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For narrow electronic bands in metals, we seek improvement over the local-density approxima-
tion (LDA) by including the on-site Coulomb interaction between localized electrons. For the 3d
ferromagnetic series of Fe, Co, and Ni, by treating Buctuations to second order in the on-site in-
teraction around the LDA solution, in comparison with experiment a distinct improvement over
the conventional LDA is obtained for a number of properties: effective masses, x-ray photoemission
spectra, and results derived from angle-resolved photoemission spectra, such as exchange splittings
and quasiparticle bands. In addition, the predicted quasiparticle broadenings and satellite features,
which are not present in standard LDA calculations, are in reasonable agreement with observation.

I. INTRODUCTION

In this paper we extend our study of strongly corre-
lated systems, where both on-site electron-electron in-
teractions and hybridization are important, from model
calculations~ to real systems. As we shall see below, in
this respect, there are many theoretical and experimen-
tal indications which suggest that the 3d transition-metal
ferromagnets (Fe, Co, and Ni) are a particularly good
choice to explore, since they are relatively simple systems
where the interplay of these effects is important. A par-
tially successful electronic-structure theory for these sys-
tems is that based on the local spin-density approxima-
tion to density-functional theory (LSDA-DFT), ~ which

is in generally fairly good agreement with experiment for
the ground-state properties of the 3d ferromagnets.
Unfortunately, however, within this theoretical frame-

work there are some notable discrepancies for the excited-
state properties, which tend to become more pronounced
on going from Fe to Ni. Since the local-density approxi-
mation (LDA) gives a good exchange-correlation poten-
tial for the tetrahedral semiconductors, we would ex-

pect at least part of these discrepancies to arise from
causes other than the LDA's insufhcient treatment of
charge densities with strong spatial variations. The most
likely failure in this case is the association of the eigen-
values of the Kohn-Sham equations with the quasiparti-
cle energies, which is not only a poorer approximation
than the one-electron Green's-function prediction for the
quasiparticles, but also has no theoretical underpinning.
Furthermore, experiments show features such as satel-
lite structure which cannot be explained within a one-
electron picture. In this paper we will correct for these

defects in the theory by treating the on-site Coulomb in-

teraction of the 3d electrons in an approximation that
goes beyond LDA and then evaluating the resulting one-
electron Green's function.

The basic features of the electronic structure of Fe, Co,
and Ni can be understood on the basis of their two types
of valence-electron orbitals. On the one hand, extended
4s and 4p orbitals overlap to form broad free-electron-like
bands. These orbitals should be well described by stan-
dard electronic-structure LDA techniques. On the other
hand, the 3d orbitals are fairly well localized (about 90'%%uo

of the atomic orbital lies within the Wigner-Seitz sphere),
and in a solid form relatively narrow bands (of total width
of about 5 eV), which are pinned to the Fermi energy and
hybridize only weakly with the 4s and 4p bands. Because
of the localized nature of these 3d states, the interaction
between electrons in such orbitals gives rise to impor-
tant dynamic 3d-3d correlation effects, which are not ad-

equately dealt with in a one-electron picture. It is these
narrow 3d bands that drive the magnetism in these sys-
tems. Within a Stoner model7 for itinerant magnetism,
which works well for the 3d ferromagnets, a spin moment
develops if the gain in exchange energy is larger than
the loss in kinetic energy. This magnetization leads to a
nearly filled set of majority 3d bands, while the minor-

ity 3d-band filling increases from about two electrons in

Fe to about four in Ni, and the spin moment decreases
accordingly from 2.1 to 0.6.

As mentioned above, theory and experiment agree rea-

sonably well for the ground-state properties of the 3d fer-

romagnets; i.e. , lattice structure, lattice constants, and

bulk moduli are within the expected errors for elemen-

tal solids. Even the most serious discrepancy, the incor-
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rect LSDA prediction for a fcc instead of the experimental
bcc ground-state in Fe, is due to a tiny energy difference
between the two structures. As better spin exchange-
correlation potentials are used, they tend to push the
results towards the correct ground state (see Ref. 9), al-
though the most accurate full-potential calculations still
fail to give the correct ground state (see Ref. 10). Also,
both the spin moments pspIn and the Fermi surface
agree well with experimental results. However, the asso-
ciated quasiparticle properties, exchange splittings bE,„,
and the density of quasiparticle states at the Fermi level,
which is a measure of the linear coefBcient of the low-
temperature specific heat y, are found to be 10% to 50%
off (see Table I). Related to this is the finding that the
occupied 3d bandwidth Wd „is predicted to be 30% too
broad in Ni. On top of this, various angle-resolved photo-
emission spectroscopiesi2 s (ARPES's) show that there
is considerable lifetime broadening of the quasiparticles,
and valence-band x-ray photoemission spectroscopy
(XPS) shows that a satellite appears at about 6 eV below
the Fermi energy in Ni, neither of which can be explained
within a one-electron picture. The marked improvement
for Cu with respect to Ni in the agreement between the-
ory and experiment for the quasiparticle properties leads
to the generally accepted opinion that the discrepancies
in the Sd ferromagnets arise from correlation effects be-
tween the electrons in the partially filled 3d band, since
Cu has an additional valence electron that essentially fills

up the 3d band. A quantitative comparison of LSDA pre-

dictions and experiment is given in Table I.
In Ref. 1 we used a perturbative approach to treat the

electron correlations in the one-dimensional periodic An-
derson model, and obtained, for a wide range of electron
properties, a better description of narrow-band systems
than the one given by the mean-field approximation. The
approach consisted of two steps. First, we solved the
model within the mean-field approximation, which ac-
counted for the average electron-electron repulsion in the
localized orbital. Then we included fluctuations around
this solution up to second order in U, which parametrized
the direct on-site electron-electron interaction. For the
3d ferromagnets we use basically the same method, but,
since we are dealing with real systems, we no longer use
a simple nearest-neighbor tight-binding Anderson-lat tice
model, but instead obtain our mean-field "LDA" solu-
tion directly from an ab initio electronic band-structure
calculation. This approach, besides being more realis-
tic, also gives us a well-defined, orthogonal basis set to
work with. In the next section we discuss our approach
in more detail, in Sec. III we present our results, and we

conclude in Sec. IV. In the rest of the present section
we justify our use of perturbation theory, and summarize
previously published work that used a similar approach.

Since U is not necessarily small, it is not obvious that a
theory involving a low-order perturbation expansion in U
is sufBcient. However, because we expand in the fluctua-
tions around the mean-field solution instead of directly in

U, we ensure that the applicable range of our approach

TABLE I. A comparison of the theoretical and experimental quasiparticle properties of the 3d
ferromagnets and Cu.

