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Coulomb drag between quantum wires in a magnetic field
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Momentum transfer between two quasi-one-dimensional electron gases, mediated by the Coulomb

interaction, is considered in the presence of a magnetic field normal to the plane of the gases. The
lateral confinement is assumed to be parabolic. Impurity scattering (screened) and electron-electron
interaction are treated self-consistently within the random-phase approximation. The current re-

sponse is evaluated from the derived momentum-balance equations, which involve the nonequilib-
rium electron polarizability, in conjunction with a drifted-temperature model for the polarizability.
An applied current driven through either of the gases, whose centers are separated by a distance c,
induces a contactless current in the other gas about 10 times smaller and in direct analogy with the
zero-magnetic-field observations of Solomon et a/. Both the applied and the induced current exhibit
Shubnikov —de Haas oscillations. The applied current increases slightly with a and saturates at a
finite value. In contrast, the induced current decreases approximately as a for a much larger than
the wire width.

I. INTRODUCTION

Electron-electron interaction between well-separated
electron-gas layers has already been considered. The
interaction has been predicted to lead to momentum
and/or energy transfer between the electron gases and
thus to modify, e.g. , the transport properties of one of
them when an electric field is applied to the other. This
has been confirmed recently by the observation2 of an
induced, contactless, current in a two-dimensional (2D)
electron gas, separated by a distance of 300 A from a
(semi-infinite) three-dimensional (3D) gas when a cur-
rent was driven through the latter or vice versa. The
subsequent interpretation of this observation made use
of the above-mentioned energy and momentum transfer.

All relevant worksi s of which we are aware are valid
in the absence of a magnetic field. It is of interest, of
course, to examine more closely how the latter influences
momentum and/or energy transfer between, e.g. , two
electron gases. This is the subject of this paper. The ge-
ometry that we chose is that of two quantum wires (along
the z axis) whose centers are separated by a distance a
along the y axis and in the presence of a perpendicu-
lar magnetic field B = Bz. This choice was motivated
by the increasing interest that quantum wires have at-
tracted in recent years after the observation of quantum
size effects such as the oscillatory behavior of the conduc-
tivity, as function of the impurity density, the quenching
of the Hall effect, etc. An additional reason is the quan-
titative assessment of the changes in screening, studied
self-consistently, when a magnetic field is present and the
dimensionality is reduced. In the next section, we present
the formalism and in Sec. III numerical results and dis-
cussion. A summary follows in the last section.

x v(ri —r~)i'~(rs, ti)@~(l), (2)

s p(&, ) = fd, f d, @ (~a, &l)@ (~„4)

x v(ri —rq)@p(1+)iI)'p(1), (3)

and y (= n or P) is the wire index. Here v(ri —r2) =
e2/~ri —r2~ is the bare Coulomb interaction with e
e2/e and e is the high-frequency dielectric constant.
H;(t) is the impurity Hamiltonian, v;(ri —r, ) is the
bare-electron —impurity interaction taken to be Coulom-
bic, with rl and r being the positions of the electron and
of the impurity, respectively; 4 (1) [@p(1)] and ilit (1)
[iI)'p(1)] are the field operators pertaining to the elec-

tron system in the a (P) wire. The last term of Eq. (1),
Hap(ti), as given by Eq. (3) is the Hamiltonian of the

II. THE FORMALISM

A. Model for coupled quantum wires

The many-body Hamiltonian H(ti) is given as

H(ti) = Ho(ti) + Hp(ti) + H;(ti) + Hap(ti), (1)

where

H~(t, ) = f dr, O~(1+)h~(1)@~(1)

+) J dry v;(rg —r ) @~(l+)@q(1)
a

dry dry %t 1+ @ rg &g
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@:,.(.) = 4-(y —y. (k-) — /2) *""/~~
s„p. = (n+ —,')h~+ hzkz/2m,

(6)

(7)

respectively; for wire P the eigenfunction is given by
Eq. (6) with —a/2 replaced by a/2 and the eigenvalue is
the same; n is the Landau-level index, k~ is the wave vec-
tor in the z direction, rn is the conduction-band mass,
~ = /cu2+ Q2, m = m*~z/Qz, yp(k ) = b 1~~k with

b = ~,/u and I& ——Ii/m"ir P„(y) a.re the well-known
harmonic-oscillator wave functions. The main difference
of Eq. (7) from the corresponding expression for a wide

2D channel (Q = 0) is the absence of the term hzkz/2m in
the latter: that is, the presence of the confining potential
(Q j 0) lifts the k degeneracy of the 2D energy levels
and the electrons appear heavier since rn ) rn'. As for
the wire width w it is related to the confining frequency
0 and the 1D electron density n approximately by6

iv = 2z.gniD (2Ii/3zm'Q) i

We should bear in mind that the Hamiltonian in

Eq. (1) is valid only if particle exchange between wires

induced either by tunneling or any other nonlocal per-
I

interaction between electrons in wire o. and electrons in
wire P.

