetic susceptibility. Therefore, for simplicity we
neglect the second term in Y, in our analysis.
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TABLE I. Variation of y(A) with disorder parameter A (all ’s in units of 10™° cm?/mol).

x(A)/x(0)

Solid A Xe Xo(A) Xp(A) x(A) (%)
Si 0.0 —4.6 —39.3 375 —6.4 100
0.03 —4.6 —39.31 36.3 —17.61 119

0.12 —4.6 -394 32.6 —11.4 178

0.2 —4.6 —39.46 31.3 —12.76 200

Ge 0.0 —16.6 —50.3 51.2 —15.7 100
0.03 —16.6 —50.31 49.68 —17.23 110

0.12 —16.6 —50.37 46.01 —20.96 134

0.2 —16.6 —50.52 43.23 —23.89 152

IV. RESULTS AND DISCUSSION

We have analyzed the magnetic susceptibility of the
tetrahedrally coordinated model amorphous semiconduc-
tor using Egs. (3.8)—(3.10). The numerical value of the
parameters d, E,, and x, for Si and Ge are obtained from
Refs. 14 and 15. We have used Hartree-Fock atomic or-
bitals from Clementi’s table.?? The two-center integrals
are evaluated by using spheroidal transformation tech-
nique.?* Our goal is to obtain the relative changes in
y¥(A) with increase in A. We match the results of x“(o)
and y,(0) (A=0.0) with the experimentally separated
values!® of y of crystalline Si and Ge and then study the
variation of Y(A) with increase in A. We note that the es-
timated value of the disorder parameter A is not avail-
able. The root-mean-square deviation of the bond angles
is reported to be about 10%. In our analyses we took
A=0.03, 0.12, and 0.2 to study the trend. Our results of
y¥(A) for Si and Ge are presented in Table I. We note
that there is very little change, virtually no change, in the
value of y, as A increases from 0.0 to 0.03, 0.12, and 0.2.
However, the value of x,(A) reduces by 4%, 13%, and
17% for Si and by 3%, 11%, and 16% for Ge as the dis-
order parameter A increases from 0.0 to 0.03, 0.12, and
0.2, respectively. As a result, we note that the net change
in the total susceptibility turns out to be large and is
119%, 178%, and 200%, respectively, for Si and 110%,
134%, and 152%, respectively, for Ge corresponding to
the A value 0.03, 0.12, and 0.2.

In order to analyze our results, we note that in y,(A)
[Eq. (3.9)] the value of the coefficient 4;(A) is the same
for all bond orientations (j) and changes very little with
the change in A. Further, we note that although the
value of the matrix elements <0j1(r)|(x2+y2)|0jl(r)> de-
pends upon A for each bond orientation, the sum of the
contributions due to all the four bond orientations turns
out to be independent of A and equal to the correspond-
ing crystalline value. As a result, we obtain almost no
change in x,(A) with increase in A. In x,(A) [Eq. (3.10)],
we note that the change in the coefficient C;;(A) is very
small for different A. The change in the values of
[{0}(r)|L,|0}(r)}|* is also small and of the order 0.07 A
from their crystalline values. Therefore, the reduction in
X,,(A) is almost due to the decrease in the values of the
proportionality factor S(A)/[1—S}(A)] with an in-
crease in A, unlike the earlier theories. !> 1424

We note that the values of x;(0) and x,(0) are individ-
ually large and nearly cancel in the case of the perfectly
covalent tetrahedral semiconductors like Si and Ge. As
ionicity increases, Y, increases in magnitude and Y, de-
creases and there is no longer a near-perfect cancellation
as in the case of III-V semiconductors.!"'* Therefore, as
predicted by Fritzsche and Hudgens,? a small change in
X, and Y, drastically changes the total value of x of Si
and Ge.

We note that since the change in the experimental
value of y in the amorphous phase compared to the crys-
talline phase is 450% for Si and 270% for Ge, our results
predict approximately a 50% enhancement in . It may
be noted that we have not included the effect of dihedral-
angle disorder in our formulation. In fact, it has been
shown that the effect of dihedral-angle disorder is impor-
tant?® in predicting the density of states near the top of
the valence band of amorphous Si. We believe that our
results would improve by considering the effect due to the
dihedral-angle disorder. Further, we believe that our re-
sults would improve by considering the effect of bond-
length disorder.

