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We present a comparison between the local-spin-density approximation and the generalized gra-
dient approximation for the calculation of cohesive and electronic properties of transition metals.
Atomic s-d promotion energies, equilibrium lattice constants, bulk moduli, magnetic moments, and
cohesive energies have been determined for 3d, 4d, and 5d transition metals. Gradient corrections
to the density functional seem to have very small effects on calculated atomic s-d promotion ener-
gies. In agreement with previous results, we And that the generalized gradient approximation yields
equilibrium lattice parameters and bulk moduli that are very close to experimental values for the
3d transition metals, while the results in the 4d and 5d series are less accurate. Cohesive energies
calculated with the local-spin-density approximation are found to be too high for all transition met-
als. The generalized gradient approximation lowers these values, which, however, leads to cohesive
energies that are too low in many cases. We argue that a major part of the remaining discrepancy
may be due to the mu%n-tin-potential approximation.

I. INTRODUCTION

Much of the success of ab initio electron-structure
calculations relies on the "density-functional theory" of
Hohenberg, Kohn, and Sham. 1 This theory states that
the general many-body problem for electrons in atoms,
molecules, or solids can be formulated in terms of a
single-particle equation. The difficulty lies in finding a
single-electron potential V(r) from the total electronic
charge density p(r). The approximation that has be-
come most popular is the local-spin-density approxima-
tion (LSDA), ~ s in which the potential at r = ro is a
function only of the total electronic charge density at ro.

The LSDA may seem crude for systems with large
variations in the electronic charge density as, e.g. , in
transition-metal (TM) compounds. Failures of the LSDA
also occur for these systems. For example, the LSDA
underestimates the atomic volumes of most transition
metals in the 3d series, it predicts the wrong ground-
state lattice configuration for certain solids [e.g. , Fe
(Ref. 5)], and it overestimates the bonding strength
(cohesive energy) of most transition metals and their
compounds. 6 However, it has proven very difficult to
find an alternative density functional that works better
than the LSDA throughout the entire TM series.

The purpose of this work is to investigate the prop-
erties of the generalized gradient approximation (GGA)
which may currently be the best candidate for replacing
the LSDA. We have used a version of the GGA (Refs. 9
and 10) that treats both exchange and correlation effects
without empirically adjusted parameters. The properties
of earlier versions of the GGA (Refs. 11—13) have been
studied previously, both in the atomic and bulk
cases. However, it is not clear whether the GGA gives
an overall improvement of calculated cohesive energies.

This aspect is crucial when discussing the possible role
of ab initio results in predictions of phase diagrams of
solids. Absolute cohesive-energy values yielded in LSDA
calculations are often too far from experimental data to
be useful in phase-diagram modeling. Although it is
possible to correct for known deficiencies in the theoret-
ical approach, and thus to reduce the magnitude of the
discrepancy between theory and experiment, the calcula-
tion of accurate cohesive energies remains an important
challenge to solid-state theory.

The paper is organized as follows. In Sec. II we present
results from atomic calculations using both the LSDA
and the GGA. We focus there on those atomic prop-
erties which are relevant in cohesive-energy determina-
tions. We proceed with results from spin-polarized linear-
muffin-tin-orbital (LMTO) band-structure calculations
in Sec. III and we use atomic and bulk total energies in
Sec. IV to calculate the cohesive energies of Sd, 4d, and
Gd transition metals. The paper ends with conclusions in
Sec. V.