We model the lateral confinement with a parabolic
(confining) potential of frequency Q, V&

——m'Q2y2/2,
and for simplicity we take the thickness I, to be zero.
In this case,

h~(1) = [ —iV'i —eA~(r i, t i) ] /2m'+ m'Q y /2

(4)

is the one-electron Hamiltonian of the p (p = o or P) wire
in the presence of an external magnetic field B = Bz and
of an electric field E(r) = Ex applied only in the n wire
whose center is located at y = a/2 and whose width is

iv. The vector potential A~(r, t) is thus given by

A~(ri, ti) = —[(ti —tp) E~+ B yi ]x,

where E = E and Ep ——0. We assume that the n and

P wires are identical. The one-electron eigenfunction for
wire n, g„& (r), and the eigenvalue s„~ for zero electric
field are

turbations, such as v(ri —r2) and v;(ri —r, ), is ignored.
This neglect of particle exchange and of tunneling is jus-
tified for relatively large separations between the wires,
a ) 70 A; we have made it in order to better assess the
influence of the Coulomb coupling between the wires.

B. Momentum-balance equations

The momentum-balance equations for electrons in
different wires are obtained by applying the opera-
tors lim2 i+ (—(e/2m*) [V i —Vq —2ie A (ri, t i )]) and
lim2, 4 {—(e/2m')[Vi —Vq —2ieAp(ri, ti))) to the
equation of motion of the thermodynamic electron
Green's functions g&(1; 2) and g~&(1; 2), respectively, de-
fined in terms of the field operators 4~(1), 4'p(1), @f (1),
@&(I), and of the equilibrium density matrix pp as

g((1 2) = i T [ p~,'(2)~~(I)]/T (~p)

and by subtracting the results of the operation from
their adjoint counterparts. In the shielded potential
approximation which neglects vertex corrections in the
electron-impurity and electron-electron interaction, the
momentum-balance equations for electrons in terms of
their nonequilibrium number polarizabilities II& (see be-

low) and of the shielded interaction v
&

is

m" Bj (ti) + en E+j (ti) x B —e n EH(ti)1D a
e ti

=J ~, (10)

m' Ojp ti
+jp(ti) x B —en' E~~(ti) = J~

Bti

where

J~= dy, dz, d3 II, &3 V6~, 13
tp

—II((1;3)Viv p ((1;3) ]

(12)

and y is either n or P. The Hall field E~~ is given by

1
EH —i dye dz1 1DV1 V1 —V'2 —2ieA~ 1 Vy —Vg —2ieA~ 1 g& 1 2

and j& and n D are the 1D current and electron densities, respectively. In the above equation, II~&(1;3) is the

fluctuation of the electron density at space-time point (ri, ti) with respect to a change of the effective potential at

space-time point (rs, ts) and v&(1; 3) is just the nonlocal shielded interaction between space-time points (ri, ti) and

(rs, ts). Furthermore, the limits of integration on yi and zi are taken within the wire and phonon scattering is

neglected for very low temperatures. The four-dimensional integration is defined as I,
' d(3) = I ' dts f&i,

and the shielded interaction is given by

8~, (1;2) = d(3)
aP ( —OO

+ d(3)

d(4) 8, +(1;3) n, b(xs —x4) 8, (4;2)b(zs)

d(4) 8+(1;3) II, (3; 4)8 (4; 2) +
OO

d(4)8 (1;3) II~ (3; 4) (4; 2). (14)
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In Eq. (14), n~D is the 2D density of impurities located at z = 0. Furthermore, the retarded (advanced) screened
electron-impurity interaction 6~+ (6~ ) and screened Coulomb interaction 8+ (6 ) are related to the retarded (ad-
vanced) inverse dielectric function Ix+ (Ix ) by the following equations:

or+(I;2) = f d(3) K o(;)3)vo+(3;2),

8~ (1;2) = d(3) I~ (3;2)v~ '
(1;3), (16)

with

v+(1; 2) = f d(3) I&4(1;3)b(to —to)v(ro —ro)

v (1;2) = f d(3) K (3;2)v(rt —ro)b (tt —to')