We shall now compare our results with the earlier re-
sults. We note that our formulation differs from the
analysis of White and Anderson. White and Anderson
have assumed that in the Van Vleck—type paramagnetic
susceptibility x, the matrix elements between the
valence- and conduction-band states of the angular-
momentum operator remain unchanged in the a phase
relative to the ¢ phase. Further, they have argued that if
the band-gap minimum occurs in a restricted region of k
space, the value of the effective gap will be larger in the
amorphous phase leading to reduction in y,. On the oth-
er hand, in our formulation we have assumed that the
average energy gap E, remains unchanged in the a phase
since the leading term in E, in the Weaire-Thorpe model
is 2|¥,| and is not likely to change if the bond length
remains the same. We have shown that the value of the
matrix elements decreases in Y, with increase of disorder
parameter A, giving rise to large diamagnetic enhance-
ment in Y in the amorphous phase. In order to explain
the lack of change in the dielectric constants of Si and Ge
in the amorphous phase relative to the crystalline phase,
we have shown'!®?’ that the value of the matrix elements
of the electric dipole operator between the valence- and
conduction-band states changes very little with increasing
disorder parameter A, resulting in no change in ¢,.
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V. SUMMARY AND CONCLUSION

We formulate a theory for the diamagnetic enhance-
ment in amorphous semiconductors such as Si and Ge by
analyzing the magnetic susceptibility () of a tetrahedral-
ly coordinated model amorphous semiconductor. We de-
velop a method using a linear combination of hybrids to
construct the valence- and conduction-band states and
use them to derive expressions for y of the tetrahedral
semiconductors in terms of matrix elements between in-
trasite hybrids and between hybrids of adjacent sites
forming a bond. Our expression for Y contains three
terms: (i) a core diamagnetic term (Y, ), (ii) a Langevin-
like diamagnetic term due to valence electrons (Y, ), and
(iii) a Van Vleck-like paramagnetic term (x,). We con-
struct an orthonormal set for the disordered network by
introducing distortion in bond angles and use them to
derive expressions for Y(A) of the model amorphous
semiconductors in terms of bond-angle distortion param-
eter A. An interesting feature of our result is that our ex-
pression for y, is proportional to S2/(1—S?), where S is
the overlap integral. Since S decreases with increase of
disorder, the value of x, also decreases appreciably. We
study the variation of y(A) with A by matching x,(0) and
X,(0) (for A=0.0) with the experimental values' of y of

J
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Si and Ge. There is essentially no change in x,(A) but
appreciable reduction in x,(A) with increase of A due to
the proportionality factor S?/(1—S?). Since x,(0) and
X,(0) are individually large and nearly cancel each other
for covalent semiconductors such as Si and Ge, we show
that the large diamagnetic enhancement in the amor-
phous phase is mainly due to reduction in the Van
Vleck-type paramagnetic susceptibility. From our
analysis we note that there is approximately a 50%
enhancement in y in the amorphous phase due to the
effect of bond-angle disorder. Our results are expected to
improve by considering the dihedral-angle disorder as
well as bond-length disorder in our formulation.

We note that our theory can, in principle, be applied to
nontetrahedral materials such as Se and Te as well, with
suitable modifications. For these trigonal semiconduc-
tors, which are also covalent but do not show any di-
amagnetic enhancement in the amorphous phase, we be-
lieve that the values of x,(0) and X, (o) in these solids do
not come close to canceling each other, unlike Si and Ge.
Further, because of the anisotropy of the crystal struc-
ture, 2*>2° and because of the fact that the valence band is
constructed from the lone-pair p-type orbitals,* we be-
lieve that the expression for Y of trigonal semiconductors
should be different’! from the expression for x of
tetrahedral semiconductors.

