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A kinetic-energy functional of the electronic density is presented. This functional is based on an in-

tegral form and is correct through second order in the response. The formulas are compared numerically
with the Thomas-Fermi —von Weizsacker —like formulas and favorable results are found. These formu-

las correctly give both shell structures in the electron densities of atoms and bond charges in the electron
densities of solids. This quantum oscillation in the electron density is lacking in the densities of previous
kinetic-energy functionals and is regarded as the major achievement of the current approach.

I. INTRODUCTION

Considerable e8'ort has been expended to create an ap-
proximate kinetic-energy functional of the electron densi-

ty which is accurate enough to model chemistry but sim-

ple enough for fast computation. ' If our goal is to simu-
late a large group of atoms in dynamic motion, the
Kohn-Sham functional used in the local-density approxi-
mation becomes unwieldy as the number of atoms ap-
proaches 100. An accurate and computationally inexpan-
sive kinetic-energy density functional is highly desirable
in the simulation of condensed-matter systems, because,
in that environment, the solution of the Kohn-Sham
equation for a large number of bands and k points can be
reduced to the calculation of a single function by using
the kinetic-energy functional.

Throughout this paper, the kinetic energy is the nonin-
teracting Fermion kinetic energy, which is defined as

for all 4's that yield n. Here 4 is the total wave function,
and n is the total electron density. The %' which gives the
minimum kinetic energy is a product of single-particle
wave functions. This kinetic energy is the same kinetic
energy used in the Kohn-Sham equations. In all the nu-
merical comparisons, therefore, we will compare our re-
sults to the Kohn-Sham equation results.

The first successful approximation to a kinetic-energy
functional was the Thomas-Fermi (TF) formula. It has
several shortcomings. The electron density at an atomic
nucleus is infinite, and its tail decays as an inverse power
law. Teller was able to prove that there was no stable
chemical binding with the TF formula. One way to
improve the TF formula is the generalized
Thomas —Fermi —von Weizsacker (TFA,W) formula,
which adds A, times a gradient term to the TF theory. It
has the form

T[nj= '(3m—)
i f n (r)d r

—
A,—' f n'~ (r)V n' (r)d r, (1.2)

where X is an adjustable parameter. This addition
corrects the nuclear and tail problems and leads to stable
binding of atoms. For k = 1, we have the original
Thomas —Fermi —von Weizsacker formula. The com-
bination of both the TF term and the full von Weizsacker
term gives a rigorous upper limit to the kinetic energy.
Thus, the kinetic energy of this combination is usually
much too high. It was later determined that A, =—,

' is the

proper coeScient for the second-order formula of the
gradient expansion theory. Computational experience
seems to show that A, = —,

' (Ref. 6) gives the best results of
all the possible values of A. when used to calculate the ki-
netic energy of atoms from Hartree-Fock densities. For
Hartree-Fock densities, it is possible to do slightly better
using higher-order terms in the gradient expansion. If an
electron density is calculated by minimizing the total en-

ergy of the electrons, the result is known as a variational
density. For variational densities, A, =—,

' has been found

to give the best results among the TFA,W formulas.
Again, the gradient expansion can give good results when
carried to higher order, but after the fourth order it be-
comes unstable. The fourth-order result is better than
the A, =—,

' result, but no better than the A, = —,
' result. Be-

cause it is simple and leads to almost the best results
among the existing kinetic-energy functionals for varia-
tional densities, we will use the TFAWformul. a (especially
k= —,

' ) as a representation of the existing formulas in all

comparisons in this paper. As mentioned above, the gra-
dient expansion is a more systematic method for improv-
ing the Thomas-Fermi formula to higher orders, but
above fourth order, the variational calculation becomes
unstable. There have been many successes for the gra-
dient expansion theory and its related formulas over the
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last two decades. They give very accurate kinetic ener-
gies for atoms when the exact densities are used, but
there are also serious problems with these formulas.
First, they do not treat the tail regions of the atomic den-
sities properly. The gradient expansion series is divergent
after fourth order in the tail region. The high accuracy
for the kinetic energy is preserved by the fact that the tail
region contributes very little total kinetic energy. The
tail regions of atoms are extremely important for chemis-
try, however. A related fact is that, in molecules, for the
chemical binding energy, even when the exact Hartree-
Fock densities are used, the results are not good. This is
caused either by significant residual error left in the
higher-order terms in the gradient expansion series, or by
the qualitative incorrectness of the formulas in the bond-
ing region.

Use of the above kinetic-energy formulas to calculate
the electron densities of atoms and molecules by the vari-
ational principle leads to unsatisfactory results. There is
no shell structure in the densities. As a result, the chem-
istry will not be correct (there will be no Periodic Table
and its corresponding chemical order characterized by
the deviation from filled shells). In the solid, this corre-
sponds to the lack of bond charge in the variational den-
sities of covalent materials, or a lack of charge transfer in
ionic materials. This lack of shell structure, bonds, and
oscillatory phenomena in general, which has its roots in
the quantized nature of the orbitals under study (referred
to as quantum-interference effect in the following),
remains one of the main challenges for kinetic-energy
density functionals.

We would like to make a plausibility argument that the
variational density of an atom or molecule will not have
an oscillating shell structure for the gradient expansion
theory nor will any other kinetic-energy functional which
expresses the kinetic-energy density t [n] as a simple local
function of n(r) and its derivatives. An expansion in
derivatives of the kinetic-energy operator is equivalent to
a power-series expansion in its Fourier transform. It is
well known that the gradient expansion is a series expan-
sion around k =0, where k is the wave vector of an oscil-
lation in the density. For any electronic system, the
dielectric-response function and the kinetic-energy opera-
tor are closely related. It is also well known that the
Lindhard response function of the homogeneous electron
gas has a derivative discontinuity at 2kF, and no power
series can extrapolate across this discontinuity. At the
same time, it is well known that this singularity in the
response function gives rise to the quantum oscillations in
the density known as Friedel oscillations. In an atom, the
variations in density which make up the shells are small,
and the corresponding total potential gives almost no
hint of an oscillating structure. In the absence of an os-
cillation in the driving potential, it must be that the addi-
tion of the oscillation to the density lowers the total ener-
gy in the full quantum-mechanical solution to the atom.
If we take the gradient expansion of the kinetic energy
through fourth order, and solve for the density variation-
ally, there is no oscillatory structure. Since the solution
by definition is the minimum-energy solution for this
kinetic-energy operator, the addition of a small oscillato-

ry component to this density must raise the energy.
After considering the various problems and the ways to

introduce the quantum oscillations and shell structure,
we proposed an integral form for t [n], i.e.,

r [n](r)= ff (r, r')n (r')d r', (1.3)

as the most primitive form B.ecause t [n](r) depends on
its neighboring density directly through an integral, an
oscillating form of f (r, r') can cause an oscillating varia-
tional density. If f(r, r') is a local function around r,
then r [n](r) depends only on n (r') around r. The formu-
las following this direction are to be discussed in the fol-
lowing sections. This approach is similar in spirit to the
classical weighted-density-functional theory of liquids,
especially in their construction of the weighting function
to yield the correct free energy through second order.

We would like to discuss some other approaches to
kinetic-energy functionals. As outlined above, our ap-
proach is an integral formula. Similar approaches existed
as early as 1964 when Hohenberg and Kohn' presented
their density-functional theory. They proposed a series
expansion based on the density variation n (r) —no. But
the direct application of that form in solids to the linear-
response term has not given good results, because the
density variation in a solid is usually too large for the
linear term to be valid. And the higher-order terms are
not easy to compute. They also came up with a partial
summation result of a gradient expansion series, but that
formula was not studied numerically in that paper. Be-
sides, because the kinetic energy was treated together
with the exchange and correlation energy in their ap-
proach, it was difficult to get the correct coefficients in
the formula. The same line of thought was carried out
further by Plumer and Geldart. " However, the fact that
they used their formula for atoms made them conclude
that the approach is unfavorable compared to the gra-
dient expansion theory. While the basic direction is
parallel, our formula differs from the previous work by
using a different form which fortuitously allows its use
over wider density variations. We also carried it through
to higher order. We also show how to compute the
higher-order response economically. We also emphasize
our applications in solid systems with the aid of pseudo-
potentials. That is the area where the kinetic-energy
functionals are most needed and is also the area in which
our formula works best. Another interesting approach is
that of Herring and Herring and Chopra. ' The electron
density computed from their formula showed some
quantum-interference effects for one-dimensional sys-
tems. Unfortunately, the application of their formula to
three dimensions is very difficult.

II. FIRST-ORDER KINETIC-ENERGY
INTEGRAL FORMULA

Starting with the assumption that the kinetic-energy
density at one position is dependent on the density near
that point, the simplest form which can represent this lo-
cal dependence is an integral as discussed above:

t [n](r)= ff (r, r')n (r')d r', (2.1)
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where t [n](r) is the kinetic-energy density at the three-
dimensional point r and f (r, r') is to be determined.
Thus the total kinetic energy Ez;„can be written as

', n—o/ F(0) —E& —
—,', no

' F(0)bn (r)

+ ",,—n0
'/ ff (r —r')b n (r')d r'+ b v (r) =0,

E&,„=f f n (r)f (r, r')n (r')d r d r' . (2.2) (2.9)

However, the TF formula should be the obvious limit of a
slowly varying density, thus it is e%cacious to change the
above formula to

Ez;„=f f n (r)f (r, r')n (r')d r d r' . (2.3)

Based on the above assumption, f (r, r') must integrate to
—,', (3n ) in order that the above formula will reduce to
the TF formula when the typical length of variation of
density n (r) is larger than the range of f (r, r'). The hope
is that the shape or perhaps an oscillatory behavior of
f (r, r') will establish the proper density oscillations
which reflect the quantum-mechanical nature of the sys-
tem.