(17)

vo '(1;2) = v (rt —ro)b(tt —tt) —2 f d(3) f d(4)v(rt —ro)b(ti —to)IIo (3 4)b(to —tt)v (ro —rt). (19)

In Eq. (19), p = P for p = c3 and p = c3 for p = P.
As shown in Eqs. (15), (16), and (19), the bare electron-
impurity interaction is polarized by electrons in the other
wire and screened by electrons in both wires. However,
the bare Coulomb interaction is screened by electrons in
both wires. No additional polarization from electrons in
another wire is involved except screening.

C. Equilibrium inverse dielectric function

where

x Ry(qd;) ps, pg') ~)) (21)

R, (q. ; p„p, ;~) = -S(z, )b(z, )[S(y;)S(y;)11
+b(y') b(y') ll', 1

I

In random-phase approximation (RPA), the dielectric
function can be written as

ot(4. , P„P„io)= b(P) +f 'dPo v(4 Pi Po)

To determine the inverse of the dielectric function

e~(q» pq) p2, ~)) of the system of the two wires in 3D
(three-dimensional) space (p) ——yqj+ zqk, p = pq —pq),
we employ the inversion condition,

y; = y, 4 a/2, i = 1, 2, II~ = II )(q~;~).

(22)

dps ~+(q, s i, ps, ~)~~~(q, p» p'2 ~) —~(p) (20) Furthermore,

(23)

.o (4.) = ddoo f dodo . tb". (Po' —oo(b*))d.o ()to —tto(b* —o*))d:+ (oo —tto(b* —4*))t).()to —»("*))
= [n!/(n+ m)!]u e "[L„(u)], (24)

and

v(q. ; p) = 2e'1~, (lq-lp)

Here u = q 12/2, 1„(u) is a Laguerre polynomial, and
Iio(z) is the zeroth-order modified Bessel function. The
upper signs on the right-hand side of Eq. (24) refer to
7 = P and the lower ones to 7 = a. Note that the re-
tarded (advanced) equilibrium [indicated by superscript

(0)] number polarizability II+ (II ) relates to its
greater ()) and lesser (() counterparts by

v(q; p) = 2e'~'o(lq lp) n+(lq lp- q ~/2)
+2"I'o(q. ~/2) ~-(lq- lp

—q ~/2)

Thus the solution of Eq. (20), in RPA, is

(27)

it%(q*; p~, p2 ~) —&(p) = ) . v(q p~ —g(
—I)*ay)

I

—rl+(z). To remove the divergence of the 1D Fourier
transform of the Coulomb potential, v(q; p), at either
q~ ~ 0 or p —+ 0, we adopt the lower bound for q and p
as q, and u)/2, respectively, discussed in Ref. 11, so that

II (1;2) =+ rl~(t, —t ) [II (1;2)—II (1;2)],

(26)
with rl+(z) as the Heaviside step function and )7 (z) = with

xlI+(q;~)I, &(q; pq, ~),
(28)
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Ii g(q~ p2 ~) = I g(q; p2;~) I =i —= I~g(q; -(—I)'ay p»'tLt)I*=i

&'(» ) —["(q- ")'(» ) + "(q-')'(» )]".)
Eg q~I(d

(29)

tg(q~) M) = [1 —v(q~i to)II~][1 —5(q~ I ut)II ] —5(q~; a)llg5(q~; a)II

We obtain I2 +(q~; p2., ~) from Ii ~(q~; p2,.~) with the
changes y2 ~ yz and yz ~ y2 . For a )) ut, Eq. (27)
shows that the dielectric function s~( ) varies approxi-
mately as a, cf. Sec. III.

