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Numerical study of the onset of superfluidity in two-dimensional, disordered, hard-core bosons
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The ground-state of hard-core bosons in a random one-body potential is studied numerically to ob-

serve the transition from superAuid to insulating "Bose glass phase. Finite-size scaling analyses are

performed to estimate the transition point and critical exponents. The dynamical critical exponent is

z =1.95~ 0.25 and is consistent with the prediction of Fisher et al. [Phys. Rev. B 40, 546 (1989)].
Values for other exponents and preliminary results regarding the universal conductivity are presented.

There has been much recent interest in the zero-
temperature, onset-of-superfluidity phase transition in in-
teracting Bose systems. ' In this phenomenon the
ground-state superfluidity is destroyed by suSciently
strong disorder that tends to "localize" the bosons. The
transition is believed to be continuous, occurring at a criti-
cal value of disorder strength, and near this point scaling
laws for thermodynamical variables should hold. ' The in-
sulating state has been called the "Bose glass. "' Recent
experiments involving He in Vycor and silica gels have
attempted to observe and characterize the phase transi-
tion. Granular superconductors and disordered super-
conducting films are also expected to act similarly with
the electron Cooper pairs behaving approximately as bo-
sons.

I have studied a simple model believed to undergo the
onset of superfluidity transition, namely, a two-dimen-
sional lattice of hard-core bosons in the presence of a ran-
dom one-body potential (with rms deviation 6). As is well

known, hard-core bosons can be mapped onto a spin- —,
'

XY ferromagnet, and, for the case considered here, the
quenched disorder appears as a random magnetic field
along z at each site. This paper reports a finite-size scal-
ing analysis of the critical point. From the numerical
study of small systems (4 ~ N ~ 25), I have determined
the location of the transition h,, and the values of critical
exponents with an accuracy of 10-20%. Although the un-
certainties are somewhat large, these results provide a
useful characterization of the phase transition. It appears
the prediction of Fisher et al. that the dynamical critical
exponent z is equal to the spatial dimensionality d holds
for the case studied here. The compressibility computed
in this work is found to be finite through the transition,
which also strongly suggests' that z =d. Estimates of ex-
ponents for which there are no predictions are presented
below.

The Hamiltonian for hard-core bosons in a random po-
tential is taken as

0= ——g(a; a, +a, a;)+ g lt;(2n; —1)+Vh, (1)
(ij&

' '
g
——i

where (ij) denotes a sum over nearest neighbors of the
N =L lattice sites. a; (a;) is the Bose creation (annihi-
lation) operator at site i and n; =a; a;. The hard-core
term Vh, restricts n; ~ l. The first term in H is the quan-
tum lattice-gas kinetic energy, and the second represents

a random external potential, yielding energies + h; when
a boson is present at site i or not. In the magnetic
language, H is expressed exactly as

Jg—(S,"S,"+SOS )+2+i,S
&ij ) i

where S;",S, S; are spin-2 operators. 1 will be the unit
of energy. The fields at different lattice sites are indepen-
dent, sampled from a uniform probability distribution
P(h;) with (h;) =0 and (h; )=4 . The calculations are
performed in the fixed boson density p=Nb/N sectors.
For each of the 100 to 500 system realizations of disorder
the ground-state eigenvector yo is computed by the
Lanczos algorithm or by an accelerated power method. '

The soft-core boson Hubbard model (with an energy
-U for multiple occupancy) has been studied recently
both with and without disorder. ' '" For commensu-
rate boson densities (p= 1,2, . . . ) there is a special Mott
insulator to superAuid (MISF) transformation in the pure
system as U is varied. It is predicted to be in the univer-
sality class of the 1+1 dimensional classical XY model.
For suSciently small U, particles can hop on top of each
other and the excess particles and holes then Bose con-
dense to form a superfluid. For large U such fluctuations
become improbable, and the system is an insulator. This
special transition, of course, is not present in the hard-core
system since U=. ' However, one can easily show'
that the pure system, generic (p 1 ) MISF critical
scaling laws are reproduced by the hard-core system. For
the disordered system, the Bose glass to superfluid transi-
tion is believed to be in the same universality class as the
finite U disordered boson Hubbard model. This view

should certainly be correct in d ~ 2 where particles can
move around each other and with bounded disorder satis-
fying U ~ h, . Then, it should not be crucial whether or not
bosons can pile up at the same site. In recent Monte Car-
lo simulations ' of the disordered soft-core boson Hub-
bard model the small U regime has been explored. There
it has been found that increasing repulsion U actually in-

creases p, (thus, repulsion delocalizes the particles). It
has been speculated that in this regime the Bose glass
that results from increasing disorder may actually be a
different phase from the Bose glass obtained at large U.
The present work does not address this interesting ques-
tion, being limited to U=. Below I show that the
Monte Carlo results of Krauth, Trivedi, and Ceperley are
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suggestive of a superfluid to Bose glass transformation at
large U and p =