To simplify the analysis, f (r, r ) is approximated as

f (keir —r'i), where kz is the Fermi momentum for the
average density np of the system. The justification for
this approximation lies in the fact that the second-order
perturbation expansion for the energy is of this form.
After this step, the exact form of f can be obtained from
linear-response theory. Suppose there is a small Av(r),
from the linear-response theory, we can get the perturba-
tion of the density as

b n (r)= —fg (r r')b, v —(r')dr', (2.4)

where F(0)=If (r)d r T. he equation for the zeroth or-

der is

F(0)= 3n —2/3E 3 (3 2}2/3
s o f &o

(2.10)

(2.11)

and comparing to the linear-response result in Eq. (2.5),
we have

'n '—F(0)+"n '—F(k) =—0 .
18 0 18 0 G(k)

Solving for F(k),

18n,'"
F(k)= +—,'F(0),

25

and using the form for G (k), F(0), and no, we find

F(k) —6 (3~2)2/3 IV
—1 +k 1

25 k 4F

(2.12)

(2.13)

(2.14)

That is the condition we need to recover the TF theory
when the density variation is slow. For the first order,
transformed to k space, it becomes

'n ' —F(0)bX(k)+ "n ' —F(k)bE(k)+b V(k)

or in k space

bN(k) = —G(k)b, V(k) —= — IV b, V(k),k

kF
(2.5)

Notice that, as z~ (x},

IV '(q) ~—,'q ——', , (2.15)

where

IV(q) = —+ ln
1 (q —4) 2 —

q (2.6)
8', (q)= —,'[IV '(q) —

—,'q +—,'], (2.16)

and so f (r r') contains a d—ifferential operator in real
space. In order to get merely a function in real space, we
can define another function IV, (q) as

and q =k /k'. We can also get the perturbation density

by using the kinetic-energy functional (2.3). To do that,
simply minimize the total noninteracting energy:

then

F(k)= —'(3n. ) —8' + k—
5 '

kF 4k 2 20

E„,= f f n5 6(r)f (r, r')n / (r')d r d r'

+ f v (r)n (r)d r EIf n (r)d r, — (2.7)

(2.17)

Now back in real space, the k term is just V and the
constant term is a 5 function. Thus the expression in real
space is

where E& is the Lagrange multiplier to keep the total
number of electrons fixed while making the minimization;
physically, it is the chemical potential. Taking the func-
tional derivative of E„,and setting it to zero, we get

', n ' (r)ff (r —r')n / (r—')d r'+v(r) EI=O . (2.8)—

Now, assuming the perturbation form from the uniform
density, i e., n(r)=no+En(r) and v(r)=bv(r}, expand-

ing Eq. (2.8) to first order, we have

(2. 18)

where
w i (r r') is the function IV, (k)—in real space. It is

easy to show that up to quadratic order

so
'n fn /(r)V n—/(r)d r

n' (r)V n' (r)d r .
2

(2.19)

Ei,;„=4' (3m. ) f f n (r)wi(r r')n (r')d r d r'—
21 ( 3 2)2/3 f n 5/3(r)d 3r
2so

so
9 n

—2/3 f n 5/6( )P 2n 5/6( )d 3
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2& (3/)2&3 f ns~s(r)d3r
250

n' (r)V n' (r)d r .
2

(2.20)

(This will be referred to as the first-order formula in the
following numerical comparisons. } The function
w, (r r') i—n real space is shown in Fig. 1.

Now let us discuss briefly the properties of the above
formula (2.20). It is very pleasing to see that the von
Weizsacker term comes out naturally. It is not a surprise
for this term to come out correctly, however, because it is
well known that the von Weizsacker term can be derived
from the linear-response theory of the high-k region, and
that is exactly what has been done above. Note the in-

tegral of wi(r r') is 1—, so the first two terms sum to give
the Thomas-Fermi term when the variation of density is
slow. Thus the above formula can be thought of as a
modification of Thomas —Fermi —von Weizsacker (TFvW)
theory. It is obvious in k space that the first term
in Eq. (2.20) is always smaller than
(48/125)(3&) Jn (r)d r, and the sum of the first

two terms is always smaller than the Thomas-Fermi
term. Thus the correction is in the right direction be-
cause the TF1W formula always over estimates of the ki-
netic energy. Derived as it is from linear-response
theory, the above formula gives the exact response func-
tion for a small perturbation from the uniform electron
gas, while TFvW theory or other gradient expansion for-
mulas only gives the correct answer in part of the k re-
gion. It is easy to see that the above formula is not
directly applicable to an isolated atom, because for that
system the no in function w& does not make any sense.
We will discuss this point in the following section. How-
ever, for a typical solid system, the direct use of the above
formula (1.20) with no set equal to the average electron
density gives good results. This procedure is not

lQ
O
O

This is exactly the von Weizsacker term. So, finally, the
kinetic-energy functional can be written as

Ek;„[n]= ,",—,
(3m')'" f f n' (r)wi(r —r')

Xn (r')d r d r'

a& a, k4
V (k)=Z [cos(aik)+a3]e '

k2
(2.21)

with

a
&

= —0.992, a2 =0.791,

a3 = —0.352, a4= —0.018 .
(2.22}

The second pseudopotential is a Starkloff-
Joannopoulos pseudopotential with the form

(2.23)

with

A, =31.192 and r, =1.060 . (2.24)

These two pseudopotentials are shown in Fig. 2. Actual-
ly, the second one is so sharp around r„ for our numeri-
cal grid (16X 16X 16), that it can be thought of as an
Ashcroft' empty core pseudopotential. The self-
consistent computations are carried out by using the
plane-wave basis conjugate gradient method. ' To solve
the Kohn-Sham equations, eight k points are used, so
there are 128 bands in the computations. Then the elec-
tron densities and total potentials are given by the results.
Substituting these correct densities in the above kinetic-

O
O

designed for use on isolated atoms, molecules, or sur-
faces, but rather for simulations of large condensed-
matter systems.

Now some numerical results. will be presented. An
eight-atom silicon cube in the diamond structure is
chosen as our example. Because the current formula can
presently only work for local potentials, we use local
pseudopotentials. Two local pseudopotentials will be
used to test the valuable range of the above formula. The
first pseudopotential is an often-used pseudopotential be-
fore the birth of the first-principles nonlocal pseudopo-
tentials. It is obtained from Ref. 13, and has the form in
k space

O
O
O 0 0

O

I

n
O

. 0.0 2.0 4.0 6.0 8.0

FIG. 1. Function w~(kr~r —r'~) in real space.

10.0

0.0 1.0 2.0
r (a.u)

3.0 4.0 5.0

FKJ. 2. Two pseudopotentials. The dash-dotted line is the
first local pseudopotential. The solid line is the Starkloff-
Joannopoulos pseudopotential. The dashed line is —4/r.
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TABLE I ~ Total energies of different formulas for the smooth first pseudopotential system. Values
are in hartree.

Energy comparison for the first system
Kohn-Sham density Variational density Energy drop

Kohn-Sham
result

First-order
formula

Local kF
formula

Second-order
formula
TF1W

TF—'W

TFlw

Etpt 5 9926
Ek;„=11.5986
E,Q, =6.3020
Ek;„=11.9080
Et t 6. 1234
Ek;„=11.7294
Etot 6 0587
Ekj~: 1 1 6647

tot
=6.0673

Ekj~ = 1 1 ~ 6732
Etot =5 7798

Ek;„=11.3858
Etpt 8 6543
Ekjn = 14.2602

Etot =6. 1870
Ek;„=11.2264

Etot =6.0542
Ek;„=11.6275
Etot =6.0197
E„,„=1 l.5075
Etot =5 7519
Ek;„=11.6439
Etot=5 3413

Ek;„=11.9742
Etpt 7 2278
Ek;„=10.3373

AE„,= —0. 1150

EE„t= —0.0692

EEtot
= 0.0390

AE„t = —0.3154

li~ekEt t
—0.4385

AE„t = —1.4265

energy formula, we get kinetic energies, and can compare
them to the correct kinetic energies of the Kohn-Sham
equations. The TFA,W formula kinetic energies are also
computed for A, = 1,—,', —,'. The results are shown in

column two of Tables I and II for the two pseudopoten-
tials, respectively. Also in the table (and in other tables)
are the results of the local kF formula and the second-
order formula, which will be discussed in the following
sections. They are placed together to facilitate the com-
parison. We will come back to discuss those items later.
For the first-order formula, as we can see, the kinetic en-
ergies computed by the exact densities are either worse
than or slightly better than TF—,'W results, depending on

the systems. The same is true when comparing to the
TF—,'W results. But the first-order formula is much better
than the full TF1W results. A more stringent test is in
the quality of the densities that the formulas produce
variationally. Using the above Kohn-Sham densities, we
get the corresponding total potentials V„,(r) for the sys-

tems, and they are shown in Figs. 3(a) and 3(b). The aver-

exact approx

nexact ~
(2.25)

age variations (
~ [ V (r) Vo j i ) of —these total potentials

are 0.257 and 0.292 hartree, respectively. To isolate the
effects of the kinetic-energy functional, we will use these
total potentials to carry out non-self-consistent computa-
tions for the above formulas. These calculations have
also been done self-consistently, and no significant
difference was found. We used the same numerical
method as for the Kohn-Sham equations to solve the
variational densities of the kinetic-energy formulas. The
variational densities computed by the first-order and
TF—,'W formulas are shown in Figs. 4 and 5 for these two

pseudopotential systems by the contour plots of the den-
sities. Also in Figs. 4 and 5 are the Kohn-Sham exact
densities and the results of the local kF formula and the
second-order formula in the following sections. The er-
rors of the densities are computed by the error of density
in real space

TABLE II. Total energies of different formulas for the sharp second pseudopotential system. Values
are in hartree.

Energy comparison for the second system
Kohn-Sham density Variational density Energy drop

Kohn-Sham
result

First-order
formula

Local kF
formula

Second-order
formula
TF—'W

TF—'W

TF1W

E,o,
=5.6852

Ekjrt: 1 1 8772
Etot =5.853
Ek;„=12.0454
E„,=5.6607
Ek;„=11.8526

Et t 5 6445
Ek;„=11.8365
E,o,

=5.4846
Ek;„=11.6765
E„,=5.1892

E„;„=11~ 3812
Etot =8. 1423
Ek;„=14.3342

E„,=5.5273
Ek;„=11.9517
Etot =5-3855
Ek;„=12.6003
Etot =5.4113
Ek;„=12.1007
E„,=4.2394
Ek;„=13.0372
Etot =3 45

Ek;„=13.6531
E„,=6.7064
Ek;„=10.8595

Etot = 0.3262

EEtpt 0 2742

EEtpt 0 2332

EE„t= —1.2452

E,o,
= —1.7387

EE„t= —1.4359
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4

(b)

FIG. 3. The total potentials of the Kohn-Sham solutions. The cross section for the contour plot of [110) in the diamond cubic lthe
same for all the other contour plots). The contour plots only show negative potential contours for simplicity. The contour interval is
0.007 a.u. (a) First pseudopotential system, (b) Starkloff-Joannopoulos pseudopotential system. Note that there is a small well at each
bonding area in (a).