I

so that the 1D Fourier transform of the nonequilibrium
number polarizabilities II& (without vertex corrections
and in the weak-scattering limit) can be expressed, in
the steady state, as

D. Expression for the conductivity II&(q. ; t„t, )

For transport along the o, wire, we substitute v & ob-
a (

tained from Eq. (14) into Eq. (10). The third term
in Eq. (14), which leads to the frictional force due
to the electron-electron scattering within the o, wire,
vanishes because of the symmetry property of II&(1;2)
[II~ (1;2) = II~ (2;1)]. However, the first term and the

second term in Eq. (14) which lead to the frictional
force due to electron-impurity scattering and the fric-
tional force due to the electron-electron scattering be-
tween the two wires, are finite. To close Eqs. (10) and

(11), we employ the drifted-temperature model and in-

troduce drift velocities v& and vd related to the current
densities along the n and P wires by j&

—n e it&~ x
I

= —2i ~& C ~~q
~ e-'~'-'--'-'--. --q-" &~

x[1—f,(s„„)] f,(s„„,) (31)

In the above equation, f~(s„ t. ) is the Fermi-Dirac
distribution function at the lattice temperature. We
have assumed that the electric field is not strong
enough to heat up the electrons. For II~& ( ) we

obtain Eq. (31) with the Fermi-Dirac factors inter-
changed. Furthermore, the shielded interaction is of the
form J'dxs f dx4u(1;3)II~&(3;4)tD(4;2) according to the
drifted-temperature model in the steady state, and re-
duces to

) tq~(zt —zq)
(

. t t )
iq~u~[tt ——tg —2(tg —t4)]

(
. t t )

q, k

x) (-~~(q~)e """ '"" " " "[1—f, (&~ y,.)]f,(s~~. q ) (32)
n m

for any equilibrium nonlocal (both in time and space) interactions u(1; 2) and ut(l; 2) which are 8+(I; 2) and 6. &(I;2)
in our case. Thus, we obtain the frictional force acting on the electron system in wire o, , per unit mass and per unit
length, due to impurity scattering as

2 n'D ).16t (q '~)l =oq 1m[11+]I =-q. , (33)

where

I8;(q ~)l' = dys6; +(q; a/2j, Ps, u)6, +(q; Ps, a/2 j;~)
2xe p 2

lq-I l~+(q- ~) I'

and 8. (q; ps, pz, u) is just the 2D Fourier transform of 6. (3;2) (zs —z2 ~ q, ts —t2 ~ w). In obtaining Eq.
t 4

(34), we have already assumed that

dps 8 (q~; pi ps) ly, =a/2, z, =oh(~a)tt. (qx I pa p2) ly~ —a/2, i~ —o

dps 8';(q. ; pi —ps)ly, =.t2...=o ~(~a) 8,'(q; ps —p~)ly, = .t2...=o (3&)

since the modified Bessel function Iso(z) [cf. Eq. (25)] goes to zero rapidly as z increases.
Furthermore, the frictional force acting on the electron system in the a wire, per unit mass and per unit length,

due to the interaction with electrons in the P wire, is
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167r . . Iv(q; a) IF-p=-g . ).).).). ~-,-(q-)~-,-(q-)q-~ (". )~,qI, k g~ ~,~ n', m'

[f ( -, +.) —f ( -. ..)][f (, .—.) —f (, .)]

x[n (h~) —np(M)]b[u) + ~ —q (v„—vP)],

n., = — ' dq, , I [11+]/. ,

(38)

In the same manner, we may expand b[ ] in Eq. (36)
and obtain

I" p = 0 p(vd —v~p) (39)

to first order in (v& —v&); the momentum relaxation
frequency per unit length due to mutual Coulomb scat-
tering, 0 p, is given by

2hs ) d~' (q v(q; a) (2

m'kT 2x le+(q ~')I'
x n(M') [ 1+ n(hu')]

x Im[II+]Im[IIP+ (q; —u')] .

Thus Eqs. (10) and (11) reduce to

(4o)

A E = e(A~, + Q~p)vf —eQ pv~~, (41)

0 = e (Qp, + Qp ) vd —e Ap vd, (42)

and the induced current I;, is related to the external field
E by I; = cr~ E with the conductivities times length
squared given as

&0. l t'np;+np &

(0'~~ j ( Dp~ )
(n1D &)2

X m'[(fI, + 0 p)(Qp;+Op ) —0 pQp ]'
(43)

with A4) s~, q~ +q~ c~ qq, hid E~
and n~(~) is the Bose-Einstein distribution at lattice
temperature. For weak electric fields, we may expand
Im[ ] of Eq. (33) in q v& and keep only the first-order
term obtaining

(37)

with the momentum relaxation frequency per unit length
due to impurity scattering, 0;, given by

electron density n = n D/w, remains constant and it
is taken to be 5 x 10~~ cm 2. The impurity density n2D

is equal to 1 x 10~ /cms. Furthermore, the width of the
wire m relates to the confining frequency 0 through the
approximate relation (8). As for the geometry of the two-
wire system it is shown in Fig. 1. The electric field E is

applied in wire n and the magnetic field B is along the z
axis.

