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Nonlinear sum rules: The three-level and the anharmonic-oscillator models
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Recently derived sum rules for nonlinear optics are shown to be relevant to a number of experiments

in atomic and solid-state physics. To interpret the experiments on atomic transitions and exciton transi-

tions in solids, we analyze the three-level model and examine the modification of the optical spectrum in-

duced on a probe light by the presence of an additional intense light beam. We show that the nonlinear

sum rules explain the known experimental data and predict anomalous asymmetry in the nonlinear line

shape. We also consider the cases of vibrational states of diatomic molecules and of optical modes of po-

lar crystals and treat them with the model of the anharmonic oscillator. The nonlinear sum rules are
shown to be obeyed, thus clarifying the processes of nonlinear absorption.

I. INTRODUCTION

In a recent paper, we have shown that dispersion rela-
tions and sum rules are obeyed by the nonlinear optical
response of a system. ' Among the many sum rules ob-
tained, we consider those which involve the nonlinear op-
tical absorption at frequency co, in the presence of a laser
beam of intensity

~ Cz~ and frequency co2. In terms of the
nonlinear contributions to the imaginary part of the
dielectric function we have

f coe2 (co, co 262)dQ) —O,
0

(2)

c being an appropriate constant which has to be deter-
mined case by case.

It is to be expected that such rules can be useful in a
large number of nonlinear optical processes, as the linear
sum rules have been in the traditional optical studies of
atoms, molecules, and solids. '

The main purpose of this paper is to correlate the sum
rules to some experimental findings, such as the Autler-
Townes splitting of spectral lines, the population trap-
ping observed in resonant Raman scattering in atoms,
and the dynamical Stark effect on exciton lines. This is
done by studying the optical transitions to all orders in a
three-level approximation, as functions of the frequency
co of the probe beam.

We also consider the possibility of nonlinear optical
effects on the vibrational states of dipolar molecules, and
on the vibrational states of dipolar crystals. Multiphoton
transitions have been observed in these cases, but their
frequency dependence has not been displayed in sufficient
detail to display sum-rule-dependent effects. We show,
however, by an anharmonic-oscillator model, that in this
case the constraints imposed by the sum rules also
influence the nonlinear line shape.

In Sec. II, we describe the optical transitions in a
three-level model at a frequency near a resonance condi-
tion, and display sum-rule effects on the optical line
shapes. In Sec. III, we give a classical and a quantum-

mechanical treatment of the anharmonic oscillator. Also
in this case, the oscillator strengths of the various non-
linear effects combine to verify the sum rules and intro-
duce asymmetries in the nonlinear line shapes. In Sec.
IV, we give our conclusions.

II. NONLINEAR OPTICAL TRANSITIONS
IN THE THREE-LEVEL MODEL

e(co, co2, C2) = I+ 4~X](O[~( l & ['/X

2CX

Q)yp 6) E g y

Capp CO+F2 l f2

(3)

where rom=(E, —Eo)/A and co20=(Ez Eo)/A are the—

The three-level model provides the simplest scheme to
treat nonlinear processes, particularly in near-resonance
conditions. Depending on the frequency range con-
sidered, we have two situations, referred to as the ladder
configuration and the lambda configuration. They are
shown in Fig. 1. The energies of the levels are denoted by
Ep E

~
and E2, for the ground state, the intermediate

state, and the final state, respectively. The interaction of
an electron with the two radiation fields of frequency co,
and co2 is given by the dipole matrix elements between the
states ~O),

~
I ), and ~2), and are expressed in terms of the

Rabi frequencies a, = (0
~ @,@,~

I ) /2A' and
a&=(1~@@2~2)/2', 8, and 8z being the amplitudes of
the two radiation fields and p=ex. The lifetimes of the
two excited states are expressed by r&

= 1/2y
&

and
F2=1/2yz, where y, and y2 are treated as phenomeno-
logical constants, introducing in this way the possibility
of other states and of nonradiative decays.

