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We propose a simple analytic representation of the correlation energy c, for a uniform electron gas, as
a function of density parameter r, and relative spin polarization g. Within the random-phase approxi-
mation (RPA), this representation allows for the r, behavior as r, ~~. Close agreement with nu-

merical RPA values for s, {r„0), s, {r„ 1 ), and the spin stiffness a, (r, ) = t) s,(r„(=0)/g't, and recovery
of the correct r, lnr, term for r, ~O, indicate the appropriateness of the chosen analytic form. Beyond
RPA, different parameters for the same analytic form are found by fitting to the Green's-function Monte
Carlo data of Ceperley and Alder [Phys. Rev. Lett. 45, 566 (1980)], taking into account data uncertain-
ties that have been ignored in earlier fits by Vosko, Wilk, and Nusair (VWN) [Can. J. Phys. 58, 1200
(1980)]or by Perdew and Zunger {PZ) [Phys. Rev. B 23, 5048 {1981)].While we confirm the practical ac-
curacy of the VWN and PZ representations, we eliminate some minor problems with these forms. We
study the g-dependent coefficients in the high- and low-density expansions, and the r, -dependent spin
susceptibility. We also present a conjecture for the exact low-density limit. The correlation potential

p, (r„g) is evaluated for use in self-consistent density-functional calculations.

I. INTRODUCTION
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are the up- and down-spin electron den-
sities. (All equations are expressed in atomic units:
e =Pi= m = l. ) The correlation energy s, has the small-

( expansion

E, (r„g)=E,(r„O)+—,'a, (r, )g +

the small-r, or high-density expansion

(3)

s, (r„g)=co(g) lnr, c&(g)+c2(g—)r, lnr,

c3(g)r, + . —

and the large-r, or low-density expansion ' '

—do(g) di(g)
p 2p 1/2
S S

(5)

The exact correlation energy has p =1. The same ex-
ponent has been assumed ' ' to hold within the
random-phase approximation (RPA), but we have recent-
ly found" that the correct RPA exponent is p =

—,'.
This discovery has led us to reconsider the analytic

representation of E, (r„g). Within the RPA, our repre-

An analytic representation of the uniform electron-gas
correlation energy e(r„g) is an essential ingredient of
most local' and nonlocal density functionals. An accu-
rate representation is needed, especially for the descrip-
tion of delicate magnetic effects. Here c, is the correla-
tion energy per electron; the density parameter r, and rel-
ative spin polarization g are

sentation is definitely more accurate than the Vosko-
Wilk-Nusair (VWN-RPA) and Cole-Perdew' (CP)
forms, which assume p =1. Beyond RPA, we At to the
Green's-function Monte Carlo results of Ceperley and
Alder, as in the earlier parametrizations of Vosko, Wilk,
and Nusair (VWN) or Perdew and Zunger (PZ). While
we confirm the practical accuracy of the VWN and PZ
forms, we also avoid some of the minor problems of those
par ametrizations.

The PZ and CP forms for s, (r„g) display an artificial
discontinuity of second and higher derivatives with
respect to r, at r, =1. In the high-density limit (r, ~O),
these forms do not recover the exact spin stiffness a, (r, ).
Furthermore, we note the exact relations

co(g)=co (g),
RPA(g)

(6)

where x2=0.024179 hartree is the second-order ex-
change constant. ' The PZ form relies upon an older and
less precise constant (xz =0.023 hartree).

The VWN and VWN-RPA forms are analytically
complicated and nontransparent. In the high-density
limit, they are not constrained to reproduce the exact
ci(0) and ci(1) (although these constants are fitted in a
least-squares sense). Furthermore, they artificially make
c2(0)=c2(1)=0. For low electron densities, the VWN
form produces an unphysical maximum of the spin sus-
ceptibility enhancement g/g&& at r, =50 (Sec. III). Final-
ly, we note that the VWN fit does not employ a11 of the
Ceperley-Alder data (/=0 and I; r, = 1,2, 5, 10,20, 50,
100), but only the data for r, ~ 10. Although the data set
for r, &10 is less precise, its known uncertainty can be
taken into account.

Our parametrization avoids these problems, and pro-
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vides estimates of the g-dependent coefficients in the
high-density expansion of Eq. (4). Previous estimates of
these coeScients by Perdew and Zunger and by
Aguilera-Navarro, Baker, and de Llano have been re-
stricted to (=0 and 1, and have not taken into account
the uncertainties of the Monte Carlo data. We also dis-
cuss the g-dependent coefficients of the low-density ex-
pansion (5). Finally, we report results for the spin suscep-
tibility enhancement y/yo as a function of r„where
F0=2.589X10 /r, is the spin susceptibility for nonin-

teracting electrons.