Pspin

Fe
Co
Ni

LSDA

2.20
1.56
0.60

Experiment

2.13
1.52
0.57

Our results

2.13
1.52
0.57

6E,„(eV)
Fe
Co
Ni

2.0, 1.4, 2.3
1.6

0.6, 0.6

2.1, 1.4, 1.8
0.9

0.3, 0.2

1.9, 1.6, 1.8
1.0

0.40, 0.39

y (mJ mol K )'
Fe
Co
Ni
CQ

2.53
2.09
4.71
0.72

3.11,3.69
322 3.71
5.92, 6.38
0.70, 0.70

3.48
3.74
6.10

Wg „( V)
Fe
Co
Ni

Cu

3.6
4.3
4.2
3.3

3.3
3.9
3.2
3.0'

3.7
4.3
3.1

See Ref. 11.
The exchange splitting is energy and k dependent. We give results for I'2z, P4, and II25 in Fe;

I'q2 in Co; and near 13 and X2 in Ni. See Ref. 12.' The experimental values have been corrected for the electron-phonon enhancement. The first
value is with the calculated correction, and the second is with the suggested correction. See Ref.
13.

See Ref. 14.' See Ref. 15.
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will extend beyond the small-U regime. Horvatic and
Zlatic have shown that results of this type of approach
compare well with Bethe ansatz results for the symmetric
Anderson model in the weak- and intermediate-coupling
regimes, and are still reasonably accurate even in the
strong-coupling regime. More recent quantum Monte
Carlo calculations of the dynamic properties also indicate
that this is the case. For the periodic Anderson model,
Ref. 1 found good agreement between quantum Monte
Carlo and perturbative results for properties related to
the total energy. Because the coupling strength for the
3d ferromagnets is in the weak to intermediate regime,
one might therefore hope that the chances of success for a
perturbative-fluctuation approach would be particularly
good for these systems.

For real systems there have been only a number of
related calculations, most of which have been for Ni,
where the discrepancies are most prominent. Davis and
Feldkampfis used the self-energy of a stationary, corelike
hole to calculate the quasiparticle spectrum of holes in

Ni. They found a narrowing of the 31 bands, but also a
satellite feature that was too pronounced. Liebschzo ap-
plied a T-matrix series in U to determine the one-particle
spectral density of states in Ni, and found that he could
not simultaneously find quantitative agreement at low

and high energies. Treglia, Ducastelle, and Spanjaardzi
used a degenerate Hubbard model and used second-order
perturbation theory to study the 31 ferromagnets. Using
a number of approximations, they found a narrowing of
the band, but, again, overemphasized the satellite in Ni.
One of the approximations was to take a momentum- and
orbital-independent self-energy determined from a rect-
angular bare density of states. Comparison at certain
k points with the results of Kleinman and Mednick, zz

who do not use the above approximations in calculat-
ing the self-energy, show that these approximations are
reasonable for Ni. Jordan and Hoylandzs have used the
same form for the self-energy as Treglia, Ducastelle, and
Spanjaard to calculate spin-resolved ARPES energy dis-

persion curves along the KX direction. By adjusting
the Fermi energy they find good agreement with experi-
ment for the low-energy quasiparticle near the X point.
Kulikov et al.zs have calculated the optical conductivity
for chromium, in a scheme where the matrix elements ap-
pearing in the self-energy are approximated by the dipole
matrix elements, and for the interaction strength they
have used an effective Stoner parameter. In none of the
above calculations are the 3d filling and the chemical po-
tential determined self-consistently. Taranko, Taranko,
and Malek24 have tested the effects of self-consistency for
paramagnetic Ni, and found that the satellite disappears.
However, they used dressed propagators, whereas for con-
sistency one should use simultaneously both the dressed
propagators and dressed vertices, which yields qualita-
tively different results. Nolting et al. used a general-
ized Hubbard model, where exchange has also been in-
cluded, to study the ferromagnetism of Ni. By neglect-
ing all spin-independent terms and making an atomiclike
two-pole ansatz for the Green's function they obtained
very impressive agreement for the temperature depen-
dence of the magnetic moment and static susceptibility.

II. METHOD OF CALCULATION

We use the self-consistent LDA solution of a linearized-
muffin-tin-orbital (LMTO) band-structure calculation as
our starting point; details are given in Appendix A. This
gives us an explicit orthonormal basis to work in, which
is needed in our approach. In the LMTO method only
a small basis set on each atom is usually needed to de-
scribe the valence electrons. Thus, the 31 ferromagnets
are well described by an s-p-1 basis, and, for convenience
(see below), we use a cubic harmonic description of the
angular part. The eigenvalues equi, ~ and the orthogonal
eigenvectors %~i, of the self-consistent LMTO calcula-pke
tion fully characterize the mean-field Hamiltonian, where

j is a band index, k is a crystal momentum vector, ir is
a spin index, and L = (E, mj, with E an angular quan-
tum number and m a cubic harmonic index. With this
notation the mean-field Hamiltonian is

Because a mean-field treatment of the electron-electron
interaction between two 31 electrons is not considered
sufficient, we have separated out this term from the gen-
eral electron-electron interactions and have treated it to
higher order. It has the form

a+ a+~mq, mq, mq, ms i m~ ~ i m~ &1 i,mq, cr' i,mq, n

where 1+ creates a 31electron on site i in the {m,a)
1 orbital. Of all the possible 31-31 interactions we only
keep two sets [see Fig. 1(a)j: (a) the m = rni ——m4 and
rn —mz —ms terms, whose coefficient we call U, see
the Appendix in Ref. 22, and (b) the m = mi ——ms and
rn' = mz ——rn4 terms, for m g m', whose coefficient we
denote by J. This reduces the more complete term given
above (and after dropping the site index) to

EFyd' rrrlrfrzI I
nz ya rn~

where the prime in P indicates the restriction (m, o) g
(m', u'}. The J term generalizes our previous worki to
include exchange terms, which are essential to treat for
magnetic systems.

The mean-field solution is most conveniently found in
the basis that diagonalizes the local-density matrix,
which is the cubic harmonics in our case. Since we have
chosen to start from a paramagnetic LMTO-ASA calcu-
lation, our mean-field occupations per site (n )MF are
spin and orbital independent. Because the mean-field
contribution of the 3d-3d interaction has already been
included in the LMTO calculation, we are left with a
term representing the fluctuations in the 3d occupation
numbers around their mean-field values. It is these fluc-
tuations that are large enough to require more than just
a mean-field treatment of the 3d-3d interactions, and are
dealt with in the second step.