II. ATOMIC CALCULATIONS

There are several reasons why it is difficult to find a
density functional for calculating the electronic structure
of atoms. One problem is to describe correctly the region
far from the nucleus where the electronic potential is al-
most of Coulomb type. Another difficulty arises from the
angular variations of exact atomic orbitals. The use of
the LSDA and a spherically averaged potential accounts
for neither of these effects, and it has been demonstrated4
that such calculations yield the wrong ground-state elec-
tronic configuration for many atoms. For atoms in the
transition-metal series, this failure is due to an overes-
timation of the bonding energy of d states compared to
that of s states, an effect which is seen as a difference
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between experimental and theoretical s-d promotion en-
ergies. This quantity is defined through

b.E = E[3d" '4s'] —E[3d" '4s']

for the 3d TM series and accordingly for the 4d and 5d se-
ries. Several attempts to reduce the discrepancy between
theoretical and experimental AE have been made. Gun-
narsson and 3ones stated that the addition of nonlocal
terms to the density functional reduces the error, and
a similar trend was observed by Boschan and Gollish
and Kutzler and Painter using an earlier version of the
GGA ~~, »

In this work, we report on spin-polarized atomic calcu-
lations performed using the LSDA (Ref. 3) and the GGA
(Refs. 9 and 10) on a spherically averaged charge den-

sity and with electronic configurations of maximum spin
multiplicity. Our computer program has been described
previously. It was designed to resemble our code for
band-structure calculations as closely as possible, which
is the reason why it treats core electrons fully relativis-
tically and valence electrons semirelativistically, i.e. , ne-

glecting the spin-orbit coupling.
Figure 1 shows our calculated AF values for the 3d, 4d,

and 5d transition-metal atoms. The experimental curve
was obtained by averaging ~ over multiplet energies
from spectroscopic measurements in order to simulate
the energy of a spherical charge density. The spectro-
scopic information on Pd and Pt is incomplete, which
explains the different behavior in experimental AF for
these atoms. It is seen that the GGA does not signifi-
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FIG. 1. s-d promotion energies (AE) for all 3d, 4d, and
5d transition-metal atoms. DE from LSDA calculations are
marked with crosses, GGA results with empty squares, and
experimental data with circles.

cantly reduce the discrepancy between theoretical and ex-
perimental AE. The error reduction reported in Refs. 15
and 16 is probably explained by the fact that these au-
thors worked with an earlier version of the GGA. We
conclude that the error in calculated s-d promotion en-
ergies is inherent in both the LSDA and the GGA. This
view is supported by results from recent atomic calcula-
tions by Perdew et al.

III. BULK CALCULATIONS

The effects of gradient corrections to the density func-
tional in band-structure calculations have been investi-
gated by several authors. In particular, earlier versions
of the GGA were found to give better agreement
with experiment for the ground-state properties of cer-
tain materials (e.g. , 3d transition metals) while a ten-
dency for overcompensation of errors was found in other
systems (e.g. , 4d transition metals).

We have determined the total electronic energies for 3d,
4d and 5d transition metals using the LMTO method.
Spin-polarized calculations were performed using both
the LSDA in the parametrization of Gunnarsson and
Lundqvists and the recent GGA or Perdew. ' The
semirelativistic approximation was adopted and the lat-
tice configuration was set to either fcc or bcc. The k
mesh in the irreducible wedge of the Brillouin zone con-
tained 505 points in the fcc case and 506 points in the
bcc case. The basis set included s, p, d, and f functions
for all systems. Equilibrium lattice constants (ao) and
bulk moduli (B) were obtained by fitting a Murnaghan
equation of state to total energies calculated for 10—15
different lattice parameters for each element.

Our LSDA and GGA results for ao and B are sum-
marized in Table I. Experimental lattice parameters are
from Ref. 28. Measured bulk moduli are from Ref. 29.
We see that the GGA gives a systematic increase in the
lattice parameter while it yields lower bulk moduli than
the LSDA. Whereas the GGA reduces the discrepancy
between theoretical and experimental results in the 3d
series, it gives lattice parameters that are too high and
bulk moduli that are too low in the 4d and 5d series.
Our results are in fairly close agreement with those of
Ref. 19. This indicates that the modification of the cor-
relation part in the density functional of the recent GGA
(Refs. 9 and 10) leads to small changes in calculated ao
and B. We have also verified that changes in band ener-
gies are negligible.