II. PARAMETRIZED CORRELATION ENERGY

Vosko, Wilk, and Nusair made a careful study of the g
dependence of s, (r„g), which they evaluated numeri-

I

E,(r„g}=s,(r„O}+a,(r, ) „(1—
g }

( )

+ [E,(r„1 ) —E,(r„O}]f(g)g (8)

[(1+/) i +(1—g) —2]
(24r3 2)

(9)

Note that f(0)=0, f (1)= 1, and f"(0)= l. 709 921.
(The PZ spin interpolation, taken from Ref. 2, amounts
to a, (r, ) =f"(0)[E,(r„1 ) —c.,(r„O)].) Instead of the
rather complicated analytic VWN form for s, (r„O),
s, (r„1 ), and —a, (r, ), we use the simpler form

cally from RPA integrals. On the basis of this study,
they proposed the spin-interpolation formula we will use:

1
G(r„A, a„p„pz,p3, p4,p)= —2A(1+a, r, ) ln 1+

2A(fj, r,'"+P,r, +I33r,'"+P4r,'+') (10)

The parameters A, P, , and P2 are chosen to match the ex-
act high-density expansion (4), for which co and c1 are
known:

A =Cp,

P, = exp( —c, /2co ),1

2cp

P2=2AP1 .

We easily find

C2= Acx)

c3 = —2A a, ln(2AP1)—
132 133

131 P1

(12)

(13)

(14)

(15)

The parameter p =
—,
' (RPA, Ref. 11) or 1 (beyond RPA)

fixes the low-density expansion (5), for which

do =a1/P4

d 1 a lf 3 /f 4 '

(16)

(17)

The resulting fit is remarkably accurate, with a maximum
error over the range 0.5 & r, & 100 of only 0.2 mRy, com-
pared to 1.6 mRy for VWN-RPA. (2000 mRy= 1 har-
tree. ) This level of accuracy gives us confidence in the
analytic form (10).

Beyond RPA, we know the Ceperley-Adler Monte

Since the exact RPA 10(g) is independent" of g, p =1 for
the RPA a, (r, ). The parameters a1, p3, and p4 are ad-
justed to give a "best fit" to numerical data for r, =2, 5,
10, 20, 50, and 100.

Within RPA, we known s, (r„O), E,(r„l), and
—a, (r, ) exactly from the VWN numerical calculation.
So we simply adjust a„p3, and p4 to minimize the sum of
the squared errors

g ~G(r„. . . ) a(r, )~—

I

Carlo e(r„O) and s, (r„l), and the uncertainties b,s, .
Thus we perform a "chi-square fit "

by minimizing

G(r„. . . ) —a (r, )

ba(r, }
(19)

i.e., we fit within the uncertainty for each r, . By using
more information than VWN, we hope to obtain a more
accurate representation of the correlation energy. The re-
sulting s, (r„1) is very close (within 0.2 mRy) to that of
VWN, but s, (r„O) and a, (r, ) show differences over the
range 0.5 & r, & 100 as great as 1.0 and 2.2 mRy, respec-
tively.

The beyond-RPA spin stiffness a, (r, ) requires special
treatment because of the lack of exact or Monte Carlo
values to fit. We follow a proposal of VWN, fitting
a, (r, ) to

E,(r„1 ) —s, (r„O)
sRPA( r 1 ) sRPA( 0 )

(20)

at r, =2, 5, 10, and 20. However, we note that the spin
susceptibility depends sensitively upon r, at large values
of r, To fix t.he low-density behavior, we also fit a, (r, ) at
r, =75 to a value which makes the spin susceptibility
enhancement

x = 1—
Xp

1/3 r 4—+3
9~

2/3

r, a, (r, ) (21)

diverge at a density (r, =77.5) slightly lower than the
density (r, =73) at which the electronic spins spontane-
ously polarize (from /=0 to g= 1 ). This susceptibility
behavior, which is consistent with the approximate valid-
ity of assumption (20), is very similar to that found in
RPA, where y/yp diverges at r, =19, and the ferromag-
netic transition occurs at r, =17. It is also similar to the
behavior in the Hartree-Fock approximation (a, =O),
where g/gp diverges at r, =6.03 and the ferromagnetic
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TABLE I. Parameters of the fit to Eq. {10),and of the resulting high-density [Eq. {4)] and low-

density [Eq. (5)] expansions. Asterisks indicate parameters that are constrained to exact values from
Ref. S. (Energies are in hartree. )