We go beyond mean field by treating these fluctuations
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perturbatively, calculating the self-energy Z&" up to sec-
ond order in U and J, and then including the resulting
dynamical 3d-3d correlations by solving the Dyson equa-
tion for the full Green's function Gi, , see Fig. 1(b):

Zdd ( ) Z(1) dd + Z(2) "~( ) Zdd (3)

The first-order contribution Z is energy mdepen-(i) da .

dent, real, and (by the choice of basis) diagonal; it can be

ma ma ma ma

U m'a' m'a' ma'

(c) jz I= lz I+1Kir &r 'ir

(e)

FIG. l. (a) The two types of 3d-3d interactions that we
keep, where for the J diagram we have the restriction m g m'

(rn, m' are cubic harmonic indices and o, n' spin indices). (b)
The diagrammatic form of the Dyson equation, Fq. (Q). The
single line represents the paramagnetic LMTO-ASA propa-
gator, while the double line is the "full" Green's function.
(c) The two nonvanishing terms of Eq. (3). (d) The first or-
der in U and J term, see text below Eq. (3). Note that the
mean-field result has to be subtracted in first order. (e) The
broken single line represents a ferromagnetic propagator that
has been corrected from the LDA values for the correlated
system's fillings. (f) The second-order self-energy, where any
of the vertical dotted lines can be either U or J.

[~ —H„—Zi, (ci)] Ci, (i)) = 1,
where ~ = ~ —p + ib, ~ denotes the energy dependence
(h = 1), p is the chemical potential, and b is a positive
infinitesimal to give the proper boundary conditions for
a retarded Green's function. The mean-field Hamilto-
nian HM& is obtained from a paramagnetic LMTO-ASA
calculation. The basis set for Gg is 3d, 4s, and 4p, as
described in Appendix A. The form of Zi, (~), which is
similar to that used in Ref. 1, see Fig. 1(c), is

written as K = P, , (U+ Jb )bn i, where

bn = ((n ) —(n )MF) and (n ) is the num-
ber of (m, o) electrons in the fluctuating state [see Fig.
1(d)]. This linear term in U and J allows for both spin
and orbital polarization (i.e. , the 3d occupation numbers
can depend on both spin and the m orbital) and can be
considered a correction to the paramagnetic spherically
averaged LMTO-ASA one-electron (m, o') energy, since
the average number of (m, o) electrons in the fluctuat-
ing state is not necessarily equal to those in the LMTO-
ASA calculations. The dynamic correlations are dealt
with in the second-order term Z& (u), see Figs. 1(e)(2) aa

and 1(f). Details of its form and how we calculate it
are presented in Appendix B. The Huctuating spin- and
orbital-polarized value of (n ) is also used in the propa-
gators for the second-order self-energy. The third term in
Eq. (3), which is U and J independent, was not present
in Ref. 1. It is necessary to prevent double counting
of the 3d-3d correlations, since they are already par-
tially included in the LDA solution through the exchange-
correlation potential.

A fully ab initio calculation ~ould not only involve cal-
culating H~, but also Z",", U, and J as well. We have
tried a number of schemes to calculate E",". For exam-
ple, one might naively try Z," = J y (r)v, [nd(r)]r dr,
where y(r) is the E = 2 LMTO radial wave function,
nd(r) the total 3d charge density, and v, [n(r)] the cor-
relation part of the exchange-correlation potential. For
this purpose the von Barth —Hedin approximation to the
exchange-correlation potential is particularly suitable,
since the exchange and correlation terms can be read-
ily separated. This gives about -2 eV for E",", which is
larger than expected due to the nonlinear density depen-
dence of v, [n(r)]; this must be treated correctly, since
the 3d charge density strongly overlaps with the 3p and
3s core orbitals in the core region and with the 48 and
4p charge density near the muffin-tin radius. To possi-
bly better handle this nonlinearity, another estimate is
given by Z," = f p (r)(v, [n(r)] —v, [n(r) —nd(r)])r dr,
where n(r) is the total charge density. This gives values
of the order -0.1 eV, in agreement with a third possibil-
ity Z,"" = J y (r)v, [nd(r)]rzdr, where v, )(n) is the
free-electron limit of E( )(p,), where the propagators are
now those of free electrons, and the electron-electron in-
teraction is U. Note that the last possibility, which re-
quires introducing an ultraviolet cutoff to prevent the re-
sult from diverging, exactly cancels E(~&(p) in the limit
of slow density variations. Since E(2) d"(p) is positive
while E"," is small but negative for the 3d ferromagnets,
we have chosen to set it equal to zero for simplicity.

The problem of calculating U, which is the screened
interaction between two mean-field 3d electrons, has re-
ceived much attention recently. Because there is no
satisfactory a priori derivation of the Hubbard model,
it is not completely clear how to calculate this quan-
tity and which of the many different methods is best or
most accurate. Difficulties arise from knowing how to
correctly define the localized orbital, take care of screen-
ing effects, and handle hybridization. In our case we
obviously want screening effects from all orbitals outside



13 276 M. M. STEINER, R. C. ALBERS, AND L. J. SHAM 45

TABLE II. U for the 3d ferromagnets, which are determined by various methods (see the text
for a full description). All values are given in eV.

Fe
Co
Ni

Uatomic

2.0
2.1

2.4

3.0
3.5
3.9

5.0
5.0
5.4

UexP

1.0
1.2
4.0

1.2
2.4
3.7

0.73
0.50
0.27

U+4 J

1.03 (0.96)
1.10 (1.01)
1.20 (1.03)

the minimal basis set (i.e. , from higher E and principal
quantum number values). We also want to account for
purely 4s and 4p screening, as well as 4s-3d and 4p-3d
screening. One could argue that U should also be further
renormalized by the 3d-3d screening not accounted for

by Z&, i.e. , higher-order RPA-like terms. One pro-
posed method is to downfold the system all the way onto
a single-orbital (3d) Hubbard model, and then, by tak-
ing the atomic limit, to equate U with d2E/dn~&, where
E is the total mean-field electronic energy of the sys-
tem. If this approach is applied to an isolated atom,
one obtains the values U" " for the 3d ferromagnets
that are given in the first column of Table II; they agree
well with other similar atomic calculations. 4 For local-
density-approximation calculations it can be shown that
U can be equivalently calculated from d(eg e, )/—dna,
where e~ and e, are the one-electron eigenvalues for the
3d and 4s orbitals, respectively. Performing the same
type of calculation in the solid is usually done by us-