FIG. 4. Variational density contour plots of the first system for different formulas. They are all plotted in the same levels. The in-
terval between two successive levels is 0.008 a.u. (a) Exact Kohn-Sham density, (b) first-order formula density, (c) local kF formula
density, (d} second-order formula density, (e} TF—,'W density, (f) comparison between the Kohn-Sham density and the second-order
formula density.
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FIG. 5. Variational density contour plots of the second {Starkloff-Joannopoulos pseudopotential) system for different formulas.
They are all plotted in the same levels. The interval between two successive levels is 0.008 a.u. (a) Exact Kohn-Sham density, (b)
first-order formula density, (c) second-order formula density, (d) TF—,

' W density.

and the error of density in k space

y ~n,„„,(k) —n, „„(k)~

y/n. „.„(S )/
(2.26)

TABLE III. Errors of variational densities according to Eqs.
(2.25) and (2.26) ~

First-order
formula

Local kF
formula

Second-order
formula
TF—'W

TF—'W

TF1%

Variational density errors
Second

pseudopotential
system

hn (r) = 10.26%%uo

hn (k) =41.54%
5n ( r) = 11.00%%uo

hn (k) =49.45%
hn (r) =6.04%
hn ( k) =32.29'Fo

hn ( r) =21.95%
hn (k) = 115.54%
hn (r) =30.32%
5n (k) = 157.90%
hn ( r) =25.54'Fo

hn (k) =51.55%

First
pseudopotential

system

hn (r) =7.78%
hn (k) = 19.98%
An {r)=6.43%
hn ( k) =21.95%
6n (r) =3.49%%uo

hn (k) =12.47%
hn (r) =13.15%
hn (k) =44.79'Fo

hn (r) =15.85%
hn (k) =57.53%
An (r) =25.89%
An (k) =45.85%

These errors are summarized in Table III for both pseu-
dopotential systems (because of the limited space, only
some of the results listed in the tables are shown in Figs.

4 and 5, but they are all qualitatively similar). As shown
in the table, for the first-order densities, the errors are re-
duced by a factor of 2 from the errors of TF—,'W densities.
Another interesting variable is the kinetic energy of the
final variational density. These values are listed in the
third column of Tables I and II. However, this variable
mixes the initial correct density kinetic-energy results
(column two of Tables I and II) with the variational pro-
cess. As a result, a bad formula that has a large kinetic
energy for the correct density might have an accurate
final kinetic energy after the variational process and a
large energy drop. So, a more interesting variable is the
total energy drop from the initial exact density to the
final variational density, as shown in column four of
Tables I and II. This variable is a direct measure of the
change in the variational process. It, like the density er-
ror values in Table III, represents the closeness of the ini-
tial exact density to the final variational density. If they
are close, the energy drop is small, and vice versa. As
sho~n in the table, the energy drop of the first-order for-
mula is about a factor of 3 or 4 smaller than the energy
drop of TF—,W. This is consistent with the density error
comparison in Table III.

However, the most important feature of the density
can only be seen in the density plots. Notice that there
are bond charges in the present results, which are almost
always absent in the TFA.W densities. The small bond
charge for the first pseudopotential system of the TFkW
densities exists because there is a small well in the total
potential [Fig. 3(a)]. We found out if we remove that
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well, the TFA,W variational densities will no longer have
the bond charges, while the new formula results still have
them. This can also be seen in Fig. 5 for the densities of
the second pseudopotential system or in Fig. 12 for an
amorphous system In both cases, there is no well in the
total potential, and there is no bond charge for the
TFAW variational densities. So the bond-charge phe-
nomena in our cases are purely the quantum-interference
effects, and they loosely correspond to the shell structures
in the atoms. These bond structures are, of course, very
important to the chemistry. Although the bonds in the
first-order-formula variational densities are still too
small, they are probably the first such variational bonds
computed by an approximate kinetic-energy functional in
a real system, and this is regarded as the most important
achievement of the current formula.

To get the right amplitude of the bond charge, we need
to introduce the higher-order formulas However, before
doing that, we will introduce a way to adjust kF in m 1

ac-
cording to the local density and to test how much im-
provement it can give. %e will also apply our formula to
isolated atoms after this modification.

Ref. 11). But, to do this, we have to carry out the double
integral directly. That is computationally expensive. Be-
sides, there is no a priori reason to know what average
should be used, [n (r)n (r')]'~, —,

' [n (r)+n (r')] or others.
And, actually, none of them seems to do a good job. The
technique we introduce below has no such problems. The
local dependence of kF looks natural, and it is faster to
compute than a double integral. One drawback is that
there is an approximation in the derivation. The accura-
cy depends on how many Gaussian functions are used to
approximate the function W&(k}. In practice, however,
we found this is not a big problem. The results are not
crucially dependent upon the approximation.

First let us consider w, (ro, r) as a wave or a Green's
function that propagates from rp to r in the medium
n (r'), just like the light travels in a medium. Because,
within the range ro to r, the "index" n (r'} of the medium
has changed an appreciable amount, we do not know
what n (r') should be used for kF. However, let us as-
sume that we can break down w, ( ro, r } to N successive
small propagators g ( r, , r&+, ):

III. LOCAL DEPENDENCE OF kp
AND APPLICATION TO ATOMS

X —1

w, (ro, r)=g(ro, r& ) g f d r&g(r&, rl &) (3.3)

W, (k) =— 0.5+5

k —1
2kF

k

2kF

ln

k1—
2kF

k
1 +

In the previous section, we presented a new kinetic-
energy functional of the charge density [Eq. (2.20)],
which incorporated the Thomas —Fermi -von W eizsacker
formula with the linear-response theory. The function
w, (r r') in th—at formula is defined in k space as

where rz=r. Then when N is large, g(rr, r&+~} is local,
and we can use n (r) around ri, r&+„eg.
[n (r, )n (r, +, ) ]' to compute kF. The g can be written as

g (rl~ I r1+) g (kf ~ "I "l+ 1l } .

Now we must determine the most local propagator
g(ri, r&+, ). For a numerical computation, if we use a
discrete mesh, the most local propagator is the propaga-
tor which only propagates to its nearest-neighbor points
on the mesh. But one problem is that, for a homogeneous
electron gas and a cubic mesh, after N successive convo-
lutions of the nearest-neighbor propagator g, the result is
not w, (ro, r), but is a Gaussian function. To simulate

k 3—3 +-
2kF 5

(3.1) Ql
O
O

However, here kF is the Fermi momentum for the aver-
age density n p of the system, i.e.,

k =(3n )'i n 'i
F — 7T nP (3.2)

It may not be legitimate to use the average kF when the
system has large density variations, since the kF in one
place should be quite different from the kF in another
place. This is especially so when one tries to apply the
above formula to an isolated system like an atom; in that
case, the average density n 0 does not make sense at all.
In this section, a technique to solve this problem wiH be
developed, which adjusts the kF locally depending on the
local density and is computationally affordable. This
technique also has general applications to any similar
problem.

First, the most straightforward method is to use some
kind of average n (r) around point r and r' to get kF (see

C)
O
O

N 0
)C

D

O

D
I

CO
D
D

o.o 2.0 4.0 6.0 8.0 1 O.Q

F&G. 6. An approximation of w, (kr ~
r r'

~ } by several—
Gaussian functions in real space. What is shown in the graph
is actually x w

&
(x). The dashed line is the approximated

result. The formula is w
& (x)=0.179e " / —0.459e

+0 3943e x /9. 4 0. 1239
—x /1. 9 0 04l 3 l

—x /0. 3
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w, (ro, r), we need a sum of several Gaussian functions as

m

B3 3//2

(3.4)

One such approximation is shown in Fig. 6. This ap-
proximation captures the most important features of
w&(ro, r) within the region of several I/k~. It is known
from our experience that for ~r —ro~ much larger than
several 1/kF regions, usually the contributions from
different places almost cancel out, so it is not very impor-
tant. In terms of the propagator s, we can rewrite
w&(ro, r} as

N —1m

w&(ro, r)= g A q(r, r&) g J d rig(ri, ri+&)
q=l 1=1

(3.5)

Here r& = r and N are the numbers of propagations cor-
q q

responding to the Gaussian function B . Notice that the
use of several Gaussian functions is not a serious draw-
back numerically. In order to compute the widest Gauss-
ian function B by the nearest-neighbor propagation
mentioned above, we need to consecutively compute the
local propagator N times. During this computation, we
must pass all other Gaussian functions which correspond
to N1, N2, . . . , &N . A simple summation of those re-
sults as in Eq. (3.5) will give the w, (ro, r).

To give a more detailed formula, we have, in the case
of a homogeneous electron density n,

g(&i, &i+i)= 5;; 5;; 5;; C+(5; +, ; 5;, 5,
I I+1 I I+1 I I+1 I I +1 ~1'~I +1 "I'"I+ 1

+5, , 5;+, , 5;; +5, ; 5;, 5;+, ; }b
I I+1 "I I+1 I I+1 I I+1 I I+1 I I+1

(3.6)

and

rf g (il iI+1 }
I+1

(3.7)

so c =1—6b.
The relation between b and B can be found by consid-

ering how the propagation forms the Gaussian function.
It is easy to prove that

B 1 1 a
(2 )2 (3 2)2/3 2/3( ) 2/3(r)

(3.10)

Using this equation, we can find corresponding N for the
Gaussian functions. Now, for the inhomogeneous elec-
tron gas, we can change the above nearest-neighbor prop-
agator g (ii, ii+&) according to the local density by mak-

ing zk=(3n. )' n' (r) in Eq. (3.8), with n(r) being the
local density. So

B =2akF(N b)' (3.8)

B2 B2 B2 B2
~ ~

N1 N2 N N
(3.9)

where a is the mesh lattice constant. Because kF and b

are the same for those different Gaussian functions, we
immediately have

More accurately, n should be the density between sites
i& and iI+1, so the most proper choice is
n(ii)' n(ii+&)' But th. ere is a more general choice,
which is n (ii)"/ '+rn (ii+, )"/ ' r, and y is a free pa-
rameter. This parameter represents a way not only to
modify k„according to the local density, but also to
manipulate the formula according to the gradient of the
local density. The nearest-neighbor propagator g (ii, ii+, )

with parameter y will be denoted as g z(ii, ii+ &
) and it is

gy(ii~ii+1) —5; I 6i; 5;; C
I I+1 ~l ~1+1 I I+1

"I+""I+1 '~I'~1+1 "I"I+1
' "I ""I+1 '~I "~I+I "I'"I+'

+S, , S. . . S, , b, +n, , S, , n. . . b, +S, ,
I I+1 +I I+1 I I+1 I I+1 I I+1 I I+1 I I+1 I I+1 I I+1

(3.11)
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with

where

and

u

(
~ )(1/3)+«( ~ )(1/3) —«n i&+1

B2

(2(2)2( 3~2)2/3

c=1—b —b —b —b —b —b1 2 3 4 5 6

(3.12)

(3.13)

Fourier transform to carry out a convolution, which is
about 21nÃm, » XNm, », this method is about ten times
slower for the system we studied, but is still affordable.
And this method is much faster than the direct double-
integral computation.