A =co
a&

Pi
P2

133

P4

RPA( r 0)

0.75
0.031 091
0.082 477
5.148 6
1.648 3
0.236 47
0.206 14

RPA(r 1)

0.75
0.015 545
0.035 374
6.486 9
1.308 3
0.151 80
0.082 349

~RPA(» )

1.00
0.016 887
0.028 829

10.357
3.623 1

0.479 90
0.122 79

1.00
0.031 091
0.213 70
7.595 7
3.587 6
1.638 2
0.492 94

c,(r„1)
1.00
0.015 545
0.205 48

14.1189
6.197 7
3.366 2
0.625 17

—a, (r, )

1.00
0.016 887
0.11125

10.357
3.623 1

0.880 26
0.496 71

c)
C2

C3

d
d]

0.070 823
0.002 56
0.009 36
0.400 1

0.459 0

0.049 778
0.000 55
0.002 30
0.429 6
0.791 8

0.035 475
0.000 49
0.003 59
0.234 8
0.9177

0.046 644
0.006 64
0.01043
0.433 5

1.440 8

0.025 599
0.003 19
0.003 84
0.328 7
1.769 7

0.035 475
0.001 88
0.005 21
0.2240
0.396 9

RPA( 1 )
] eRPA(2 —4/3 () ) (22)

The result is a, =0.032731, P&=6.4868, Pz=1.3083,
p3 =0. 11824, p4 =0.081 81; c2

=0.000 51, c3
=0.002 33,

do=0. 4001 d& =0.5782.
The exact g dependence in the high-density limit could

be recovered by replacing Eq. (9) by

f(g) = [I(g)—I ]/[I( I ) —1],

where I(g) is the analytic function of Eq. (32) of Ref. 14,
making f"(0)= 1.086 28. However, this change would
not necessarily improve the fit for r, ~0.5, where Eq. (9)
actually gives a better description of the RPA correlation
energy. For the sake of the low-density limit (discussed
at the end of Sec. III},we retain Eq. (9).

transition is found at r, =5.45.
Table I shows the parameters of the fit. The asterisk

indicates parameters which have been constrained to ex-
act values. Numerical results for s, (r„g) from the
present Perdew-Wang (PW) parametrization within RPA
are compared to VWN-RPA (Ref. 5} and exact-RPA
(Ref. 5) values in Table II of Ref. 11, while beyond-RPA
PW results are compared to VWN (Ref. 5) and PZ (Ref.
7) values in Table III of the same reference.

Our numerical RPA calculations for r, up to 10 show
that the low-density limit of E, (r„O) is

0.40lr, ~ +0.4—6lr„as the parameters of Table I sug-
gest. An alternative and preferred set of parameters for

(r„l) may be constructed from those for E, (r„O)
via the Misawa spin-scaling relation'

cal difFerence from the VWN (Ref. 5) and PZ (Ref. 7) for-
mulas.

From these equations, we estimate the g-dependent
coeScients of the high-density expansion:

co(g) =0.03109—0.009 88f(g)(1 —P)
—0.015 55f(f)g

c, (g) =0.046 64 —0.020 75f(g)(1 —P)
—0.021 05f ( g)g

(23)

(24)

etc. Table II compares cc(g) from Eq. (23) to the exact
cc(g), which we have recently evaluated, ' and also
displays c, (g) from Eq. (24).

In Table III, we compare the coefficients c2(0), c3(0),
cz(l), and c3(1) obtained here (PW) with those from PZ
(Ref. 7) and from Aguilera-Navarro, Baker, and de
Llano, and with exact values. ' ' The close agreement
between the PZ and Aguilera-Navarro values may be a
consequence of the fact that neither of those fits takes
into account the uncertainties in the Monte Carlo data,
which are largest at small r, .' The P% coeScients are
significantly closer to the exact values for c2,' exact values

co{/)
[Eq. {23)]

c, ( )

[Eq. {24)]

TABLE II. The g-dependent coefficients co{/) and c,{gl of
the high-density expansion (4). (Energies are in hartree. ) The
percent error of Eq. (23), relative to exact values from Ref. 11, is

also shown, as is the percent error of Eq. (24), relative to exact
values from Ref. 19.