ing a constrained form of DFT. In this approach a set
of Lagrange parameters is added to constrain different
types of occupation numbers, such as, for the 3d states
(however, the total number of electrons is still usually
constrained to maintain overall charge neutrality). The
total energy or various eigenvalues are monitored as a
function of these occupation numbers (in the otherwise
self-consistent calculations), from which in turn U is com-
puted. The second column of Table II gives results for U
calculated in the constrained solid by the same (atomic)
formula U( & = d(Eg —e )/dnd. However, since calcula-
tions for the U in solids have often used a different for-
mula such as ded/dnd or d(e~ —E~)/dna, where E~ is
the Fermi energy, we have additionally tabulated re-
sults using the first of these two formulas in column 3,
listed as U& &. This gives results larger than one would
expect for good metals, while the second of the formu-
las gives even larger values for U. To provide an idea of
what governs U, an oversimplified picture (i.e. , a Bd and
4s two-orbital atomic-limit Hubbard Hamiltonian for 3d
atoms) is that d(Eg —E )/dn~ gives U = Ugg —2U, g+ U»,
while dug/dna gives U = U~~ —U, g. In the constrained
solid-state calculations we have included many hybridiza-
tion effects in the total energy, and therefore in U, which
means that they are partially double counted, if they
also appear in the model Hamiltonian as one-electron
hopping terms. Hybertsen, Schliiter, and Christensen,
McMahan, Martin, and Satpathy, and Gunnarson et
at. have developed methods to prevent this. We have
performed calculations similar to these methods, and find
for the 3d ferromagnets at most a 0.7-eV difference from
the values from the more straightforward method tab-

ulated in column 3. In the fourth column in Table II
we quote experimental values U "&, which were obtained
from an analysis of Auger spectra.

If we substitute the above computed values of U in our
second-order fluctuation theory, we find that the values of
U are too large to give good agreement with experimen-
tal results. [In this context we mention, as pointed out
by Anisimov, Zaanen, and Andersen, 3 that the LDA+U
approach, which they successfully used for the Mott in-
sulators, breaks down for the Sd ferromagnets. (The
"LDA+U" approach is equivalent to just keeping the
first-order term for the self-energy in our approach. ) The
main reason for this breakdown is that the constraint
density-functional theory values of U and J for the 3d
ferromagnets are too large. As a result one finds large
changes in the charge density, quasiparticle dispersion,
and Fermi surface with respect to the standard LDA,
which are not reflected by experiments. Further, this
type of approach does not take into account the dynamic
correlations, which we find to be important. ] We have
therefore used empirical values for U and J, chosen to
give (a) the experimental magnetic moment, and (b) the
best agreement between the experimental XPS result and
the total density of states. These empirical values for U
and J are given in columns 5 and 6 of Table II, respec-
tively. Within a mean-field picture and after spherical av-
eraging, (U+ 4J)/5 is equivalent to the Stoner exchange
parameter I, which we have calculated using the method
proposed by Gunnarsson; these values are compared in
column 7 of Table II. Although the values for U from
constrained DFT are too large for the 3d ferromagnets
(for instance, a 5-eV value for U would produce a very
large orbital polarization in Fe, which is not observed), it
is interesting to note that both they and the Stoner pa-
rameter I are nearly the same for Fe, Co, and Ni. This
is what one would intuitively expect, since the shape of
the 3d orbital does not change very much between Fe,
Co, and Ni. On the other hand, both our phenomenolog-
ical values of U and J, and U "I', which are in relatively
good agreement, vary considerably. We are investigating
whether multiple intrasite scattering can account for this
variation from Fe to Ni.

III. RESULTS

In order to understand our results it is useful to first
discuss the changes that the individual terms of the self-
energy [see Eq. (3)] can produce with respect to the LDA
results. The main effect of the first term is to give rise to
magnetism by splitting the paramagnetic bands into ma-
jority and minority bands, as in a Stoner description of



QUASIPARTICLE PROPERTIES OF Fe, Co, AND Ni 13 277

TABLE III. The second-order fluctuation theory results
for the chemical potential p, , and the change bn " in the 3d
occupations relative to the band-structure results.

Fe
Co
Ni

p, (eV)'
—1.01 (—1.01)
—0.74 (—1.05)
—0.84 (—1.35)

3d

—0.013
—0.035
—0.050

The results in parentheses are from the paramagnetic
LMTO-ASA calculation.

magnetism. Orbital polarization is also allowed (i.e. , the
occupation numbers can depend on rn, the orbital quan-
tum number); however, for the 3d ferromagnets, which
have reasonably close-packed structures, we would ex-
pect this effect to be small, especially given the size of U
and J. Additionally, an overall shift of the 3d bands with
respect to the 4s and 4p bands is possible if the total 3d
occupation is different from its LDA value. In the sec-
ond term of Eq. (3) we go beyond a one-electron piet, ure.

The energy dependence of the real part of Z& (to) can(2) d8

change the 3d bandwidth, renormalize the band masses,
further shift the 3d bands with respect to the other bands,
and cause additional features (i.e. , satellites) to appear,

while the imaginary part of Z&() (to) gives the quasi-
particles a nonvanishing lifetime due to electron-electron
scattering. The average shift of the first-order term al-

ways opposes the average shift of the second-order term,
which leads to a stable self-consistent solution. This is a
result of determining p, and bn consistently with the
total number of electrons and (n ), which is necessary
(cf. the discussion in Ref. I). Details of this calculation
and the LMTO-ASA calculations are presented in Ap-
pendixes A and B. [Note that the third term in Eq. (3)
is a small double-counting correction that we have found
negligible. ]

Table III, where we list values for the chemical poten-
tial p and the change in 3d occupations relative to the
band-structure values bnss = P bn, gives some
indication of the relative changes caused by the fiuctua-
tion terms. Most of these results follow from the upwards
shift of the 3d bands, due to the positive spin, orbital,
and momentum average of the real part of the self-energy.
This causes p to also move upwards in order to preserve
the total electron count. As shown in Table III, this effect
becomes stronger as one passes from Fe to Ni. On the
other hand, the broad 4s and 4p bands do not shift, and
so there is a small transfer of electrons from the 3d states
to the 4s and 4p states. The smallness of bn " shows
that the fIuctuation theory does not change the occu-
pation numbers very much away from the LDA values;
this provides additional (a posteriori) justification for us-

ing the paramagnetic LMTO-ASA results as the starting
point for our calculations. Since the chemical potential
is shifted by approximately the same amount as the 3d
bands, the changes in the predominantly 3d parts of the
Fermi surface, with respect to the LDA Fermi surface, are
small. Because the 4s and 4p bands are relatively steep
near the chemical potential, changes in the corresponding

parts of the Fermi surface are also small.
Since LDA band-structure techniques usually give

good results for ground-state properties, such as partial
occupation numbers and the Fermi surface, it is satis-
fying that our improved treatment of correlation effects
does not produce large changes in these properties.