Now, substituting the above expression of w, (ro, r) to
the original kinetic-energy functional (2.20), we have

E&,„[n)=g( f f n (r)' '+«G (r, r')n (r')' / l «d r d r'

b, f—n (r)d r ,'—f—n' (r)V' n' (r)d r .

However, notice that

n (i } g«(il, il+, ) =n (ii+i) g«(il+„il } .

As a result, the wi(ro, r) defined in (3.4) is not sym-
metrized. To get a syminetry w, (ro, r), we can redefine it
as

(3.21)

(This will be referred to as the local kF forinula with y in
the following numerical comparisons. ) G (r, r') is
defined as above, and has the following properties:

[n(r)]«G (r, r')[n(r')] «=[n(r')]«G (r', r)[n(r)]

(3.22)

wi(ro, r) =n (ro)«G«(ro, r)n (r)

and G«(io, i) is defined as

(3.15}
and

G& r, r' r'=1 . (3.23)

(3.16}

with iN =i.
q

Finally, the process to compute

F2(ro)= fwi(ro, r)F((r)d r

is clear. First, we can rewrite it as

f'(ro)= f G(ro, r)f(r)d r .

(3.17)

(3.18)

Here f (r)=n (r) «F, (r) and f'(ro)=n (ro) «F2(ro). To
compute (3.18), we need to compute

fl 1+l((1+} X fl('l )g«(i(~ii+1) (3.19)

successively for N times [with f (i) as fo(i)], and sum

up f~ (i) according to (3.16). So the result is
q

f'(i)= g A f~ (i) .
/=1

(3.20)

Now, with respect to numerical efficiency, because b
cannot be too large ( (0.15) (in order to keep the result-
ing N successive convolution of g being close to a Gauss-
ian function), the number of times (N ) to execute the
nearest-neighbor propagator depends on how large B is
and how fine the mesh lattice a is comparing to the
characteristic length of the density n. In our case, for a
reasonable accuracy, N is about 90. In the region where
n (i} is extremely small, b according to above formula
could be larger than 0.15. In that case, make b equal or
less than 0.15, but keep Eqs. (3.13) and (3.14) satisfied.
That will give a satisfactory result. For a 1V like 90, the
computation to carry out Eq. (3.18) is about
7 X90 XN „h. Comparing to the using of the fast

48 (3~2)2/3( 1 6
y )

—2

b =(2 —
—,
' (3~ )1 1 &p

(3.24)

Notice that, when y=0, a, and b1 go back to the
coefficients in Eq. (2.20). The fact that y can change the
values of a1 and b, is very interesting. For example,
when y =(5—43/2) —,

' = —0. 10947, bi is zero. This is in-

teresting because the existence of the b, term is somehow
not being appreciated. At any rate, y provides one free
parameter to adjust, and hopefully it could be useful.
The numerical aspect of computing Eq. (3.21) has been
discussed above. However, to compute the density n(r)
variationally from the kinetic-energy functional (3.21), we
need to compute the density derivative of G«(r, r'). Us-
ing Eq. (3.16) and the expression of g«(rl, rl+, ) in Eqs.
(3.11), (3.12), and (3.13), we can write down the derivative
of G (r, r'). To simplify the notation, let us first define

N —1

6 (i, i) =g (i, i, ) g g g«(il, il+, ), (3.25)
i=1 i I

J

F (i)=g [n(i )]'o'+ G (i, i) . (3.26)
0

In the notation of mesh index i, the first term in Eq. (3.21)
can be rewritten as

gg [n((, )]' '+ G (i, , ([2}(in]2' }' (3.27)
ll lP

Then the derivative of G«(i „i2 ) in this term is

However, because of y, if we carry out the lowest-order
expansion around the uniform density no using Eqs.
(3.22) and (3.23) and the fact that G (r, r') equals
wi(r r'} —when n(r)=no, then we will find out that in

order to get the correct lowest-order expansion, a1 and

bi should not be the coefficients in Eq. (2.20); rather, they
should be
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y y [n(; )]~5&6~+« ~
G (;; )[„(.)](5/6) —«

6n ill 12 q=l
g g [n(i, )]" '+ G '(i„i )[n(i )]"

5n i
1 2

N

(i)I —-'[n(i)] ' ' ']
N

+g g F'« '(')F ' (')[n '
]

l J=1

~ [[(-,'+&»;,;+(-,' —)')g«(i' i)][n(i)] '] (3.28)

It needs the same order of computation as Eq. (3.22) but increased by a factor of 2 or 3. The variational equation for
the square root of the density u (r) = n ' (r) can be written down explicitly as

—Sa([n(r)] « ~ «f [n(r))]' I+«G (r„r)d r) —
', b, n— (r)

+a, f f [n(r&)]' « '+«G (r&, r2)[n(rz)]' « ' «d r, d r2 u(r) —
—,'V u(r)+v(r)u(r)=EIu(r) . (3.29)

This is the equation to be used to compute u (r). The
equation having this form with the term in the large
parentheses as an effective potential v, ff has been dis-
cussed before. ' It is found that, when applying to an iso-
lated system, the correct v, ff must be zero when r~ ~,
and it must be positive everywhere. The properties of v, ff
in our formula will be discussed when we apply this for-
mula to isolated atoms.

First, let us apply this formula to the silicon (diamond
structure) system we computed in the last section. The
results are not very sensitive to y as long as we avoid y's
that cause large values of a, and b, (which cause large
number cancellations). In the following, we only give
y=O results. The kinetic energies for the correct densi-
ties are given in column two of Tables I and II. They are
better than the direct first-order results. But it is difficult
to know how reliable these numbers are, because the ap-
proximation for w&(r r') with some Gaus—sian functions
in Fig. 6 has the same order of error as the kinetic func-
tional itself, so the results could be accidental. Thus we
should concentrate on the variational density results.
Note the total energy drop in the fourth column of
Tables I and II for this local kF method is smaller than
the direct first-order results. That is an improvement. A
density contour is given in Fig. 4(c) for the first system,
and the density errors are shown in Table III. The im-
provements on density errors depend on the systems. For
the first system, the results get better, but for the second
system, the density errors get even slightly larger. Exam-
ining the results more closely, however, we can find out
that in both cases, the densities in the tail region are im-
proved. That is encouraging, because that means this
new formula can indeed adjust the kF according to the 1o-

cal density, and so it can work for both the high- and
low-n (r) regions. On the other hand, the bond density is
still lower than required. This probably means that this

—d(r, t)= —PV d(r, t),d
dt

(3.30)

with d (r,0):—d (r) and d (r, T) the result of the integral.
The relation of P and T with the width of the Gaussian
function can be easily found out. The above diffusion
equation is well defined in the radial coordinate r; actual-
ly, the solution can also be computed by consecutive ap-
plications of a nearest-neighbor propagator in the dimen-
sion r. When n (r) is not uniform, the effect of local n (r)
and y can be represented in the same way as in three di-
mensions. So, the integral fd (r)G (r, r')d r can be car-
ried out in the radial coordinate. The detailed forms are
given as

problem is not due to the constant kF, but is due to some
other factors, perhaps the higher-order effects. In con-
clusion, this local kF formula does show some improve-
ments upon the original first-order formula for the solid
systems. But the improvements are limited.

The real advantage of the kF local dependent formula
over the n, o one is that the new formula can be applied to
isolated atoms. Because of the spherical symmetry of the
atomic density, we can reduce the problem to one dimen-
sion. %hile the conception of the above propagation pro-
cess is unchanged, the formulas can be simplified. Let r
be the radial coordinate, and let i be the index of the
one-dimensional mesh on r. How should we implement
Eq. (3.21) in this one dimension r. Starting with Eq.
(3.21), the problem is to compute the integral

f [n (r)]' '+«G«(r, r')d r in the radial coordinate.
First, this integral can be divided into several integrals of
G«(r, r'), as defined in (3.25). However, when the density
is uniform, G (r, r ) is just a Gaussian function, so the
effect of the integral f d(r)G(r, r')d r is equivalent to
solving the diffusion equation:
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~r')d r= —gd(i)r, Hd(r)Gr(r, r i r=—

The H (i,i ') is defined by

N —1 ~ h (ii, ii+, )H (io, i)=h (io,i, ) g
I

(3.31)

(3.32)

IV—VI are smaller for the
th TF 'W lt Thcurre

Th d'""' "filin this sense. e
1 1s 2s 2p, and

ults are
la densities have humpsshown. Note t as . h t the new formu a en

or

', ' =5; 'b +5;;ho+5;+, ;.b+h (i, i') =5; (3.33)

z i i, ) is the nearest-neighbor prop-W ele lN=h re i =i and hz(ii, ii+, is e
agat

O

with
Y)
O

a1

r; —r, ;; )" ''+rn (l' —1}(1/3) —yr; —r, )(r, —r, 2}n(i

a1
t)""'+&n (t +1)(1/3) —yr)(—r +2 r, )n (i- .«i+1

(3.34)

CJ~ (4
0

CV

C
h

b0=1—

where

+, ,
— )r +b, (r, r, z)r-;b+, (ri+2 ri r, ~, —

( "i+ i "i—i ir.

8 1

2)2/3

0
O

0.0

O

Y)
O

2.0 4.0
r (a.u)

6.0

~ ~ ~Sos' Ja

8.0 10.0

E . (3.9). Finally,and B /N is the value in Eq.

d r r, ' = A d(r)Gr'(r, r')d3rd r)Gr(r, r')d3r= g A r
q=1

= Z, 2 —g d (i )r;Hr '(i, i'
q=1

(3.35)

b n (r} can be written in the
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TABLE IV. Energies of atom 1s for different formulas.