Figure 2 shows the magnetoconductivity in units of no

(solid curve) and the conductivity ratio (dashed curve),
with oo —e~/+2m'b, = 9.39 x 10 ~s C~ sec/kgm (b.
is taken to be 36.6 meV for convenience), as a function
of magnetic field B. The confining frequency is 1 meV
which corresponds to a wire width of 2687.5 A and the
wire separation is 200 A. The temperature is taken to
be 3 K. Both curves oscillate as function of the magnetic
field. This is mainly due to the same oscillatory behavior
of the momentum relaxation frequency, 0, for impurity
scattering as shown in Fig. 2 since O~; (solid curve) is

proportional to the derivative of the imaginary part of

II+ which becomes ' the density of states per unit length
in the q~ —+ 0 limit.

In Fig. 3, the momentum relaxation frequencies 0;
(solid curve) and 0 p (dashed curve) are plotted as func-
tion of the magnetic field. 0 p is smaller than 0; by a
fact, or of 10, both with respect to the absolute value and
to the oscillation amplitude and its effect on the conduc-
tivity o is very small. It is verified in Fig. 4 in which
o '/uo is plotted as function of B without taking into
account the Coulomb interaction between wires. Thus,
the oscillatory behavior of Qp has almost no effect on
the conductivity ratio 0P~/o

In Fig. 5, the conductivity ratio 0P~/o ~ (solid curve)
and the conductivity 0 (dashed curve) are plotted
as function of the wire separation d, cf. Fig. 1. The
magnetic field is 2 T and the confining frequency 10
meV which corresponds to a wire width of 268.75 A.
The conductivity o varies almost linearly with d until
d = 148 A and saturates at about d = 236 A; in other
words, the wires are almost independent of each other

quire P

III. NUMERICAL RESULTS
AND DISCUSSION arise cr

We solve Eqs. (38) and (40) for GaAs quasi-1D wire
with e~ = 11 and m' = 0.07rno. The two-dimensional FIG. 1. The geometry of the two-wire system.
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82—
d = 290 A, 9 = 1 me Y

5.2x gp —6

cr, /rr, 42— 1 2 irma/, raa

—-0.8

29—
0 0.5

-28
2.5

FIG. 2. Magnetoconductivity o /cro (solid curve) and conductivity ratio a~™/rr (dashed curve) as function of the
magnetic field for quantum wires with width iv = 2687.5 A and number density n = 1.34 x 10 cm at temperature T = 3
K. The wire separation is 200 A.

when the separation is more than 236 A. On the other
hand, the conductivity ratio decreases approximately, lin-
early with d for d & 100 A. For 60 & d & 100 A,
the conductivity ratio depends very little on the wire
separation. However, for d ( 100 jt the results are
only indicative since particle exchange or tunneling be-
tween wires can occur for such a small separation. In
this case, we cannot distinguish electrons from diA'er-

ent wires and the Hamiltonian in Eq. (1) is likely not
to be valid. In the opposite limit, i.e. , for very large d

(or a) Eq. (1) is valid and 0 p decreases approximately
as a . This behavior of O~ p can be understood from

A~p oc jdq~ ~v(q; a) [ /[e+(q; ~')
~

as seen in Eq. (40).
Now v(q;a) goes as e & '/gq a for large q a There-.
fore, only the low-wave-number limit of the integrand
dominates and e~(q;u), as given by Eq. (30), becomes

6.4
d = 200 A, 0 = 1 me V

1,28 x 10

/
I

I'

I
/

1

\

i -0.64 LQ p ui/6

0—
0

I
0.5

0
2.5

FIG. 3. Relaxation frequency per unit length due to impurity scattering hQ, iv/b, (solid curve) and due to Coulomb
scattering between wires hA~p iv/4 (dashed curve) as function of the magnetic field for quantum wires with width w =
2687.5 A and number density n = 1.34 x 10 cm ' at temperature T = 3 K. The wire separation is 200 A.
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cp(q;u)) —8e 1n(z, ) II+II+
(a —tv/2) p (44) 118.5

d = 200 A, 0 = 1 me V

at low temperatures. For a» tv/2, e+ —a, or in other
words, 0 p

—a ~ since v(q; a) is independent of a at
the low-wave-number limit, cf. Eq. (27).