In making this comparison it is important to keep
in mind the possible sources of error. In the LMTO-
ASA calculations these include the neglect of spin-orbit
relativistic effects, the use of spherical averaging and
atomic-sphere overlap method instead of a full-potential
method, and the local-density approximation to density-
functional theory. These errors are carried over into our
results. Note also that our starting point is paramagnetic
rather than ferromagnetic.

Even though our method of empirically determining
U and J ensures that we obtain good agreement with
experimental and LSDA spin moments as well as be-
tween XPS data and the total occupied density of states
(DOS), it is instructive to compare our results with the
corresponding LSDA results. In Fig. 2 we show how U
and J are empirically determined for Fe by comparing
the XPS data of Kirby et al. (the bottom curve) with
the results for the total occupied DOS for various U and
J values, under the constraint that the calculated spin
moment agrees with experiment. We see that the quasi-
particle features become less pronounced with increasing
U, and above 1.6 eV a satellite appears, which becomes
more pronounced on further increasing U. Hochst, Gold-
mann, and Hufner 4 have reported a weak satellite; how-

ever, the more recent experiments by Kirby et al. have
not confirmed this. We have chosen U = 1.2 eV and J
= 0.73 eV, corresponding to Fig. 2(d), which gives rea-
sonably good agreement with the XPS data. In making
all of these comparisons note that we have folded in the
quoted instrumental resolution, which corresponds to a
full width at half maximum of 0.7 eV. Other sources of er-

Ff'

Ci

OL
—0 —-1 0

Vnergy (eVj
FIG. 2. A comparison of the XPS for Fe with the cal-

culated total occupied DOS for different values of U and J
(in eV): (a) experiment (Ref. 14); (b) U = 0.0, J = 1.03;
(c) U = 0.95, J = 0.80; (d) U = 1.22, J = 0.73; (e)
U = 1.91, J = 0.62. The energies have been shifted so
the Fermi energy is at zero energy. An instrumental reso-
lution corresponding to that of the experiments (full width at
half maximum = 0.7 eV) has been folded into the calculated
curves.



13 278 M. M. STEINER, R. C. ALBERS, AND L. J. SHAM 45

rors in making these comparisons between photoemission
data and the DOS arise from the neglect of the energy
and angular momentum dependence of matrix elements,
surface effects, and the energy dependence of lifetime
broadening.

The three curves from the top to the bottom of Figs.
3(a)—3(c) show, respectively, the ferromagnetic LMTO
occupied DOS, our results, and the experimental XPS
for Fe, Co, and Ni. Note that the appropriate experi-
mental broadening has been folded into the theoretical
results. In each of the three difFerent cases the LMTO
band calculations produce structure that is too promi-
nent relative to experiment. Finite quasiparticle lifetime
effects (discussed later in this section) broaden our fluc-
tuation theory results and bring them into better agree-
ment with the experimental results. In addition, we pick
up the satellite structure near -6 eV in Ni.

In Fig. 4 we show our results for the unbroadened spin-
resolved total DOS. As mentioned earlier, the majority
spin states (solid line) are almost completely occupied
for all three ferromagnets, while the minority spin states
(dotted line) are increasingly filled when going from Fe
to Ni. The characterization of the results depends both
on this filling and on the relative strength of U.

For Fe, which of the 3d ferromagnets has the smallest
value for U and the largest value for J, the dominant
quasiparticle shifts come from the spin-polarization term
of Z(i), which depends on the effective Stoner parameter
I = (U+ 4J)/5. Because U is small, orbital polariza-
tion is negligible, and further quasiparticle shifts due to

Z& (io) are correspondingly small. The main effect
k, u

of the second-order term is to broaden the quasiparticles
by including lifetime effects due to the 3d-3d electron-
electron interaction. Although these lifetime effects are
proportional to U~, the imaginary part of the self-energy
is also proportional to the number of possible particle-
hole excitations, which is large in Fe because of the only
partially occupied minority band. This compensates for
the relatively smaller U.

5
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FIG. g. The XPS for (a) Fe, (b) Co, and (c) Ni compared
to the total occupied DOS. The three curves from the top
to the bottom of each figure show, respectively, the ferromag-
netic LMTO occupied DOS, our results, and the experimental
XPS. In each case the quoted experimental broadening has

been folded into the theoretical results. The energies have

been shifted so the Fermi energy is at zero energy.

4
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FIG. 4. The unbroadened spin-resolved DOS for the 3d
ferromagnets (solid/dotted line = majority jminority states).
(The noise in the tails is due to the discretization of mo-
mentum space. ) The energies have been shifted so the Fermi
energy is at zero energy.

The U and J in Co are in between those of Fe and Ni,
as are most of the results such as the spin polarization
(which is mostly determined by 1). Because U is still
somewhat small, orbital polarization is also correspond-
ingly small. Lifetime effects are somewhat suppressed
relative to Fe, because the small increase in U is offset

by the decrease in the number of minority-state holes.
Note that the small shoulder in Co near -5.5 eV is not a
satellite, but arises from hybridization between the ma-

jority 4s and 3d bands.
For the larger-U (3.7-eV) case of Ni, in addition to

the spin-polarization term there is also a small orbital-
polarization contribution to E~ ~, as well as important
dynamic-correlation effects arising from Z~ ~. These ef-
fects include narrowing of the 3d bands, which LSDA
predicts to be too broad (cf., the Introduction and Table
I). Another way of expressing this is that U reduces the
effective hopping from its mean-field value, because elec-
tron hopping costs additional energy arising from changes
in the local 3d-occupation number. The resulting weak
correlations lead to a slightly correlated quasi-mean-field
state, which for larger U would become a Kondo-like lat-
tice state. Besides the narrowing, U also causes a broad
dispersionless satellite to appear at about -6 eV, which
reflects a d ~ ds local atomiclike excitation; on fur-

ther increasing U this would separate from the main 3d
band and become a narrow atomiclike state. Thus, in Ni,
both quasi-mean-field and pseudoatomic excitations are
present.