Energy comparison for atom 1s
Exact density Variational density Energy drop and EF

Exact

Local kF

y = —0.10947
Local kF
y=o
Local kF y —0
without [(aran)Gr(r, r')]
Modified formula

y = —0. 10947
Modified formula

TF I W

Etot = —1

E„,= —0.9578
Ek;„=1.0422

Etot = 0.9781
Ek;„=1.0219
Etot = 0.9781
Ek;„=1.0219
Etpt 1 0384
Ek;„=0.9616
Et t

—0.9659
Ek;„=1.0341
Efpf 0 8829

E„,„=1.1171

E„,= —0.9729
Ek;„=0.9954
Etot = 0.9985
Ek;„=1.0338
E„,= —0.9806
Ek;„=1.0661
Etot = 1.1576
Eg;„=1.1200
E„,= —1.0621
Ei,;„=1.0143
Etot = 0 9559
Ek;„=0.9559

EF= 0.5000
b,Etot = 0.0151

EF= —0.2982
bE) t

—0.0204
EF= —0.2090

E,o,
= —0.0025

EF= —0.4933
EEtot = 0. 1192
EF= 0.1818
AEtot = —0.0962
EF= —0. 1899
b,Etot = 0.0730

EF= —0.2322

TABLE V. Energies of atom ls 2s 2p for different formulas.

Energy cpmparispn fpr atpm ls 2s 2p
Exact density Variational density Energy drop and EF

Exact

Local kF

y = —0.10947
Local kF

Modified formula

y = —0.10947
Modified formula
y=o
TF—,

' W

E = —2tot

Ek;„=2
Etot = 1 9430
Ek;„=2.0570

Ek;„=1.9992
E„,= —1.9868
Ek;„=2.0132
Etpt 1 9690
Ei,;„=2.0310
Etot = 1 8990

Ek;„=2. 1010

E„,= —1.9516
Ek;„=1.9895
E,o,

= —2.0073
Ek;„=2.0272
Etpt 2 0863
Ek;„=2.0425
E,o,

= —2.0500
Ek;„=2.0396
Etot = 1.9604

Eg;„=1.9519

EF = 0. 1250
AE„t = —0.0086
EF= —0.0905

E,o,
= —0.0065

EF= —0.1002
Etot = 0 099

EF = 0.0829
AE„t = —0.0810
EF= —O. O851

AEtot = 0.0614

EF= —0.0815

TABLE VI. Energies of atom ls 2s 2p 3s 3p 3d' for different formulas.

Energy comparison for atom 1s 2s 2p 3s 3p 3d'
Exact density Variational density Energy drop and EF

Exact

Local kF

y = —0. 10947
Local kF

Modified formula

y = —0. 10947
Modified formula
y=0
TF—'W

Etot

E,p,
= —3.1037

Ei,;„=2.8963
Etpt 3 2060
Ei„„=2.7940

E„,= —3.0191
Ei,;„=2.9809
Etot = 3.0125
Ek;„=2.9875
E,o, = —2.9054
Ek;„=3.0946

E„,= —3.1215
Ek;„=3.1702

3 2AAA

Ekjn: 3 283 1

E„,= —3 ~ 1112
Ei„„=3.0532
Et t

—3.0868
Ek;„=3.0804
E„,= —2.9599
Ek;„=2.9467

EF= —0.05555
b,Etpt = —0.0178
EF= —0.0484
EEtpt = —0.0384
EF= —0.0496
b,Etot = 0.0921
EF = —0.0427
b E„,= —0.0743
EF= —0.0428
AE„,= —0.0545

EF = —0.0412
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levels in ls 2s 2p 3s 3p 3d', but it can give a shoulder
corresponding to the n =3 level, as we will discuss below.
Besides, the new formulas get better Fermi energies than
the TFA,W do. That means the densities in the tail region
are better for the new formulas than the TFA,W results.

corresponding to the n =1 and 2 levels. Especially for
y=0, ls2s 2p [Fig. 8(a}],the density is very close to the
exact one (but for y= —0.10947, the result is slightly
worse than this one). Although it is very small, like in

the solid system, it is the first time one can use a kinetic-
energy functional to get such shell structures in the varia-
tional densities for such three-dimensional systems. Still,
it fails to give the shell structure between the n =2 and 3 CD

O

CD

OO~Og

CV

C
O

I

hJ
O

I

O

O

N
O

' t

I

I

O 50.040.030.020.00.0 10.0
r (a.u)

OO
O

0.0 30.025.020.015.0
r (a.u)

10.05.0
Q

Q

O Q

CV

Qc
h

O

O~ cv

CV

L Q
O

0.0

I
I
I

O
I

I

t

0

50.040.010.0 20.0 30.0
r (o.u)

LA

O

O
0.0 (c)30.025.020.015.0

r (a.u)
10.05.0

O

Q
OO

F 0'~ ~~ ~

CV

C
h

CV

OO

O
CV

CD

CV

Q

O

20.0 40.0 50.010.00.0 30.0
r (a.u)

FIG. 9. Electron density profiles rn ' (r) of atom

1s 2s 2p 3s 3p 3d' for different formulas. See Table VI for
the corresponding energies. The dotted lines are the exact den-

sities. (a) Local kF, y= —0.10947 density, (b) modified formu-

la, y= —0. 10947 density (solid line). The dashed line is the

variational density after the W& integral term is replaced by the
Thomas-Fermi term. Note the shoulder of the solid line. (c)
TF—'W density.
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FIG. 8. Electron density profiles rn' (r) of atom 1s 2s 2p
for different formulas. See Table V for the corresponding ener-
gies. The dotted lines are the exact densities. (a) Local kF, y =0
density, (b) modified formula, y =0 density, (c) TF—'W density.
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FIG. 10. Effective potential v,z defined as in the large
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Of course, the Fermi energy itself is a very important
chemical value. Another improvement over the TFA,W
results is for the r =0 densities, which are the slopes near
zero in the rn(r) profile curves. Note that the new for-
mulas get almost the exact densities for r =0.

Shown in Fig. 10 is the effective potential v,z defined in
the large parentheses in Eq. (3.29) for atom ls 2s 2p .
As can be seen, v,z does not go to zero when r goes to
infinity. This is caused by the (5/fin)G term in Eq. (3.29).
This happens in the region when we have to fix b+& nu-
merically (see the discussion below). As a result of this
fixing, Eq. (3.28) no longer holds for this region. But that
equation was used to compute the U,~ in Fig. 10. So it is
not absolutely clear whether it is the numerical error or
the formula itself which causes the blowup of v,z. But, in

any case, this indicates that the formula has some
difficulties in the very small density region. Fortunately,
this blowup of v,z is sufficiently out in r that it does not
have a big effect on the density profiles. Also note that,
for some y's, there might be a small negative region of
U ff near the nuclei.

Also included in Tables IV —VII and Figs. 8 and 9 are
the results of a modified formula that is used to try to im-

prove the smallness of the shell structure in the above re-
sults. The same kind of modification for a solid system
will be encountered in the next section. Notice that in
our formula (3.29), we have the full von Weizsacker term
over all space. However, it is well known that, in the
atoms, in the middle region (not the tail, not the nuclei),
when ~Vn ~/n (1, the —,

' von Weizsacker term is ap-

propriate. So the task is how to incorporate the second-
order gradient expansion term into our formula in such
an apparent way. To do that, we can add a term:

k
T,«= —

( —,')—,
' g k'f

k F

(After adding this term, the formula is referred to as the
modified local kF formula in the following numerical
comparisons. ) Here, n'/ (k) and n / (k) are the Fourier
transforms of n' (r) and n (r), and f (k/kF) is a trun-
cation function like exp[ —(k/2k~) ]. Note that this ad-
ditional term does not affect the linear order, so the
linear-response theory is still satisfied. The second term
in (3.36) changes the original W, (k) to W', (k) as

W', (k) = WI(k) —— f8 k k
(3.37)

9 kF kF

This new w', (ro, r) can be computed in the same way as
discussed above. One only needs to change the
coefficients A of the Gaussian approximation. The first
term in (3.36) changes the original von Weizsacker term
depending on k /kF . For k (2kF it is the —,

' von
Weizsacker term, while for k )2kF it is the full
von Weizsacker term. One can use the propa-
gation method to compute f '/ (k)n ' (k) —=d (k) in
real space, then compute —

—,'d(r)V d(r). Actually, we
compute f' (k)n(k)=nI(k) first, then compute—

—,
'n' , (r)V ni (r). One Gaussian function is used for

f'/ (k). Another method is to use a local truncation
function depending on iVn (r)i/n / (r) to determine the
factor in front of the von Weizsacker term. There are
many difFerent truncation functions; a typical one is (see
Ref. 17)

exp
iVn(r)i
n (r)

(3.38)

However, as we found, all treatment of this modified von
Weizsacker term give qualitatively the same results.
Here we only show the propagation treatment results in
Tables IV-VI and Figs. 8 and 9. Note that, for
1s 2s 2p, the shell structure is larger, and the correct
amplitudes can almost be obtained. This is because, in
the oscillating region, it is —, the von Weizsacker term. So
the tendency to smooth the density is small, and the drive
for oscillating from integral Wi(ro, r) is relatively large;
as a result of the balance, the oscillation of the density is
large. However, there are some drawbacks, including the
Fermi energies, the tails, and the r =0 densities. And the
energy drops in column four of Tables IV-VI are usually
larger than the original formula. This indicates some am-
biguity of this modification, or, say, the lack of more deep
guidelines. The existence of the n =3 shell structure is
still missing in the modified 1s 2s 2p 3s 3p 3d' density.
But there is a small shoulder that corresponds to an
n =3 level. To see that, we changed the

gk WI (k)n (k)n / (k) term in the modified formula to
the local Thomas-Fermi term, and the resulting density is
a structureless smooth curve, as shown in Fig. 9(b). The
difference between this smooth density and the un-
changed density demonstrates the effect of WI(k). As
one can see clearly, there is a shoulder around the place
of the n =3 level for the unchanged density, and there
are three oscillations of the unchanged density around
the changed smooth density that correspond to the three
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Eh„[ni ]=A, E„;„[n], (3.39)

where n&(x, y, z) =An(kx, ,ky, kz). As a result, the virial
theorem should be satisfied (except the one just discussed
above, which, without the derivative of Gz, does not
reach the true energy minimum). The lack of satisfaction
of the virial theorem in Tables IV-VI measures the nu-
merical accuracy in the solution. It might be caused by
the fixing of b+i (when r~ao) mentioned above. It
might also be caused by the finiteness of the grid, as indi-
cated by the lack of satisfaction of the virial theorem by
the variational densities of TF—,W. This lack of satisfac-
tion of the virial theorem can be corrected by simply sca1-
ing the density. However, the modification is small.