APPENDIX

For small deviations in the bond angles, i.e., for a; =ar =+, the nonorthogonal set of hybrids for site I [Eq. (3.2)]

can be expressed as

V3
aé(r)=7s(r)+73pz(r) R

al(r)=1s(r)+C,(y )cosy, p,(r)—C,(y )sing; p,(r)+C,(y,)p,(r),

aé(r)=%s(r)-%Cl(yz)(cosd/z*i—\/g sim/;z)px(r)—%cl(yz)(\/-j cosyh, —siny, )p, (r)+C,(y,)p, (1) ,

and

al(r)=1s(r)—L1C,(y;)(costyy— V3 singhy)p, (r)+1C,(y3)(V'3 cosyhs +singhy)p, (1) +C,(y3)p, (1) ,

where
V72 1 1
Cipy=—Y2, 1 1 5
Y LA A A
1 V2 1,
C =_——'—_‘: +——_ .
Y N LA K

(A2)

Similarly the nonorthogonal set of hybrids of site II at the nearest-neighbor vector d, [Eq. (3.3)] can be obtained by put-

ting B=a,+8, where 8 is a small deviation, as
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3
a(z)(r——do)=%s(r—do)—T3pz(r——d0) :
ai(r—dy)=1s(r—dy)—C,(8,)cosp, p,(r—dy)+C,(8,)sing, p,(r—dy)—C,(8,)p,(r—d,) ,
a3(r—dy)=-1Ls(r—dy)+1C,(8,)(cos,+V 3sing, )p, (r—d,)
— (A3)
+%C1(82)(‘/3 COS¢2—Sin¢2)py(r—‘do)—C2(82)pz(l'_‘d0) »
a(r—dy)=1s(r—dy)+1C,(8;)(cos;—V3singd;)p, (r—d,)
—1C,(8;)(V/3 coss+sing;)p, (r—dg) — C,(8;)p,(r—dy) .
We note that we have kept only terms up to second order in ¥; and §; in Egs. (A1) and (A3), respectively. In order to
obtain the orthonormal set of hybrids at different sites, we obtain S;. ! and Sy 2, [Egs. (3.5) and (3.7)] as

1 - 1 LR LY J—
Sjj _-_‘}?7’}’_*'%7’12'”-’ =0,j’=1,2,3,

=[% 31/_(yl+7/!)_2{*(7!'*'7’1)"'27’1?’1

_[_

[

(v F7 ) =4y 5y ,7 |Loos(d; =)=V 3sin(y; — ;)]

1
6v2

for j5j' and take cyclic permutations of the indices 1,2,3 . (A4)

Similarly,
Sj?j,=—‘/—25, +18% for j=0and j'=1,2,3;
= ‘; 3‘/5(5 +8; )—5(5§+3§.)+§8j8j.]
- [g 6‘/2(8 +8;)— L(83+85)+ 48,8, |[cos(¢; —¢,)—V 3sin(¢,— ;)]

for j#j' and take cyclic permutations of the indices 1,2,3 . (AS)

We have also evaluated the following relations by keeping terms up to second order in y It
SOJSjlo 2 712' ’ (A6)
where j=1,2,3.

19l —
808 =

1 1 -
3—‘57, Lyitiviy, myi—%ﬁ*l—‘mn [cos(¢; —¢;)—V 3sin(¢h; — ;)] , (A7)

Sis) "*97?(7,+27,+n)+7‘ Y2y v+ 207,y 4207 v H 4y o)

+ =5t lmw, i R (I =TY YR =y 8y e 2rr )

X [cos(¢; —;)—V3sin(¢), — ;)]

1
T st s T Y ) T Ry T =yt Wy v = 21y )

X [cos(¢; — 1 )=V 3sin(; — )]

1
5T g VT2t YO T R4 I Ty kA 2y 2y ety ar) ]

X[cos(ll)i—drj)—\/g sin(y; —9;)][cos(¢; — ¢ )—V73 sin(¢; — ¥, )] , (A8)
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for i j+#k, and taking values 1,2,3 in cyclic order.

The expressions for Sosz ﬁ,, Soz,-S,%-, and S,%—S jzk can also be obtained by keeping terms up to second order in ;. These
expressions can be written similarly to Egs. (A6), (A7), and (A8), respectively, by replacing y; by §; and ¢; by ¢;. Us-
ing the above relations in Eqgs. (3.4) and (3.6), and after considerable algebra one can obtain the expressions for the

orthonormal set of orbitals Ojl(r) and Oj-z(r-do) for sites I and II, respectively, for the disordered network by keeping

terms up to second order in y; and §;.
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