Besides comparing k-summed DOS with XPS, we can
also compare II:-resolved DOS with angle-resolved photo-
emission spectroscopy (ARPES) and the inverse process,
IARPES. Here, one must remember that the experimen-
tal analysis is often di%cult, requiring background sub-
tractions and deconvolutions of broad overlapping peaks;
also, spurious features can arise from surface states and
adsorbates. While the older ARPES data sets are more
complete than the newer spin-resolved ARPES data, they
have often been at variance with one another (see the
note added in proof in Ref. 22), which makes a compari-



QUASIPARTICLE PROPERTIES OF Fe, Co, AND Ni 13 279

son of our results with the older data difficult.
In Figs. 5(a) and 5(b) we show the k-resolved DOS

for the H point in Fe and the X point in Ni. Well-
defined peaks in the theoretical DOS correspond to pre-
dicted quasiparticles; the corresponding experimental
peaks (when available) are indicated by the thick verti-
cal lines on the abscissa. While the quasiparticles above
the Fermi energy at the H point compare well with
the recent IARPES results of Santoni and Himpsel, i2

those below do not agree well with the ARPES results
of Turner, Donoho, and Erskine. We believe that this
is most likely due to the use of free-electron bands in
the energy-momentum relationship for the outgoing elec-
trons in the experimental ARPES analysis. For example,
band-structure calculations~ give E(His) to be about 10
eV, while the free-electron band value used was about
14 eV; the later experiments of Santoni and Himpsel'2
found good agreement with the band-structure value. In
Fig. 5(b) the lower two thick lines near —3 eV represent
ARPES data of Eberhardt and Plummeri for Ni. An
odd and even analysis of the oK-normal ARPES made
it possible to distinguish between the Xi (the lower line)
and Xs (the upper line) symmetry. However, because the
experiment was not spin resolved, no separation into ma-
jority and minority components is possible. The states
do not seem to be good quasiparticles in our calculations,
since they are very broad smudges (much like the ARPES
data), and we have not attempted to resolve them into
quasiparticle peaks, even though it is possible for us to do
the same odd/even analysis. The upper two thick vertical
lines (near the Fermi energy) are the majority (lower line)
and minority (upper line) X2 quasiparticles found in the
spin-resolved ARPES of Raue and Hopster. i2 Although
LSDA electronic-structure methods consistently put the
minority X2 point slightly above the Fermi energy, de
Haas —van Alphen45 data agree with the spin-resolved

10

5

O
A

ARPES in placing it slightly below. In our calculations
the majority peak (solid line) just below the Fermi en-

ergy is a superposition of X2 and X5 states. We resolve
the minority component (dotted line) of these states: the
X2 minority quasiparticle is slightly below the Fermi en-
ergy (in agreement with the spin-resolved ARPES and
de Haas —van Alphen data), and the Xs minority quasi-
particle is slightly above. The majority-state peak that
is about 3 eV above the Fermi energy is an unrelated p
state. Note that the good agreement with experiment
for the minority Xq quasiparticle is a result of nof av-
eraging t2& and es occupation numbers. Because of the
diffuse nature and lack of spin resolution of the states
at lower energies, it is hard to know what to make of
the discrepancy between our calculation and the data.
The experimental analysis also used free-electron bands
in their analysis.

Our results for the exchange splittings bE,„are pre-
sented in Table I. When compared with the LSDA re-
sults, we generally find an improved agreement with ex-
periment, since Re E~ ~ is positive in the relevant en-

ergy range, but has a negative slope, i.e. , the shift up-
wards at lower energies (majority quasiparticles) is larger
than at higher energies (minority quasiparticles), and so
the difference between the two is reduced. It is inter-
esting to note that the first-order self-energy term alone,
i.e. , no correlations, produces a large splitting, which is
then corrected by the fluctuations; this is similar to the
way the Hartree-Fock approximation gives a larger ex-
change splitting than the one found by using the von
Barth —Hedin exchange-correlation potential. 4 5 This ef-
fect is also reflected in the larger value for (U + 4J)/5
relative to I, which includes correlation effects via the
exchange-correlation potential (see column 7 in Table II).

It is clear from Figs. 5(a) and 5(b) that the quasipar-
ticles with predominantly 3d character become increas-
ingly broad away from the Fermi energy, with surpris-
ingly large values of the full width at half maximum. In
actual fact, the maximal full width at half maximum in
Fe is nearly as broad as that for Ni, even though the value
of U in Fe is a third that of Ni. This is a consequence
of the many more possible scattering processes due to
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FIG. 5. The spin- and k-resolved DOS for (a) the H point
in Fe (with a 0.27-eV broadening) and (b) the X point in Ni.
Note that the majority X2 and X& peaks are so close that
they cannot be resolved. The solid/dotted lines distinguish
between majority/minority states for our results (unbroad-
ened). The thick vertical lines are the positions of the exper-
imental quasiparticles. The energies have been shifted so the
Fermi energy is at zero energy.

—10 —5 0
Energy (eV)

FIG. 6. The full width at half maximum of the quasiparti-
cle peaks in Fe [circles denote majority states, triangles denote
minority states, closed symbols denote our results, and open
symbols denote experiment (Ref. 12)]. The energies have been
shifted so that the Fermi energy is at zero energy.
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the creation of minority electron-hole pairs in Fe than in
Ni; Fe has a nearly half-filled minority 3d band, which is
nearly full in Ni. In Fig. 6 the energy dependence of the
full width at half maximum of the quasi-particle peaks
in Fe (sampled at about 20 k points in the irreducible
wedge) is compared with some experimental results. As
expected, our values lie below the experimental values,
since there are other nonelectronic sources of scattering,
such as impurities and phonons, which at the experimen-
tal temperature and photon energies also broaden the
initial and final states. Near the Fermi energy we have
the expected u2 behavior for the linewidth, which is sup-
pressed for the majority bands above the Fermi energy
because of the essentially filled majority 3d bands. A
certain amount of broadening is found in the 4s and 4p
bands due to 3d to 4s and/or 4p hybridization.

Although the concept of a quasiparticle is expected to
be valid near the Fermi energy, further away in energy the
quasiparticle peaks become less well defined and overlap
strongly. If the Im ZI, is small and the Re Z~ smooth,
then the roots of the Re[Det(G& )] coincide with the
peaks in the Im Gp ~. However, often neither is the
Im Z~ small nor is the Re Z~ smooth. All the same,
we have found it possible to extract a quasiparticle (or
renormalized) band structure for various high-symmetry
directions in Fe and Ni, see Figs. 7 and 8. This was done
by comparing various combinations of k-resolved partial
DOS with the roots of the Re[Det(G& )]. For Co, which
has two atoms per unit cell, the broadening is of the
order of the band separation over most of the relevant
energy range, which makes the resolution of these peaks
more difBcult. Also plotted are selected experimental re-
sults; the triangles are de Haas —van Alphen data, and
the circles the position of peaks in the ARPES energy
dispersion curves.