4 . The mechanism that drives the transi-
tion in this case hinges on whether or not the hopping
term -J can overcome the tendency to localize a boson

The thermodynamic and structural properties are com-
puted as follows. The chemical potential p =BE/BNb and

compressibility x '=NB E/BNs are derived from finite
difl'erences with Nb 1. The superfluid density p, is com-
puted via the helicity modulus, Y (6 /m)p„where
Y=—(1/L )B2E/BH . The phase twist 8 is achieved from
terms e' a; a~+e ' a~a; in H whenever the bond i-j
penetrates the periodic boundary along i.

Off-diagonal long-range order is measured for bosons

by the k =0 condensate fraction, ne, that is the square of
the order parameter:

o—=—(yoi iy &-,(yoi+S;+S, (yo). (2)
I,J

In the spin language, with M, —=g;S,"/N (a = xy, z) and

M,» =M„+M~, one has ne =M„~+ (p —1/2)/N, and,
hence, ne measures long-ranged xy spin correlations. At
T =0, both p,, and ne are driven to zero for sufficiently

large disorder that localizes the bosons and breaks up
superfluid coherence.

The above thermodynamic functions are singular at h,,
and are expected to obey scaling laws. I simply list the re-
sults that are discussed at length in Ref. l. Setting
8—=b, —h,„, the superfluid density and condensate fraction
(in the infinite system) vanish as p, —[b)» and ne )8~ -~

for b &0 and are zero for b) 0. The superfluid correla-
tion function I (r) =(a(r)a t(0)) is long ranged for 5 & 6,
and decays exponentially to zero above the transition.
Near the transition the correlation length ( diverges as
(B~ ". At 6„, I"(r) behaves as a power law I (r)rt +-' z+"~ (defining rI). z is the dynamical critical
exponent that describes how temporal correlations diverge
via g, -( . Lastly, the singular part of the compressibili-

ty and the total compressibility go, respectively, as

fbf
—e —

fbf
v(d+z) —2

fbf
v(d —z) (3)

Figure 1 shows the p,, data for L =2, 3, 4 and p= —,
'

(L=3 has been interpolated to p 2 ). At small I,, p,
tends toward a nonzero value, while for large 6 it extrapo-
lates to zero. It is natural to suspect that a phase transi-
tion occurs in between. To compare with the previous
Monte Carlo work, calculations were performed at p
and h, =0.0, 0.6, 1.7. These disorder strengths correspond
to the ones reported in Fig. 1(a) of Krauth, Trivedi, and

Ceperley for a 6X6 lattice (note that V= J12A where V

is the disorder parameter of Ref. 6). The values computed
here, p, /p=0. 27, 0.15, and 0.02 for increasing 6 are in

good accord with the large U trend in Ref. 6 (note that
there appears to be a discrepancy between the data in Fig.
4 of Ref. 5 and the pure system data in Ref. 6). It will be
shown below that the critical disorder strength for the
hard-core system is about h,,= 1.4. Thus, the large U re-
sults of Krauth, Trivedi, and Ceperley are consistent with
the hard-core boson scenario found here, namely, the sys-
tem is superAuid for A=O.O, 0.6 but not so for 4=1.7.
One-dimensional diagonalizations were performed to
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FIG. l. Superfluid density p, as a function of disorder
strength 6 at density p 2 . The inset shows the extrapolation
of the point of maximum slope of p,'~6 (see text) to infinite sys-
tem size using both 1/L and I/L '~" with v 1.4.

compare with the large U, p & 1 results of Batrouni, Sca-
lettar, and Zimanyi. 3'4 For the pure system, I find good
agreement (=5%) between the one-dimensional (ID)
hard-core boson results's and the U 20 kinetic energy,
chemical potential, and p„ in Figs. 1, 2, and 5, respective-
ly, of Ref. 3. For the I D disordered case, the trend p,, 0
as U in Fig. 4 of Scalettar, Batrouni, and Zimanyi
is consistent with the fact that any disorder localizes the
spinless, noninteracting fermions of the Jordan-Wigner
transformed spin- —,

' XY model. Exact diagonalizations of
the disordered 1D case will be published elsewhere.