This a behavior of O~p is tied to the quasi-1D ge-
ometry of the two-electron system. Naturally, it raises
the question about the relation of 0 p = f(a) in, e.g. , a
2D geometry and whether in such a geometry the current
transfer ratio I,/I, is smaller or larger. As is immediately
obvious I,/I, depends mainly on d (or a) and on the den-
sities of the electron systems involved as Eq. (43) shows,
all other parameters being the same for both systems.
Below, for definiteness we compare 0

&
and 0

&
as well

as the corresponding drag voltages VD and VD, for low
temperatures when the energy transfer Iiu' in Eq. (40) is
small, and the upper limit can be replaced by kT. In this
case, Eq. (40), for zero magnetic field (m = m'), can be
written as

e /e, 59.25—

0-
0

B (T)

2.5

FIG. 4. Magnetoconductivity rr /o'e as function of
the magnetic field for quantum wires with width
2687.5 A and number density n = 1.34 x 10 cm at
temperature T = 3 K. Coulomb interaction between wires
is absent.

O'Dp-, ) )
q~ n, m, n', m'

2

), (kT)'C„(q )C„(q )

Of (sl,.)

If; =q /2 —(n-m)mar/hq

&fp(&t. )

k =q /2 —(n'-m')mu/hq
(45)

In the 2D case,
per unit area is

4m' ) I (q)I (yT) I I

f( " )
I"+D(q;0)I

q
c)st,.

&f(sa, )
X

7 (46)

the corresponding coupling frequency
I

where q, k~, and kp are the corresponding 2D wave
vectors. Both frequencies show a quadratic dependence
on temperature as expected for electron-electron inter-
action. As will be reported elsewhere the correspond-
ing numerical results show almost exactly the same Tz
dependence. Suppose now that the screened interac-
tions v(q; a)/e+ (q; 0) and v(q)/e+ (q; 0) have the same

3.8
B=ST, 0=1P nscV

Sx 10

4 5 ~gm/~acr

3.6—

S.5

d (A)

412

FIG. 5. Magnetoconductivity n joo (solid curve) and conductivity ratio uP a' (dashed curve) as a. function of the wire
separation a for quantum wires with width ru = 268.75 A and number density n' = 1.34 x 10 cm ' at temperature T =- 3
K. The magnetic field is 2 T.
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strength which necessarily means different separation dis-
tances d. Then Q~D /Q~DP I/q2D where q~D is the
screening wave number in the 2D electron gas. As a re-
sult, the ratio of the drag voltage VD to the applied cur-
rent I, in the 1D case to that of the 2D case is obtained
as

y( D/ & j 2Dg2D t 1DfllD 2D t 1D 2D

- I'n'D/2m'e'n'D

(47)

Therefore, in this particular case the electron densities
determine which drag will be stronger or weaker. A fuller
comparison, with less approximations, will be reported
elsewhere.

IV. SUMMARY'

field. Mutual Coulomb interaction and Coulombic im-

purity scattering have been considered at low tempera-
tures. A drifted-temperature model has been adopted to
decouple the momentum balance equations for different
wires. Screening of the electron-impurity interaction has
been taken into account self-consistently (without ver-
tex corrections) . Both the magnetoconductivity 0
and the conductivity ratio oP /o~~ exhibit Shubnikov-
de Haas oscillations. The current ratio I;/I, and the
relaxation frequency decrease slightly with wire separa-
tion d & 100 A. For larger d they decrease almost lin-
early and for d much larger than the width they decrease
as d; this latter dependence refiects the corresponding
d dependence of the screened interaction which in two
and three dimensions becomes d and d leading to
Q~p d and O~p d, respectively, as has been
reported independently in Refs. 13 and 3.

In this paper we have derived coupled momentum-
balance equations for electrons in coupled quasi-1D wires,
in terms of the nonequilibrium number polarizability
of electrons, in the presence of an external magnetic
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