Along with the narrowing of the bands and the de-
crease in the exchange splitting comes an increase in
the guasiparticle DOS at the Fermi energy gq (E~),
which is related to the linear specific-heat coefIicient p
by y = (7r'/3)kBg~ (EF), where kg is Boltzmann's con-
stant. For the quasiparticle DOS one only needs to know

—10

FIG. 7, The quasiparticle band structure of Fe along
two symmetry directions (solid/dotted lines are the major-
ity/minority peaks). Also shown are some de Haas —van

Alphen (triangles) and selected ARPES results (circles). The
energies have been shifted so that the Fermi energy is at zero

energy.
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FIG. 8. The quasiparticle band structure of Ni along
two symmetry directions (solid/dotted lines are the major-
ity/minority peaks). Also shown are some de Haas —van

Alphen (triangles) and selected ARPES results (circles). The
energies have been shifted so that the Fermi energy is at zero
energy.

the positions of the quasiparticles, while for the normal
DOS one also needs to know the weight associated with
the peaks. Our results for y, which are presented in Ta-
ble I, are enhanced with respect to the LSDA values,
and are in reasonable agreement with experimental re-
sults, given the uncertainties involved in extracting the
purely electronic contribution to the total specific heat.

IV. SUMMARY

In this paper we have further developed a method
for improving LDA calculations of the electronic struc-
ture of narrow-band, strongly correlated systems. This
method assumes that while LDA techniques are ade-
quate for extended metalliclike states, there are impor-
tant short-range, on-site interactions which need a more
sophisticated treatment than is provided by a mean-field
approach. We also assumed that these short-range inter-
actions can be modeled by a Hubbard U (and, for mag-
netic systems, there is a similar on-site exchange term
parametrized by J). By calculating perturbatively the
self-energy up to second order in the fluctuations induced
by U and J around the mean-field LDA solutions, we in-
clude dynamic electron-electron correlation effects arising
from these short-range interactions, and thus go beyond
the mean-field approach.

While the LMTO-ASA method provides good ab initio
results for the underlying band structure, we have not
been able to obtain suitable first-principles results for the
Hubbard U, the remaining most important parameter.
We have tried several different methods to determine U,
but all of these produced rather large values for U, and
we therefore empirically determined this value (as well as

J) so as to optimize agreement with experimental results
for the magnetic moment and the XPS.

The results presented in this paper for the 3d
transition-metal ferromagnets show that our method
leads to significantly better quasiparticle properties, such
as efkctive masses, exchange splittings, and XPS spectra,
while leaving practically unchanged ground-state proper-
ties, such as partial occupation numbers and the Fermi
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surface. Because this new method involves the calcula-
tion of a self-energy, it also makes possible calculations
of properties such as quasiparticle lifetimes and satellite
structure that are beyond the scope of ordinary band
theory.

Vfe stress that it is not sufIicient to merely include the
second-order self-energy, since the chemical potential p
and bn must also be consistent with the total number
of electrons and with (n ). Although this substantially
increases the computational eA'ort, a direct result in Ni is
that, in contrast to earlier work, we simultaneously ob-
tain reasonable agreement at both low and high energies
(i.e. , the specific-heat enhancements and the satellite).
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APPENDIX A

The basis set used plays an important role in our
method. For any given k eigenvector in the mean-field
Hamiltonian it is essential to be able to project out the
d part of the wave function that is correlated through
the U and J first- and second-order self-energy contri-
butions. Moreover, the d-projected occupation numbers
(or fillings) directly control the first-order shifts in the
quasiparticle energy eigenvalues.

Our starting point is the linearized-muffin-tin-orbital
method in the atomic sphere approximation (LMTO-
ASA), including the combined-correction terms. 2s This
is a reasonable approximation for close-packed systems
such as the 3d ferromagnets. The 4s and 4p orbitals
are extended and smoothly varying, and should be well
treated by LSDA-DFT. The Kohn-Sham eigenvalues for
the broad 4s and 4p bands usually agree well with the
experimental quasiparticle energies. For example, the
theoretical effective mass of Cu, which has only a slight
d-hybridization contribution, agrees well with the purely
electronic contribution to the low-temperature specific
heat (see Table I), and the 4s and 4p bandwidths for the
3d ferromagnets agree within a few percent, which is well
within experimental and theoretical errors (see Santoni
and Himpseli~). In contrast with the 4s and 4p orbitals,
the 3d orbitals are well localized and can easily be asso-
ciated with a given site. These are the orbitals that are
expected to have strong electron-electron correlations.

The basis set that we have used in this paper is based
on the LMTO basis set, which therefore makes no con-
straints on the form of the one-electron hybridization
and hopping terms beyond those implicit in the LMTO

method itself. Thus, (i) we use the correct crystal and lat-
tice symmetries, and (ii) we use a 3d, 4s, and 4p basis set
on each atom rather then just a 3d basis, as is often done.
This is important, since the 4s and 4p to 3d hybridization
plays an important role in determining the eigenvectors
and consequently the 3d filling. There is also a segment
of the Fermi surface which has a predominantly 4s and 4p
character. We used the von Barth —Hedin approximation
for the local exchange-correlation potential. 2

We can be more explicit about the basis used in this pa-
per and its relationship to the conventional LMTO wave
functions, which are a linear combination of linear muffin-
tin orbitals for each k and j . A minor difFerence between
our case and the conventional LMTO is that we use a
cubic harmonic basis instead of a spherical harmonic ba-
sis and hence our LMTO's are linear combinations of the
more conventional ones. Because the LMTO's are not
orthogonal, the energy eigenvalue equation has the form
HI. r, l —EOI. 1,1 ——0, where Or, I, ~ is the overlap matrix.
One way to define a set of Wannier functions is to do a
symmetric transformation of the overlap matrix to reduce
this equation to the form H& „—Eb& „——0, where the
new basis p and v is an orthonormal basis that is a lin-
ear combination of the original LMTO's. This approach
would require a different set of orthonormal (Wannier)
functions for each k point.

For this reason we have chosen a slightly different ap-
proach. Our starting point is the LMTO solution for
the band wave function, Eq. (4.21a) in Andersen's paper
(Ref. 28). Instead of keeping the full wave function, how-

ever, we just keep the first term: 4&i, ——P& e& P„r,(r),
where cl" —Ql, 7rII, AJ", . This is a quite good approxi-
mation, with an error in most cases of only a few percent,
which we have checked by explicit calculation for the 3d
ferromagnets. It has the advantage that the basis-set
functions P„L, are energy- and k-independent functions,
and are therefore in keeping with the spirit of a Wannier
functionlike basis set.