It is interesting to know whether the errors in ao
and B calculated with the GGA are due to incom-
pletenesses in the density-functional parametrization, or
if they are mainly caused by other approximations in
our calculations, e.g. , the muffin-tin-potential approx-
imation. Recent full-potential calculations on Fe(bcc)
(Ref. 21) yielded a negligible difference in ao and a small
increase in 8 compared with LMTO results. However,
studies of the cohesive energy have indicated that the
effect of the muffin-tin-potential approximation is signifi-
cant in the 4d and 5d transition-metal series (cf. Sec. IV).
It is therefore possible that a full-potential treatment
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TABLE I. Calculated and experimental equilibrium lattice constants and bulk moduli for 3d, 4d, and 5d transition metals.
Experimental lattice constants are from Ref. 28. Blank spaces are left for those elements that are not stable in the bcc or fcc
structures. Experimental bulk moduli are from Ref. 29.

LSD A
( )

az" a.u.
BLSDA (Qpa)
BGGA (Qpa)
B'"P' (GPa)

Tl
fcc

7.68
7.98

120
108
105

V
bcc

5.63
5.71
5.74
199
184
157

Cr
bcc

5.37
5.45
5.45
287
220
160

Mn
fcc

6.59
6.83

314
281
131

Fe
bcc

5.27
5.46
5.42
266
215
167

Co
fcc

6.54
6.70
6.70
255
244
187

Ni
fcc

6.53
6.70
6.66
268
253
184

LSDA
( )

GGA

a',"~' a.u.
BLSDA (Qpa)
BGGA (Gpa)
B'"P' (GPa)

Zr
fcc

8.52
8.60

98
94
95

Nb
bcc

6.28
6.39
6.24
176
166
170

Mo
bcc

6.02
6.11
5.95
263
242
264

Tc
fcc

7.37
7.47

312
280
281

Ru
fcc

7.24
7.36

335
270
311

Rh
fcc

7.24
7.36
7.19
297
241
267

Pd
fcc

7.37
7.53
7.35
218
209
188

LSDA
( )

GGA

BLsDA (Qpa)
BGGA (Gpa)
BexP4 (QP )

Hf
fcc

8.27
8.31

118
68
109

Ta
bcc

6.28
6.38
6.25
205
183
193

W
bcc

6.07
6.15
5.98
303
272
310

Re
fcc

7.46
7.56

368
323
365

Os
fcc

7.36
7.47

400
344
410

Ir
fcc

7.37
7.50
7.26
373
322
355

Pt
fcc

7.51
7.65
7.41
291
232
283

may reduce the errors in ao and B calculated with the
GGA.

Magnetic moments (M) for Fe(bcc), Co(fcc), and
Ni(fcc) have been calculated at the experimental lattice
parameters and are shown in Table II. We get larger
magnetic moments with the GGA than with the LSDA
and thus values which are further from experimental data
for Fe and Ni, but in better agreement with experiment

TABLE ll. Magnetic moments for Fe(bcc), Co(fcc), and
Ni(fcc). Calculated values were determined at experimental
lattice spacings. Experimental data are from Ref. 34.

Magnetic
moment

for Co. The difference between LSDA and GGA results
is even greater than that reported in Ref. 19, which in-
dicates that the modified correlation part of the recent
GGA (Refs. 9 and 10) is important for magnetic proper-
ties. However, full-potential calculations have shown
that the GGA is sensitive to the muffin-tin-potential ap-
proximation in spin-polarized calculations, and a major
part of the discrepancy between theoretical and experi-
mental M values is probably due to this approximation
in our calculations.

IV. COHESIVE ENERGIES

Cohesive energies can be obtained from ab initio total-
energy calculations as the diH'erence between bulk and
atomic total energies through

Co

Ni

LSDA
GGA
Expt.

LSDA
GGA
Expt.

LSDA
GGA
Expt.

2.28
2.44
2.22

1.62
1.68
1.75

0.62
0.67
0.62

E«h ——E(atom) —E(solid).