The polarizability of the system can be computed by
using the density-matrix formalism. We do not repeat
the calculation, which for the three-level system has first
been carried out by Hansch. Considering the polariz-
ability P =Xp, where X is the number of atoms per unit
volume, and taking the Fourier transform at frequency co,
at near-resonance conditions we have
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FIG. 1. Three-level system resonantly interacting with two

radiation beams of frequency co and cu2. (a) Ladder con-
figuration', (b) lambda configuration.
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frequencies at the resonance conditions, and the + ( —)
sign in (3) refers to the ladder (lambda) configuration.

We wish to point out, in agreement with Bigot and
Honerlage, ' that expression (3) is appropriate only for
positive values of N and cannot be extended for
mathematical purposes to negative N values, because this
would violate the necessary condition e( —co, co&, 82 )

N, N2,=e'(co, co, to ). This is due to the fact that expression (3)
is valid only near the resonance condition. To extend it
far from rt:sonance, we must add an antiresonant contri-
bution, which is required to satisfy the above condition.
Formula (3) is then modified into

4~X/ &Of~/1) /'ya

a 2
N N —lV'1—

Nzp+Nz N l $2

4~~1 &olp, l» I'i~
a2

N1p+ N + l f1
Nzp Nz N l pz

e(co, co2, 8z) =1+

(4)

The importance of the nonlinear effects can be inferred
from the dependence of (4) or (3) on the intensity ccrc and
on the detunings h=N —

N10 and 62=+Nz —
Nzp. When

6 =0 and az &&y1,yz, we obtain the Autler-Townes dou-2

bling of the absorption line. In the case of the lambda4

2co~fig~ratio~, when yz a2 'Y1 and a2 $1[ 2

obtain population trapping. The two effects are illustrat-
ed in Figs. 2 and 3, respectively, for different values of the
external beam intensity.

When the additional beam is relatively far from reso-
nance ( ~b2~ &&yt, y2, ccz), by varying the frequency of the
probe beam we can separately observe two-photon ab-
sorption and resonant Raman absorption at 6+62—-0,
and a shift and lowering of the 0~1 transition with
respect to the linear result. This is clearly shown in Fig.
4.

Separating in (4) the linear and the nonlinear contribu-
tions, we can prove immediately that the sum rule (1) is
satisfied. The nonlinear part P (co, co2, @2) of (4), in fact,
has poles only on the lower half of the complex plane,
and goes to zero at infinity as ~co~ . Then the integral of
its product by N vanishes because of Cauchy theorem.
Since e2 (co, co&, 6z) is odd under the co~ —co transforma-
tion, we immediately obtain that the sum rule (1) is
verified.

FIG. 2. ( Three-level system). Absorption coefficient of a probe
beam of frequency co =6+(El —Eo) /fi for three different
values of the intensity of an external beam tuned at the exact
resonance with the 1~2 transition (42=0). (a) a&=1; (b)
a~=3; (c) a&=8; the dotted line refers to the linear absorption
(a2=0). For the three cases, y2=2. All quantities are expressed
in units of y I.

In a recent paper on the three-level model, Saikan
et al. " stated that the integral of e2 "(co,co&, @2) vanishes,
which is at variance with our sum rules. This in fact
occurs only by extending Eq. (3) to negative frequencies,
which is not correct because it neglects the contributions
of the antiresonances, which are instead included in ex-
pression (4). Of course, the discrepancy between their re-
sult and our correct sum rule (1) is difficult to verify with
experiments carried out only at near resonance, but it
should be evident as a more extended frequency range is
exPlored, or when the frequency Nz is far from resonance.