The only additional numerical problem is to maintain
the orthonormality of the wave functions with respect to
the band index j ((4'&I, ~@~I~) = b~ ~I), which is only ap-
proximately retained [to order (E —E„)2/2, i.e. , a few
percent] when the second term in the equation for the
exact LMTO wave function is dropped. One can ensure
this orthonormality by transforming both the Hamilto-
nian and the overlap, so that the new overlap is the iden-
tity matrix. This transformation must be done in a sym-
metric fashion so as to preserve all the essential symme-
tries in the original crystal. Thus, in a multisite lattice
we must guarantee that the same type of orbital on equiv-
alent atom sites will be the same. To perform this sym-
metric transformation, we first find the unitary transfor-
mation U that diagonalizes the overlap matrix OL, L, l

——

P, ~C~&)(C&~,
~

for our approximate wave functions, i.e. ,

O = POPt, where 0 is the diagonalized overlap ma-
trix. We can then form 0+ ~ = UO+ ~ U by taking
the square root or inverse square root of the diagonal el-
ements of O. Our orthonormal wave functions are now
given by @~i, —PL cL P„L,(r), where cL ——g OLl, cL, .
The Hamiltonian matrix for our approximate wave func-



13 282 M. M. STEINER, R. C. ALBERS, AND L. J. SHAM

tions has elements HI, I. —p ej)CL)(CL, ~, where cj
are the energy eigenvalues of the complete LMTO solu-
tion. In the orthonormal basis it is transformed so that

0—1/2HO —1/2

Although partial fillings are always basis-set depen-
dent, in our case, however, the 3d orbitals are well local-
ized, and the 3d partial fillings are relatively insensitive to
this choice of basis. Calculating the projected DOS with
our approximate orthonormal functions gives results al-
most identical with that of the L-dependent projected
DOS calculated from the exact LMTO wave functions
I/LMT0

k
The density matrix in this orthonormal basis that is

needed in Appendix B will have the form (for I restricted

to the d orbitals) nl&' ' —
e& e&, ~.

For the LMTO-ASA calculations we used the Wigner-
Seitz radii corresponding to the lattice constants sug-
gested by Papaconstantopoulos. We used the experi-
mental bcc, hcp, and fcc structures for Fe, Co, and Ni,
respectively. The charge density was iterated until con-
vergence, using an equally spaced k mesh of about 260
points in the irreducible part of the Brillouin zone.

APPENDIX 8

The second-order contribution to the self-energy

Z& is calculated in a fashion similar to Ref. 1, ex-(2) dd .

I

cept that it is now a 5 by 5 matrix with elements Z&
'

and is biquadratic in U and J, see Fig. 1(f):

2

k1, k2, k3, K
~ I ~ll ~Ill

r r

&1 r&2 &3

I II IIIJ 1)g2 J3 jfA)fA )fA )fan

kg, k2, k3.,e, rrl

jl J2 23u —ek —ek, +ek3
b(I& + k —kg —k2 + ks)

with
I II III ~ I II III . II III ~ II ~ II III ~ III IF jr,jq,jz,m, m, m, m U2 lr, m, m jz,m, m lq, m, rn

b ~ mr, m jq,m, m ~q,m, m
k q, k2, k3,e, cr I

II I II III III ~ II III ~ II III I
+JU 2r, m, m +z,m, m js,m, m g j , r,m m jg,m, rn ja,m, m

~ III ~ II III ~ II I I ~ II III ~ II III
+U J +r,m, m lr, rn, m Is,m, m

b Ir,m, m Ig,m, m ~ 3 m, m

where the same notation has been used as in Ref. 1, ex-
cept that ek is the 5 by 5 matrix generalization of the
o, k used in Ref. 1, see Appendix A. The term starting
with b~ accounts for the second-order exchangelike dia-
gram, see Fig. 1(f). The band index j; is preserved along
a propagator. However, since the orbital index rn is not
conserved along a propagator, we have to consider both
the on- and off-diagonal elements of nk ~. The rest of the

calculation of Zg "" is identical to Ref. 1.
In Ref. 1 the k dependence of the self-energy is written

as a Fourier sum. Schweitzer and Czycholl4~ have studied
the dependence of the self-energy for the symmetric pe-
riodic Anderson model on the number of shells included
in the Fourier summation. In strong contrast to the one-
dimensional case, they found for a simple cubic lattice
in three dimensions that it was only necessary to include
up to next-nearest-neighbor shells to obtain a good de-
scription of the k dependence. We have checked this shell
dependence on Fe and Ni by comparing the results of the
Fourier summation at selected k points with those of di-
rect summation over all the bands and both spins, using
about 10 (kq, k2, ks, Ii) sets under the condition that
A + k —k~ —k2+ k3 ——0. There is no visible improve-
ment on going to third-nearest-neighbor shell. Even the

contribution from the nearest shell is only a few percent
of the "local" term. The reasons for this are that not only
are the effects of nesting in three dimensions reduced with
respect to lower dimensions, but also that in a multiband
system there are many more simultaneous possibilities of
conserving energy and momentum, which leads to a much
weaker k dependence of Im Z. We mention in passing
that the computational effort required to calculate this
small k dependence is at least 200 times more than that
needed to calculate just the dominant "local" term. On
the other hand, both the relative importance of the spin
and tel/e~ orbital dependencies of the self-energy were
found to be large in Fe, less so in Co, and small in Ni.

We use Luttinger's sum rule and the Friedel sum rule
to speed up the determination of p and bn~ ~, which have
to be consistent with the total number of electrons and
with (n ). At zero temperature Luttinger's sum rule
states that the number of electrons in the system is equal
to the number of states inside the Fermi surface, which
are the solutions of p —H& —Z~(p) = 0 and can be
obtained by a single diagonalization at each k point. The
Friedel sum rule, the equivalent statement for the partial
electron occupations (when generalized to periodic sys-
tems), simplifies the calculation of the total and partial
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fillings from an energy integration over the Im Gko(~) at
each k point to a k-space summation over the well-defined

pseudobands and eigenvectors of the Hermitian matrix

Ht. —Zt(p); the k-space summation can be handled

by standard methods such as the tetrahedron method.
In the final iteration Ct,~(~) requires a matrix inversion,

and the special-ray technique43 is used for the k summa-

tion. A small imaginary term of the order of the energy
resolution is added to stabilize the inversion. The k mesh

typically has about 300 points in the irreducible part of
the Brillouin zone, and the energy mesh discretization is

just under 2 may.
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