However, using spectroscopic data, it is easy to correct
the atomic energies for the fact that we use a spher-
ical charge distribution. Similarly, atomic ground-state
energies can be estimated from calculated total energies
corresponding to diA'erent electronic configurations (e.g. ,
4s3d" or 4s23d" ). Following Ref. 30, we write

E h = [E(atom) —b] —E(solid),

where L contains the experimental correction.
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FIG. 2. Cohesive energies of 3d transition metals. Data
points marked with diagonal crosses refer to E, q values de-
termined with the LSDA and based on the atomic electronic
configuration d" 8 . Vertical crosses show LSDA, d" s
values, while triangles and squares represent GGA results for
d" a and d" s atomic electronic configurations, respec-
tively. Circles connected with a solid line show experimental
Eco}, from B.ef. 31.

Figures 2, 3, and 4 show cohesive energies for 3d, 4d,
and 5d transition metals, respectively. Our LSDA and
GGA E, ~ values are compared with experimental data
from Ref. 31. The fact that we have restricted ourselves
to the bcc and fcc structures is expected to give very
small changes in E«~ for elements with different ground-
state lattice configurations (e.g. , hcp). This view is sup-

LSDA d s n-1 1

+ i

~0
~0

FIG. 4. Cohesive energies of 5d transition metals. For
explanations, see Fig. 2 ~

ported by recent calculations on the transition metals in
the 3d series. 3~

lt is seen that the GGA yields lower E„h values than
the LSDA for all elements studied in this work. This is
a clear improvement for the 3d elements' for which our
GGA curves lie very close to the experimental one. In the
4d and 5d series, the GGA produces cohesive energies be-
low the experimental curve, and the correspondence with
experiment is not significantly better than what is ob-
tained with the LSDA. However, it has been shownso ss

that a full-potential treatment of the electronic structure
of transition metals increases calculated cohesive ener-
gies, especially in the middle of the TM series. The cor-
rection is larger in the jd seriesss than in the 4d series. so

It is therefore possible that errors due to the muffin-tin-
potential approximation can account for a large part of
the remaining discrepancy between theoretical and ex-
perimental E, h values. The close agreement between
experimental cohesive energies and our E, h values cal-
culated with the LSDA in the 5d series is thus explained
by a cancellation between errors due to the muffin-tin-
potential approximation and those due to the omission
of gradient corrections.

V. CONCLUSIONS
GGA d

expt.

0-
Y

I I I I I I I

Zr Nb Mo Tc Ru Rh Pd

FIG. 3. Cohesive energies of 4d transition metals. For
explanations, see Fig. 2.

We have investigated in this paper the properties of
the generalized gradient approximation (GGA) in cal-
culations of the electronic structure of transition-metal
atoms and solids. In atomic calculations, it is a well-
known problem that the local-spin-density approxima-
tion (LSDA) overestimates the bonding energy of d states
compared with that of s states. The GGA gives no no-
ticeable change in calculated atomic s-d promotion en-
ergies, and we conclude that gradient corrections of this
type have a negligible inOuence on relative 8 and d stabil-
ities. The GGA yields equilibrium lattice parameters and
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bulk moduli that are close to experimental data for the
3d transition metals. However, in the 4d and 5d series,
the LSDA still produces theoretical lattice parameters
and bulk moduli that are in better agreement with ex-
periment. Magnetic moments for ferromagnetic Fe(bcc),
Co(fcc), and Ni(fcc) are clearly increased by the GGA,
but this can largely be attributed to the omission of non-
spherical terms in our calculations.

An important result in this work concerns the effect
of gradient corrections on calculated cohesive energies
(E,oh). The GGA yields lower E h values than the
LSDA for all transition metals which is an improvement

in the 3d series. The cohesive energies in the 4d and
5d series from GGA calculations are smaller than the
experimental values, but in light of recent full-potential
calculations, sa ss we suggest that a large part of the re-
maining discrepancy between theoretical and experimen-
tal E, h may be due to the muf5n-tin-potential approxi-
mation.
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