In conclusion, this local dependence kF formula can
improve some aspects of the density in the solid systems.
It can be applied to the isolated atoms, and gives varia-
tional densities with some shell structures. The attempts
to improve the formula by adding an apparent second-
order gradient expansion correction term have had some
limited successes. Although all the variational densities
of the above formulas show some shell structures, their

shell structures.
There is a numerical problem we must mention here.

In the tail region, because of the exponential decay of
density n(r), the b+, will always get large no matter
what grid we choose. As a result, we have to put 6+1
equal to a constant (e.g., 0.15) after an r, (but keep the re-
lation between b+„b „and bo correct). Fortunately, r,
is usually very large (outside the most interesting region)
and this procedure is stable as long as we treat the values
for r )r, smoothly. But, for the 1s system, the situation
gets worse because the tail is relatively more important
here. As a result, it is not known how well our numerical
result represents the true solution. It appears that the
major problem comes from the derivative term of
Gr(r, r') in Eq. (3.29). However, we can drop this term in

Eq. (3.29) for the variational density. The linear order
behaviors are the same. The drawback is that the
kinetic-energy term in Eq. (3.29) is no longer a total
derivative of a kinetic-energy functional. But it simplifies
the equation. The results for other systems are similar to
the above results. But for the 2s system, this simplified
formula gives a much better answer, very close to the ex-
act one, as shown in Table IV and Fig. 7(b). Also note
that, in column three of Tables IV-VI, for the variational
density the total energies do not usually equal their kinet-
ic energies; in other words, the virial theorem is not
satisfied accurately. The scaling of the above kinetic-
energy formula is correct, which means our formula
(3.21) satisfied the following property

quantitative aspects vary depending on the detailed for-
mulas, and they need to be improved. This also demon-
strates the sensitivity of the variational densities to the
kinetic-energy formula. To close this section, we would
like to mention that complex Gaussian functions can be
used in Eq. (3.4) [which corresponds to complex number
b in (3.6)]. As a result, an accurate approximation of io,
in Eq. (3.4) and Fig. 6 can be achieved for several oscilla-
tions. And with this use of complex Gaussian functions,
the local kF method can also be applied to the second-
order formulas in the next section.

IV. SECOND-ORDER FORMULAS

and

y(r, r')= g y, (r, r'),
i=o

(4.1)

k~ J
J' —d r&V(r&)

y, (r ')=
j+1

Xj, kings,
1=1

Here y(r, r') is the density matrix and

j+1
IIs, .
1=1

(4.2)

s&=lr& r& &l and r~—+i=r', ro=r .

For the second order, it is

In the last section we discussed the dependence of kF
on local density n (r). As shown before, it is very useful.
However, it is only an intuitive treatment. If we want to
know the detailed structure of the correction to formula
(2.20), we need to go to the next order of perturbation
theory. We will go back to use a constant kr for simpli-

city, although the application of the techniques of the last
section is still possible. The use of a constant kF
simplifies the computation, and the kF dependence on
n (r) is partially included in the second-order term It i.s
found in one dimension that the use of second order plus
the use of a deformed mesh to include the local depen-
dence of kF can give rather good results. So second-order
terms play a very important role in determining the den-
sity. The hope is that we can use such a finite-order for-
mula (up to second-order, presumably) to determine the
density to the chemical accuracy. This second-order
theory should not be the direct second-order perturbation
formula, which is rather poor. This theory is modified
from the direct second-order formula. To do that, we
must first find out the direct perturbation terms.

In real space, the plane-wave perturbation theory for
density in a11 orders already exists

ni(r) =yz(r, r )

k~ zd r, d rz j,(kplr ril+kFlri rql+k—Flrq
V(r, ) V(r~)

2~2 2~ 2~ 1'1 T 1 T2 P'2 P'
(4.3)
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Such double integrals are difficult in numerical computa-
tion. Our plan is to transform such integrals to k space;
they then have the form

g g f(k„k2)V(k, )V(k2) .
kl k~

For large k, and k2, f (k„kz) will go to zero. Thus the

f (k, , k2) only occupies a finite region of scale k~ near
the origin. Such f (k„kz) can be broken down to a sum
of several terms which have a form of
f, (k, )fz(kz)fz(k, +kz), thus the integral can be com-
puted by the fast Fourier transform (FFT). This process
is called the separation of the second-order term which
will be discussed later in this section. Because we are
most interested in the structure of the second order, a
modestly approximated separation is enough. Such a
separation has been proven to be not very difficult.

Now to change the integral into k space, we can direct-
ly Fourier transform Eq. (4.3). That probably can be
done, but is not preferred by the authors. Rather, we
chose the direct derivation from plane-wave perturbation.
Let us assume the potential V(x) is small; first define

V(k)= — V(x)e'""d x .I

0

U(k„k2)=
F

U(k„kz)= d k
k kk «kp ka —1ka —1F 1 2 F 1 2

(4.10)

with the definition

a, =2k, /kf and a2= —2k2/k2 . (4.11)

Now to carry out the integral Jd k, we used the well-

known identity,

1
dx

ab 0 [ax +b (1—x)]
Applied to the above Eq. (4.10), we have

(4.12)

xf "F [k —(k —k)) ][k —(k+k2) ]

(4.9)
Now we have a symmetry form for k, , k2, and k3. Our
task is to find U(k„k2). Expanding the square in (4.9),
we have

Here 0, is the volume of the system. According to the
perturbation theory, the perturbed wave functions are

V(k —k, )
Pk (x ) = — e '""+g e

Ek Ek, —

U(kt, k2)= dx d k
k k 0 k ~kF Jk b(x) —1]2

with b(x) defined as

(4.13)

(4.14)b(x)=a,x+a2(1 —x) .
2 1 2V(k —k )V(k —k )

(Ek —Ek
~

)(Ek Ek
~
)—

The integral Id k in Eq. (4.13) can be easily carried out,
and then we have

lkixXe (4.5)

Here Fk =
—,'k is the plane-wave energy. So the total

density is

n(x)=
3 f d k gk(x)pk(x)

=n +On &( )+xnan( )x.

kFkk, o b

kFb +1
F

(4.15)

Substitute Eq. (4.5) in (4.6), and, after some change of in-
dex, we have

2'
n2(x)

k 3 g g g bk +k +k V(kl )
F (2~) k) k~ k3

Note that the above equation depends only on the magni-
tude ofb. From the definition, we have

Here

X V(k2)I(k„k2, k3)e

(4.7)

b =aux +a2(1 —x) —2a&a2x(1 —x)cosO

= (a f +a2~+2a&a~cosO)x

—2a2(a2+a, cosO)x+a~ . (4.16)

I(k, , k2, k3) = U(k, , k2)+ U(k, , k3)+ U(k2, k3) (4.8)

and

Here 0 is the angle between k, and k2. Substituting this
formula for b (x), the integrals Jdx in Eq. (4.15) can be
carried out by the conventional partial integral methods.
The final result is, if k 3

—4 sin 9 ~ 0,
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1 2+k, 2+k2
U(k], kz )= z (k]cosH+ kz )ln + (kzcosH+k] )ln

4k, kzsin 8

(4cosH+k, kz) 2—(k3 —4sin 8)'/
+ (k 3

—4 sin 8}' ln
(4 cos8+ k, kz ) +2( k 3

—4 sin 8) '/

and, if k3 —4sin 0&0,

2+k' 2+k2
U(k „kz ) = (k, cos8+ kz )ln + ( kzcosH+ k, )ln

4klk2sin 8 2—
k& 2—k2

(4.17)

—2(4sin 8—kz)'/ n+arctan
—2(4 sjn28 k 2 )1/2

k]kz+4 cosg
(4.18)

Note that, for reasons of simplicity, in the above for-
mula k, and k2 are renormalized by kF, i.e., they are ac-
tually k, /k~ and kz/k~. Although the formula falls into
two regions with different forms, there is no discontinuity
at the boundary. There is no physical significance for the
boundary of the two regions. Also note that U(k„kz } is
only dependent on k, , kz, and 8, which is also a function
of k„kz, and k3, so U(k, , kz) and I(k, , kz, k3) are also
only the functions of k„kz, and k3. That must be true
because of the overall rotational symmetry. So the func-
tion I(k„kz, k3) can be represented in a three-
dimensional space with axes k&, k2, and k3 and in a trian-
gle cone:

k$ kP 3p k2 k3 ]y k] k3 2 ~

To separate I(k„kz, k3), we only need to separate it in

this variable space.
Now we have the density expressed in terms of the po-

tential V(x). What we want is the kinetic energy in
terms of the density n (r). As in the derivation of the gra-
dient expansion, we can also compute the kinetic energy
in the perturbation theory, then invert the V(r)~n(r}
relation and get the kinetic energy expressed by the densi-
ty. However, here we will use another method, which
first assumes a form for the kinetic energy based on the
symmetry arguments. Then solving the Euler equation to
get the variational density from the kinetic energy by re-
quiring the resulting density to be equal to the above
second-order formula of the density, we can get the
kinetic-energy expression.

To get the second-order density, we need a third-order
kinetic-energy functional:

T[n]= To+ f f b ( n)xb]n( )xfz( ]„x)xdzx, d xz

+f f f hn (x])hn (xz)b, n (x3 }

Xfz(x, ,xz, x3)d x, d xzd x3 (4.20)

5n
T[n]+f b V(x)n(x)d x+ fAn( ,x)d x =0,

(4.22)

we have

Using the Fourier transforms

6V(k) =—f b, V(x)e'""d x,1

0
b n (k)=— b,n (x)e'""d x,1

0
(4.24}

we have

b V(k)+2f](k)b, n (k)

+3 g g ~k+k +k ~n (k] )~n (kz }f2(k]
k) k2

5T]]+ +A, 5], 0=0 . (4.25)

Here

f, (k)= ff, (x)e'""d x

and

fz(k„kz)= f f fz(x, —x3&xz x3)

5TO
+A+2f f, (x —x])bn(x])d x,

+3f b (n]x)hn( zx)fz(x, ]x, zx)d x]d xz

+5V(x) =0 . (4.23)

From the translational symmetry, we have

f, (x, ,xz)=f, (x, —xz),
fz(x, ,xz, x3)—fz(x, —xz, x] —x3) .