III. DISCUSSIQN OF RESULTS BEYOND RPA

Equations (8)—(10) and Table I generate what may be
the most accurate available representation of the correla-
tion energy c,(r„g). The corresponding correlation po-
tential p, (r„g) is presented in Appendix A. We recom-
mend the use of these formulas in density-functional and
other calculations, although they may show little practi-

0.0
0.2
04
0.6
0.8
0.9
0.999
1.0

0.0311
0.0308
0.0297
0.0277
0.0239
0.0206
0.0156
0.0155

(0.0% )

( —0.0% )

( —0.0% )

( —0.1%)
( —2.0%)
( —5.0% )

( —2. 1%)
(0.0%)

0.0466
0.0459
0.0438
0.0400
0.0343
0.0305
0.0257
0.0256

( —0.6%)
(
—0.6%)

( —0.6%)
( —0.3%)
(+0.8%%uo )

(+2.6%)
(+2.6%)
( —0.5%)
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TABLE III. More coefBcients of the high-density expansion (4). Note that cz =C~=O for the
VWN form of Ref. 5. (Energies are in hartree. )

=0

pz'
Aguilera-Navarro,

Baker, and
de Llano

PW'
Exact

RPA
C2

0.0021

0.0026
0.0027

C2

0.0020
0.0036

0.0066
0.0092'

C3

0.0116
0.0118

0.0104

cRPA
C2

0.0005

0.0006
0 0005'

C2

0.0007
0.0014

0.0032
0 0031'

C3

0.0048
0.0049

0.0038

' Reference 7 (RPA: Ref. 10).
b Reference 8.' Present work.
"Reference 15.
' Appendix B.

for c3 are unknown.
We turn now to lower densities. Besides the correla-

tion energy s, (r„g}, the total energy per electron in-

cludes noninteracting kinetic
2/3

t, (r„g)= 3 9m.

10r, 4 [( 1 +g)5/3+( I g)5/3]/2

(25)

and exchange

s„(r„g)=—
4ar,

1/3

[(1+g) + (1—g) ]/2
4

0.89593 + 1.325
r r3/2

S S

0.365
r2

S

(27)

for the energy of the body-centered-cubic Wigner crystal,
we find a second transition to the crystalline state at
r, =98, close to the density estimated by Ceperley and
Alder (r, = 100+20).

In the low-density limit (r, ~ao }, the energy of the
fluid phase in our parametrization is —d„,(g)/r„where

d„,(g) =0.4582[(1+/) +(1—g) ]/2

(26)

contributions. The total energy s(r„O) minimizes at
r, =4. 19, close to the density of metallic sodium. The
ferrotnagnetic transition (from /=0 to /=1) in our pa-
rametrization occurs at r, =73, close to the transition
density estimated by Ceperley and Alder (r, =75+5}.
Using the expression'

the more physical behavior of the PW y/yo. The PZ,
VWN, and PW values are all consistent with measured
spin susceptibilities for the alkali metals's (3 (r, (6).

In summary, we have presented a simple and useful an-
alytic form for the correlation energy s, (r„g). Tests
within the random-phase approximation show errors less
than 0.2 mRy for s, (r„O), s, (r„l), and a, (r, ) over the
range 0.5&r, &100. Another positive indicator is the
correct value found for cz (Table III). Beyond RPA,
our representation also seems highly accurate, and may
be improved through parameter reoptimization when
more precise Monte Carlo data (including correlation en-
ergies for 0(g(1}become available. An appealing ave-
nue is to demand that Eq. (10) reproduce the exact do,
leaving only two adjustable-fit parameters (at and P3).
The exact d„,(g) is presumably 0.89593 from Eq. (27)
(see Table IV). We can achieve this low-density limit
with do(/=0) =0.437 76, do(/= 1)=0.318 67, and
do( —a, ) =0.203 63. In fact, with further development of
the high- and low-density limits, it may be possible to
construct e, (r„g) accurately with no Monte Carlo input.

Recently, Hoffman' has made an "exact" numerical
evaluation of c, (g) of Eq. (4), with results that are rather
similar to those of our analytic representation (Table II).
However, his values for /=0 and 1 [c,(0)=0.046921,
c, (1)=0.025 738 hartree], are slightly (0.5%) larger than
the values from Ref. 5 that we have used in our Table I.

TABLE IV. Spin dependence of the exchange-correlation en-
ergy e„,(r„g)~ d„,(g)lr, in —the low-density limit r, ~Do,
from Eq. (28). The exact d„,(g) is probably independent of g.
(Energies are in hartree. )

d „,(g)
+0.4335—0.1310f(g)+0.0262f (g)P, (28)

which depends very weakly upon g (Table IV). The exact
d„,(g) is probably" independent of g.