Effects due to our sum rule (1) can be observed in all
the line shapes of Figs. 2, 3, and 4. In the case of the
Autler-Townes splitting, the two lines obtained have an
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FIG. 3. ( Three-level system). Absorption coefficient of a probe
beam of frequency co= 6+(EI —Eo)/A under the conditions of
population trapping (a2=0.2, y2=10 ). The dotted line refers
to the linear absorption (a2=0). All quantities are expressed in
units of y, .
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FIG. 4. ( Three-level system). Absorption coeScient of a probe
beam of frequency co= 6+(E& —Eo)/A for three difFerent

values of the intensity of an external beam tuned slightly away
from the resonance at the 1~2 transition (6&=10). (a) a&=3;
(b) a~=8; the dotted line refers to the linear absorption (a&=0).
For the two cases, y&=2. All quantities are expressed in units

«rl.

2 ~p 1 102 (8)

The sum rule (7) is the nonlinear counterpart of the
Thomas-Reiche-Kuhn sum rule, because it can be taken
as a measure of the importance of nonlinear processes. It
would be of great interest to verify the sum rule (8) in real
experiments. The most interesting experiments in this
respect are those of Frohlich, Nothe, and Reimann on
the dynamic Stark effect on the Cu20 exciton' and on
semiconductor quantum-well excitons. ' The experimen-
tal points are given only near the resonance where the
three-level model seems to be obeyed, and the sum rules
experimentally verified. Of course, far from resonance
the model itself breaks down. Other experiments with a
probe and pump light in quantum wells imply a popula-
tion readjustment, and their interpretation requires the
consideration of higher-energy states. '

We may observe that the c constant on the right-hand
side of Eq. (7), when co2 is near the resonance between
states E1 and E2, can be written very simply in terms of
the plasma frequency co, of the oscillator strength f,p,
and of the Rabi frequency a2, as

00

co e~ (co,co2, 82)— 2
dco co e2 (co, co2, C2)

7TCO

+o(co ) (5)

with the asymptotic behavior

2 NL g 4~NI «Is I » I'
1 ~ 2~ 2

26010+6020 +C02
X a& 2

+o (co ) (6)

obtained from Eq. (4). The comparison between (5} and
(6) gives the typical nonlinear sum rule with the explicit
value for the c constant

oscillator strength which is one-half that of the linear
transition. In the case of population trapping (Fig. 3), the
dip at the center of the line implies a lateral increase of
the absorption. In the case of Fig. 4 (nonresonant exter-
nal beam), an asymmetry occurs in the nonlinear line
shape due to the fact that the two-photon absorption
must be compensated by a prevailing negative contribu-
tion about 5=0. This is accomplished by a shift (dynam-
ical Stark eff'ect} and a lowering of the resonance.

To compute the constant c (co2, 82) in the sum rule (2),
we cannot proceed in the simple way discussed above, be-
cause the Cauchy theorem cannot be applied since
co e (co, co2, 82} decreases at 00 as 1/IcoI only. we then
proceed as indicated in Ref. 1, and compare the asymp-
totic behavior obtained from the dispersion relations and
the superconvergence theorem

III. ANHARMONIC OSCILLATOR

with

2

( ) 1+ 4mNe

mD (co)
(10)

D (CO) —COp CO
—l /CO .

In the nonlinear case, we obtain for the contribution
coming from the third-order susceptibility'

4~Ne Cz
e ( co, co2, 6 2 )

m D (co)ID(co2)I

3 a 1 1

2 m cop D(co+co2)

The model of the Lorentz-Drude oscillator has been of
great help in the interpretation of the linear optical spec-
tra of polar molecules and polar crystals, its quantum-
mechanical counterpart giving analogous results.

To introduce nonlinear optical properties, we must im-
prove the model by introducing anharmonic terms in the
Hamiltonian, as done by many authors. The Hamiltoni-
an can be written as

2

H = +—'mcoox +ax +bx
2m

where the constants a and b are different for each specific
case. The solution for a density N of particles of charge
e, with a damping coefficient y, gives a susceptibility
which can be computed to all orders. The linear term
gives the usual expression

0 1

D (CO
—

CO2)
6b . (12)—

X CX2(2COtp+CO2p T CO2) C . (7)
2 We observe that, besides the resonance at co=co0, which
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is a correction to the linear resonance, we have additional
resonances at co+co&=con (two-photon absorption) and at
~co

—caz~=cao (Raman processes). For illustrative pur-
poses, we report in Fig. 5 the total susceptibility and its
nonlinear contribution, showing the asymmetry of the
nonlinear line shape required by the sum rule.