After solving the Euler equation

(4.21)

tkl (x& —x3) tk2(x& —x3)Xe e

Xd'(x, —x, )d (xz —x3) . (4.26)

Now, substituting the hn (k) expression in Eq. (4.7) into
Eq. (4.25) and setting equal the two sides of the equation
order by order, we have



13 214 LIN-WANG WANG AND MICHAEL P. TETER 45

1 (3m. )
~'f i(k) — —,, W '(k), (4 27)

Here

f2(k, k„k2)= — f '(k)f '(k, )
lT F

Xf '(k~)I(k, k„k~)

W '(k)W '(k, )
9nokF

x W-'(k, )I(k, k, , k&) . (4.28)

2 4
W(q) =

—,'+ ln
8q 2+q

(4.29)

The k, k„and k2 in the above formula have been renor-
malized by 1/kF as before, and I(k, k„kz) is given by
(4.8).

Now we have a perturbation formula for kinetic energy
in terms of density. Following Sec. II, we want to express
our first two orders of kinetic energy based on the formu-
las in Sec. II. For that purpose, we write down our
kinetic-energy functional as

T[n]= a» f f n (ri)Wi(ri r2)—n ~ (r2)d rid rz —b» f n (r)d r ,' f—n—' (r)V n' (r)d r

+f f f bn (ri)An (r2)hn(r3)II(ri, r2, r3)d rid r2d r3 . (4.30)

The aii, bii and Wi are given in Sec. II. Now we must determine what is II(ri, rz, r3). To find out, we express n(r) as
no+6, n (r), and then substitute it in the above formula. We get some left-out third order from the first three terms,
and, through comparison with the direct perturbation formula (4.20), we get

11(ki k2 k3 ) f2(ki kp k3 ) (3~ ) no [ g$ Wi(k3 )+ i70 i6k3 ]

= —no ~ (3m. )
~ [ —,', W '(k, )W '(k2)W '(k3)I(k„kz, k3) —

—,', Wi(k3)+,7, ——,', k3] .

Because k &, k2, and k3 are symmetrized in the integral, we can symmetrize this formula and get

II(ki, kz, k3)= —no ~ (3m. )
~

[ —,', W '(k, )W '(k~)W '(k3)I(k„k2, k3)

(4.31)

(4.32)

Now we discuss some properties of II(ki, kz, k3). First,
as k„k2,k3~0,

11(k„k,, k, ) 0 .

This is because we have included the Thomas-Fermi
theory in the first two orders of the formula. Because the
TF theory is the result of all order summations of pertur-
bation theory (4.2), all higher-order corrections in our
formula must be zero near the k =0 origin. This is
significant, because most contributions usually come from
the small-k region, and now they are all absent for
higher-order corrections. For example, the third-order
correction in Eq. (4.30) is found to be only one tenth of
the original third-order contribution in Eq. (4.20), in the
system we studied. This obviously speeds up the conver-
gence of our formula.

Next, as k&, k2, k3 +

II,(k, , k, k )=(3~ ) 'nt 'II(k, , k2, k, } . (4.34)

unlike the original second-order term fz( k i, k 2, k 3 },
which scales as k . This is because we included
—

—,
'n' V' n' in the first two orders of our formula.

This further confirms the conjecture that the full von
Weizsacker term is the correct limit for k~ ~. So the
third order and all the higher orders will no longer have
such k scaling. They can only have lower power scaling
on k.

Note that there is an overall no dependence on

11(Ki,kz, k3). In the spirit of all our procedures dis-

cussed previously, we absorb this overall dependence in
An (k, }6n (kz)b n (k3 ). So we define II, as

II( k „k~, k 3 )~finite, (4.33) Then

T[n]= aii f f n (ri)Wi(r, r2)n (r2)d r, d r2 —b» f—n (r)d r ——' f n' (r)V n' (r)d r

+(—') (3m ) f f f bn (r, )bn (r2 }An (r3)IIi(ri, rz, r3)d3r, d3r~d3r3 . (4.35}
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(This will be referred to as the second-order formula in the following numerical comparisons. ) Note that here
An (r) =n (r) —(n ),„.

From the expression of II(k „kz,k& ), we find that as k i, kz, ki ~~,

13II,(k„k~,k, )~—
540

1

120

k
2

k2k~
2

k2

k

k, k,

k,
ki

2
k

+
k, k,

2
k2

k~

2

ki

k~
(4.36)

Another feature of II,(k„kz, ks) is that when k„kz,
or ks crosses 2, it diverges to infinity as
In~(2 —k)/(2+k)~. Fortunately, the integral of such a
divergent area is finite. This means that a perturbation
theory with continuous spectrum n(k) will not have
divergent second-order results from the formula. Then,
in practice, it is reasonable to replace the infinite peak
with a smooth finite one, but keep the integral of the
peaks the same. We found that the system is not very
sensitive to this procedure.

Now let us discuss the separation of the second order.
To efficiently compute the second order, we proposed to
separate II,(k, , kz, ki ) into a sum of several terms, with
each term a product of f, (k, )fz(kz)fi(ki). Then it can
be computed by the FFT. In principle, any function
II i ( k i kg k3 ) can be decomposed in this way. The ques-
tion is how to minimize the number of terms in the sepa-
ration. First, we know II, is only a function of ki, k2,
and k& and is defined in the triangle cone. So we only
need to consider the separation in that region. Because
the function IIi(ki, kz, ki) has a rotational symmetry
about 1, 2, and 3, its separation terms must also have
such symmetry. To separate II& efFectively, we must first
have an understanding of its structure in the space, and
then decide what kind of terms we need to use. Unlike
I(ki, kz, ki ), IIi has a finite tail for k ~~. Fortunately,

-c, =r(ki kp k3)f, (k, )f, (k, )f, (k, ), (4.37)

and

the analytical form for that region is available. We need
a big term ccc, [which includes several small terms like

fi(ki)fz(kz)f&(ki)] to describe that region. Then what
is left is an isolated region in the scale of kF near the ori-
gin. The biggest feature for the left value is a wall-like
structure for k, =2k~ and k&=2k~ and k&=2k~. For
k i kg k3 & 2ki, it is negative. When k crosses 2k+, the
value abruptly jumps to a positive value and then falls
down. We need one big term ccc2 to describe the k & 2k+
negative region, and another term ccc& to describe the
left wall. Finally, another term ccc4 is needed to modify
the final structure near the edge of the walls. We found
out that these four big terms are enough to describe II&

reasonably well. These four big terms are constructed by
hand with the help of computer visualization. They are
created one after another, and no optimizations are per-
formed, although that might significantly improve the ac-
curacy. What we want to show is that even such a primi-
tive approximation can give good results. In the follow-
ing, we write down these four big terms.

The first big term is

13I (ki, kq, kq)=—
540

1

120

k k1 + 2

k2kq k, kq

k 3

ki
k2

k

kq

k~ k

k2 kq ki
(4.38)

and the f, (k) is defined as

f, (k) =0.4k

1+
2.33

when k ~1.95,

Note that, in the above and in the following formulas, all
k are actually k/kz.

The second big term is

cccz=[fi(k, )+fi(kz)+fi(ki)]fz(k, )fz(kz)fz(ki) .

f (k) . +0 05(k 1 8)e
—2. 5~k —2~+ 1

(k —1.835)

when k ~ 1.95 Here

(4.40)
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k —4
fz(k) =0.5+ ln

8k 2+k (4.41)

and f3(k) is

f3(k)= '

( —,(, k —0.002k )

1+
1.955

28

when k &1.84

(4.42)
—P.P55e 42{k '84} when k&1.84.

The third big term is

FIG. 11. Comparison of exact {a} and separated {b}
II((k), k2, k3). The contour plots are on the [110] plane of
(k&, k2, k3 }space.

ccc3 = f4(kz )f4(k3 )fs(k t )+f4(k) )f4(k3 )fs(kz )

Here

+f (k, )f4(kz)f, (k3) .

1 for k&2
f4(k)= 'e 3(k ' for k 2,

and

f, (k)= 0.02e '" ' ' for k &2. 15

Q. P2e 8' for k &2,. 15 .
The fourth big term is

ccc4 = —0.017[fs(k, )f7(kz )f7(k3 )

(4.43)

(4.44)

(4.45)

zl. n} X ~k(+kz+k3~1(kl&kz~k3)
ki, k2, k3

Xhn' (k, )hn (kz g, n (kz) . (4.49)

Here as before, hn ~ (k) should be understood as the
Fourier transform of h, n ~ (r) If w. e start with a known
bn (k), then we need five FFT's to compute ccc„and
two FFT's for each of ccc2, ccc3, and ccc4. So the total
number of FFT's is 11. To solve the variational density,
we need to compute the following expression in the Euler
equation:

S„,„,„ II,(k„k„k,)an'"(k, )ans"(k, ) .
kl, k2, k3

Here

+f6(kz)f7(k, )f7(k3)

+fs(k3)f7(k()f7(kz)] . (4.46)

f (k) —e (k 3) (4.47)

and

0 for k ~0.7

(k —1 95)+1 for 0.7~k &1.95
1.25
—P{k —1.95} for k )

(4.48)

The contour plots of HI and its separated form in one
cross section are given in Fig. 11. It can be seen that, al-
though the separation is not absolutely accurate, it
preserves the basic structure of the original function HI.

Finally, let us discuss how many FFT's are needed to
compute the second order in the above separated form.
Because the symmetry is of above form, the required
number of FFT's is far less than it appears to be. First,
to compute the total kinetic energy, we have

(4.50)

Because of the loss of some symmetry, this computation
is more involved. The number of FFT's to compute this
expression is ten for ccc&, and four for each of ccc2, ccc3,
and ccc4. So the total number is 22. Twenty-two FFT
computations is practical, and is much less than the all-
wave-function computations of the Kohn-Sham equation.

'

But it is still much larger than the other part of computa-
tion in the Euler equation for the density n (r), which has
only five or six FFT's for the first-order and potential
computations. However, in the iterative computation of
the Euler equation, ' because the second-order term is
only a small modification of the first-order and potential
terms, it does not control the size of the convergent step
At. As a result, we only need to update the second-order
term every few (three or four) steps. Then the computa-
tion time spent on the second order can be the same as or
even less than the first order and potential terms.