Table V shows the spin susceptibility enhancement of
Eq. (21). Note the peculiar maximum of the VWN y/yo
(as pointed out to us by Clougherty) at r, =50, well below
the ferromagnetic transition (at r, =80 in VWN}, and also

0.0
0.2
0.4
0.6
0.8
0.9
1.0

0.892
0.891
0.890
0.889
0.891
0.896
0.906
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TABLE V. Spin susceptibility enhancement of Eq. (21). The
RPA values (from our present parametrization) agree with the
numerical RPA values from Ref. 5.

Bc,(r„g) a, (r, )
=4/'f(g) c,(r„1 ) —c,(r„O)— "0

0.5
1

2

3
4
5

6
10
20
30
50
60
75

RPA

1.08
1.16
1.31
1.48
1.66
1.86
2.08
3.44

—26.77
—3.64
—1.60
—1.31
—1.07

XI'XO
pz'

1.08
1.15
1.27
1.39
1.51
1.62
1.73
2.15
3.12
3.93
5.69
6.72

13.00

1.08
1.15
1.31
1.46
1.62
1.79
1.97
2.83
6.71

17.87
282.41

83.29
20.15

PW'

1.08
1.15
1.30
1.44
1.58
1.72
1.86
2.43
4.16
6.95

24.52
63.01

930.61

+f'(g) Pc, (r„1)—g c,(r„O)

a, (r, )
+(1—P) "0 (A3)

where

4 [(1+()i/3 (1 g)1/3]

(2 —2)
(A4)

I

= —2 A a, ln(1+ 1/Q, )— (A5)

Finally, we obtain Bc,( r„O)Ii)r„Bc,(r„1 ) /dr„and
da—, (r, )/dr, from Eq. (10):

' Reference 7.
Reference 5.

' Present work.

We have checked and confirmed the numerical part of
Hoffman's calculation, i.e., the integral ( ln(R ) ) .

where

Qo
= —2/1 (1+a,r, ),

Q, =2~ (P,r,'"+P,r, +P,r,'"+P,r~+'),

Q I
= /1 [P, r,.

' +2P2+3P3r, '/ +2(p+1)P4ri'] .

(A6)

(A7)

(A8)
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APPENDIX A: CORRELATION POTENTIAL
AND INTERACTING KINETIC ENERGY

The correlation potential for electrons of spin 0. is

p, ( r„g)=8[n c,(r„g)]/Bn

By generalizing the derivation of Ref. 21 to (%0, or by
combining Eq. (34) of Ref. 22 with Eq. (Al), we find the
interacting or correlation contribution to the kinetic en-

ergy per electron:

t, (r„g)= 4c., (r„g—)+3 p, (r„g)(1+()

+ p, (r„g) . (A9)
(1—g)

2

The simplest version of the virial theorem,

t, +c + c,, = —
( t, +t, ), .

is obeyed at the equilibrium density (r, =4. 19 and (=0).

APPENDIX B: EXACT COEFFICIENT
OF r, Inr, IN EQ. (4)

Bc,(r„g)—(g —sgno ) (A 1)

Carr and Maradudin' found c2 (0)=0.0027 hartree
and cz(0) —cz (0)=0.0065 hartree. We have evaluated
the numerical integral of their Eq. (15) to higher pre-
cision, with the result

where sgno. is + 1 for o = 1 and —1 for cr = $. From Eq.
(8), c ~ (0)=0.002 709 5 hartree, (Bl)

'dc, (r„g) Bc,(r„O) Bc,(r„1 )
[1 f(g)0']+ —f(0)0'

and the numerical integral of their Eq. (22), with the re-
sult

c2(0)—c~ (0)=0.006 519 7 hartree . (B2)

and

da, (r, ) f(g)
dr, f"(0) (A2) The latter integral is greatly simpli6ed by our analytic ex-

pression for R ' "(iu), which Carr and Maradudin left in
the form of a two-dimensional integral [Eq. (A5) of Du-
Bois ']:
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R'"(iu)=4[(1+3u ) —(2+3u )u tan '(u)]/(1+u ) .

(B3)

To find the RPA coefficient for /= 1, we use Eq. (22) with
the result

change contribution

Et„(r„l)=e»(2 ~ r„0),
gives

c (1)—c (1)= [c (0)—c" (0)]/2 ~ (B5)

cRPA( 1)—cRPA(())/27/3 (B4)

A different spin-scaling relation' for the second-order ex-

as in Ref. 5.
We hope to generalize these results to arbitrary g in fu-

ture work.
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