We can easily verify that our sum rules (1) and (2) are
obeyed. For the sum rule (1), for instance, the two addi-
tional resonances are compensated for by a decrease of
the absorption with respect to the linear term, as shown
in Fig. 5. The exact compensation can be proved directly
by integration of the function cot.. on the real axis of the
complex plane, and application of the Cauchy theorem,
considering that the function is holomorphic in the upper
half-plane, its asymptotic behavior is

~
ca~, and it

satisfies the condition P"(—ca, ca2, 62) =e (ca, ca&, Az)'.
The constant c of the sum rule (2) can be computed with
the same procedure shown at the end of Sec. II, to obtain

4 2

( @ )
4nNe 3 a @2 1

m 2 meso (tao ca&) +—y ca&

(13)
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FIG. 6. (Quantum anharmonic oscillator) Abs.orption
coefficient of a probe beam of frequency u in the presence of an
external beam of frequency N2=0. 7cop. The damping constants
are taken to be the radiative widths. The dotted line refers to
the linear absorption, and the difference between the two is plot-
ted below.

We wish to observe that the sum rule (1) had already been
demonstrated for the case of the anharmonic oscillator by
Peiponen. ' We have introduced here an additional sum
rule (2), which may be more susceptible to experimental
verification.

While the harmonic-oscillator model does not display
any difference between the classical and the quantum
treatment because of the optical selection rule hn =+1,
the quantum treatment of the anharmonic oscillator in-
troduces some additional effects, which are simply
displayed by perturbation theory.

First of all, we may notice that a number of additional
transitions with b, n%1 become allowed in first order. In
nonlinear optics, besides the three resonances discussed

c
0

3
0
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0.03

in the classical model and displayed in Fig. 5, nonlinear
transitions to a large number of states become possible,
because the energies and dipole matrix elements of the
anharmonic oscillator are modified with respect to the
harmonic case.

We have calculated the energies and dipole elements

up to the second order of perturbation theory, using the
same parameters adopted for the classical model, and we
have then computed the third-order dielectric susceptibil-
ity, making use of Eq. (236) of Ref. 15. We report in Fig.
6 the absorption coefficient (first- plus third-order contri-
butions). Comparison with Fig. 5 shows the nonlinear
resonances introduced by quantum theory; for instance,
the resonance at e=2e0 —ez, due to the two-photon ab-
sorption from the ground state to the n =2 level. It also
clearly appears that the dynamical Stark shift has a
different sign in the two models.

The asymmetry of the nonlinear absorption line shape
implied by the sum rules is more pronounced in the
quantum-mechanical treatment, because of the larger
two-photon contribution.

IV. CONCLUSIONS

0.5 1.0 1.5
(o ( units of co. )

2.0

FIG. 5. ( Classical anharmonic oscillator). Absorption
coefficient of a probe beam of frequency co in the presence of an

external beam of frequency cu2=0. 7cop. The damping constant
is y=0. 1cop. The dotted line refers to the linear absorption, and

the difference between the two is plotted below.

We have investigated the role of the sum rules of non-
linear optics in specific experiments by using two soluble
models: the three-level optical model with finite life-

times, and the anharmonic oscillator with damping.
In the three-level optical model, it is found that the

nonlinear sum rules are obeyed, provided the correct be-
havior is adopted for the optical function with considera-
tion of the antiresonance. Specific effects are obtained on
the nonlinear line shapes, in particular an asymmetry
around the first-order resonance.
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In the anharmonic-oscillator model, the optical sum
rules are verified both in the classical and in the
quantum-mechanical treatment. Additional transitions
appear, however, in the latter treatment, and the asym-
metric modifications of the linear resonance absorption
are more evident.
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