Before we go into numerical application, we will first
modify our formula one step further, as we did at the end
of the last section. So far, the formula includes the first
and second order of perturbation theory, and it also in-
cludes the Thomas-Fermi theory. The TF theory is the
first term in the gradient expansion series, so we are in a
position to combine the gradient expansion and perturba-
tion theories. We can incorporate the second-order gra-
dient expansion term by adding a term similar to that at
the end of the last section:
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T ( &
)

I g ]]1/2(k)k2f (k)]] I/2(k)

1
(

3 )2 n 5/6(k)k2f (k}n 5/6(k)
n 2/3

(4.51)

Here n' (k) and n (k) are the Fourier transforms of
n'/ (r) and n (r), respectively, and f]](k) is a trunca-
tion function like [1+(k/2)' ] ', which equals 1 when
k ~0 and goes to zero when k &&2. When such a term is
added to the first-order formula (2.20}, we do see an im-
provement for the variational density n (r), especially for
small-k components. When this additional term is used
for the second-order formula, the second-order term
should be modified as

II2(k„k2,k3) II](k] k2 k3)

+ —,', [k,fs(k, )+k2f]](k2)+k3f, (k3)] .

(4.52)

As expected, 112~k when k —+0. Unfortunately, there
are big tails for k& -kz and k2, k3~ ~ and its sym-
metrized counterparts. These big tails give too much of a
contribution and cause a large second-order term. The
resulting variational density gets worse. As a rule of
thumb, to get a better convergent result, we need to get
smaller higher-order terms. So the increase of the
second-order value is not a good sign, unless we do not
include the second-order term. To control the situation,
we have found that a different additional term can be ap-
plied:

second-order perturbation theory. This final formula
[Eq. (4.35), with II] replaced by II2 in Eq. (4.55) plus T,66
of Eq. (4.53}] will be used in the following numerical
study.

The same silicon is used in diamond-structure systems.
The energy results are in Tables I—III. The kinetic ener-
gies computed by the correct densities are better than the
TF—,'W results. The typical components for the second-
order formula kinetic energy are (for the second system)
8.7233 for the W, integral term, 3.3221 for the von
Weizsacker term, —0. 1506 for the second-order term,
and —0.0583 for the above T,&d term (all in hartree). So
the second-order term and the T,dd term are indeed
small. For the variational density, the energy drops are
further reduced from the first-order results. The density
contour plots for the second-order formula are shown in
Figs. 4(d), 4(e), and 5(c). The errors of variational densi-
ties are reduced by a factor of 2 from the first-order for-
mula, and by a factor of 4 from the TF—,'W results. Most
importantly, it increased the bond charges, and the am-
plitudes are almost right. However, the results do cru-
cially depend on the pseudopotentials. For the second
pseudopotential, which is smooth, the situation is much
better than the first one. One can estimate how good the
current formula is for a given pseudopotential by com-
paring it with our two examples. That is one of the
reasons why we computed two pseudopotential systems
in this paper.

Now let us check the quality of the separation scheme.
Because of the symmetry of the diamond structure, the
second-order term can be computed directly without too
much difficulty. Using the V„, in Fig 3(b), t. he variation-

T ( 8 )
1 y ]]1/2(k)k2f (k)n]/2(k)

k

1
(

3 )2 ]]5/6(k)k2f (k)]]5/6(k)
5 2/3 1

(4.53)

Here, as before, n]/ (k) and n] (k) are the Fourier
transforms of n]/ (r) and n]/ (r), respectively. Here
another truncation function is applied to n (k) as

n ( ])k=n ( )kf (9)k. (4.54)

Under this additional term, the modified second order is

II2(k„k2, k3)= II,(k„k2,K3)

+ —,', [ k]f8(k] )+k2f8(k2)+k3fs(k3)]

Xf9(k] )f9(k2)f9(k3) (4.55)

We used [1+(k/2)'0] ' for f]](k) and e '" 2' for
f9 ( k ). A, = 1 is used in the following computations. Thus
there is no large tail for II2(k], k2, k3). This modified
second-order formula does give better results than the
original second-order formula. Then we have a formula
that includes the second-order gradient expansion and

FIG. 12. A silicon amorphous example. (a) Total potential,
(b) Kohn-Sham exact density, (c) TF—'W density, (d) second-
order formula variational density compared with the exact
Kohn-Sham density.
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al density of the separated formula is compared with the
unseparated exact second-order formula density. The
difference between these two densities is 1.6%%uo according
to Eq. (2.10}. The error of the separated formula density
is 6.0 lo comparing to 5.5% of the exact second-order for-
mula result. So, as we can see, the separation is good
enough to preserve the usefulness of the second-order
term.

Another question is whether the high symmetry in the
diamond structure somehow efFects our numerical results
thus limiting our conclusions. To answer this question,
we computed a 12-silicon-atom amorphous system.
The results are shown in Fig. 12 compared with the exact
density and the TF—,'W density. As we can see, the same
conclusion can be obtained, including the accuracy of the
density, the bond charge, etc. So our results do not de-
pend on the symmetry of the diamond structure; they are
general.

In conclusion, the second-order formula does improve
the kinetic energy and variational density further from

the first-order formula. It gives good variational densities
for smooth potentials.

V. AFPLICATIONS

We have put our emphasis on the variational densities
and their contour plots. This is the right approach to
study the formula, because the density itself provides the
richest information and is also very sensitive to the
kinetic-energy formula. However, from the application
point of view, the more interesting things are the real
chemical values computed by the current formula, in-
cluding the cohesive energy, the forces on the atoms, and
structural stabilities. They will allow us to determine
how applicable the current formula is.

To compute the chemical values, we used the first
pseudopotential defined by Eq. (2.21). This time the self-
consistent computations are carried out. The densities
are very similar to the non-self-consistent computations
in the previous sections. Here what we emphasize are the
total energies. We changed the atomic position in
difFerent ways, and looked at the energy curves. The
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FIG. 13. Total energy vs atomic position. Values are in a.u.
The x axis is u /&3. Note that 0.25 is the equilibrium position.
The lower graph is the result after putting the three curves to-
gether. Only one atom is moved in the eight atom cell. 0,
Kohn-Sham results; +, current formula results; E, TF—,

'W re-

sults.

C4
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FIG. 14. Total energy vs atomic position. The x axis is u and
0.25 is the equilibrium position. Only one atom is moved in the
eight atom cell. o, Kohn-Sham results; +, current formula re-

sults; 6, TF—,
'W results.
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Kohn-Sham results are compared with the current for-
mula results and the TF—,'W results. The latter results

represent the best results among the previous existing for-
mulas. Most of the results are shown in graphic form in
Figs. 13-15. The improvement of current results over
the TF—,'W results is well seen. First, the cohesive energy
is the energy difference between the solid configuration
and the separated atoms. Because there is no convenient
way to compute the isolated atoms by the current
second-order formula, we will use the Kohn-Sham atomic
energy to do that. If we assume that the Kohn-Sham re-
sult gives almost the correct binding energy, then, com-
puted that way, the cohesive energies per atom for the
Kohn-Sham current formula and the TF—,'W result are
4.63, 3.85, and 11.50 eV. So the current formula results
are more close to the Kohn-Sham result, and are much
better than the TF—,'W result. The forces of the atoms are
all represented by the total energy versus atomic position
curves. The current formula results are about 15-20%
from the Kohn-Sham results. On the other hand, the
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FIG. 16. Total energy vs lattice length. The x axis is the lat-
tice length. The y axis is the total energy. 0, Kohn-Sham re-
sults; +, current formula results; 6, TF—,'W results. Note the
inclination of the current formula curve.
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TF—,'W results are off by more than a factor of 2. Most
interestingly, when the atoms moved transversely (so the
bond lengths are conserved), the TF—,'W is not stable (in

Fig. 15, the curvature for the TF—,'W energy curve is neg-
ative), while the current formula does give a stable result.
So the current formula begins to give chemically correct
answers. That is very significant, because all of the previ-
ous kinetic-energy functionals fail to do that.

Another value is the lattice length. The energy versus
the lattice length are shown in Fig. 16. Although the
current result is very close to the Kohn-Sham result, one
problem is that the curve leans towards one side. This is
because of the perturbative nature in our formula, espe-
cially the hn term in the formula. So when the lattice
length gets larger, the accuracy of the formula is better,
and there is a systematic inclination of the curve. This is
expected to be improved in future modifications of the
formula. The bulk moduli for the Kohn-Sham current
formula and TF—,'W result are 1.24, 1.05, and 0.73 Mbar.
Note that the current formula bulk modulus is better
than the TF—,'W bulk modulus, because the systematic er-
ror discussed above does not affect the bulk modulus as
long as it is linear.

UI. CONCLUSION

I 0 075 0.050 -0.025 0.000 0.025 0.050 0.075
u (units of lattice constant)

FIG. 15. Total energy vs atomic position. The x axis is u.
Note that in the first order, the bond lengths are preserved. 0,
Kohn-Sham results; +, current formula results; 6, TF—,'% re-

sults. Note the instability of the TF—,W results against this dis-

placement.

In this paper, we have presented a new kinetic-energy
functional that is based on an integral term and its
higher-order corrections, which replace the original
Thomas-Fermi term. The second-order formula also in-
corporates the second-order gradient expansion formula.
Because of the full von Weizsicker term in the current
formula, the rigorous cusp conditions for the electron
density at the nucleus are satisfied. The current formula
variational densities are much improved from the TF—,W
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energy functional in a real physical system. For a reason-
ably smooth potential, the formula gives quantitatively
reasonable results, although to get chemical accuracy one
further step of improvement is needed. We emphasized
the application to solids instead of atoms. The solid sys-
tem is where a kinetic-energy functional is needed most,
and also where the current formula works best. To get
good results, we currently need smooth pseudopotentials.
The first pseudopotential we used for silicon is a realistic
pseudopotential. The ab initio nonlocal pseudopotential,
which works well for the Kohn-Sham approach, can have
the same order of variation as this one [see Fig. 17 (Ref.
23)]. So if the current formula had worked for nonlocal
pseudopotentials, it could give ab initio results with the
same order of accuracy as we showed above. The chal-
lenge is how to make the formula work for nonlocal pseu-
dopotentials. Besides, it could be possible to derive pseu-
dopotentials directly from the current kinetic-energy for-
mula. Such an approach has been proved to be useful.

FIG. 17. The smoothness comparison of the currently used
pseudopotential (dashed line) with the ab initio nonlocal pseudo-
potential (Ref. 23) (solid lines).
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