Several techniques were used to analyze the 2D disor-
dered hard-core boson data. The first method used here to
find the critical point examines the position of maximum
slope b,„(L) of [p, (A, L)l'/" vs A. The nth root is taken
since it is expected that p, vanishes faster than linearly as
b 0 . Finite-size scaling predicts' that h, (L) —6,
-L ' ". The inset to Fig. 1 shows the extrapolation to
L eo using the value of v found below and n=6, and
suggests that h,,= 1.15.

The second technique to estimate the Bose glass to
superAuid transition point uses the finit-size scaling mo-
ment ratio' ' gL(h)=((M ) )/(M ), where M is ei-
ther M„or M „. A very useful property found to hold for
a wide variety of critical phenomena is that the different L
curves tend to cross at d„with relatively small finite-size
corrections. ' ' Figure 2 displays the gI. (h) curves de-
rived from M„. To rcmove some of the finite-size error,
the "self-correlation" terms [those in Eq. (2) with i =j]
have been subtracted from M . From the finite-size scal-
ing ansatz, gL is a function of the combination L ' "B. To
estimate v one may adjust it until the gI vs L' "8' curves
overlap. The choice v=1.4 and A, =1.25 is displayed in

the inset to Fig. 2. The relation' ' Bgq/BheeL'i" at 6,
may also be used to estimate v. Either method suggests
v=1.4~0.3. The value is consistent with the bound
v~ 2/d derived by Chayes et at. ,

' and is also consistent
with the recent prediction (v=1.4) of Zhang and Ma
using a real-space renormalization group.

In Barber and Selke's generalization of Nightingale's '
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FIG. 2. Moment ratio location of the critical point h,, using
IM at p= 2. The inset shows the scaling plot assuming v=1.4

and h,, =1.25.

phenomenological renormalization group one defines the
function

(4)(,) In [P (6,L )/P(LL, L') ]
ln(L/L')

for all pairs of system sizes L and L' studied. P is a singu-
lar quantity with critical exponent y, and so behaves'
as L P(L h) near the transition. The = curves tend toy/v I/v

2Icross at 6„, at which point they take on the value y/v.
The functions = derived from p,, and from M,~ are plotted
in Fig. 3, and indicate a transition point close to that
found by the two previous schemes.

The above methods place 6„ in the range 1.1-1.3. The
scaling with L at h„can be used to deduce the critical ex-
ponents. After applying a correction to scaling extrapola-
tion suggested by Binder, ' ' I obtain (/v=1. 95~0.25
and 2P/v=1. 4~ 0.3. Using the generalized Josephson re-
lation g/v=(d+z —2) =z, one sees that the value com-
puted here is in agreement with the prediction z=d of
Ref. I. The exponent (= 2.8 and implies the superfluid
density is a markedly flat function of 6 near the transition

(as opposed to the familiar temperature-driven A, transi-
tion in d =2 or 3).

A consequence of z =d is that the total compressibility
is finite (and nonzero) at the transition [Eq. (3)]. The
data for x plotted in Fig. 4 are consistent with finite
x(A, ). Also shown is the exact L=~ result for A&&J
(i.e., a. =0.145/6) which strongly suggests there is no
dramatic size dependence to K over the entire range of h, .
The singular part of the compressibility goes as
x;, —IbI

' and from Eq. (3) one has a= —3.6~1.0. A
singularity of such high order would be diScult to observe
directly.

From the generalized hyperscaling relation ' 2P/v
=(d+z —2+rt), I extract rt= —0.55+ 0.15 which is
consistent with the bounds derived in Ref. 1 of—d —z ~ rt ~ 2 —d, based on certain "continuity" re-
quirements on the single-particle density of states. The
value also agrees with that obtained directly from the
power-law decay of the L =4 correlation function
(a(r) at(0)) at criticality.

The above calculations were repeated at p= 5 for
L =3, 4, and 5. The L =3, 4 results were interpolated to
p= 5 . The transition appears to occur at 6, =1.4+ 0. 1

with values of the critical exponents in agreement with
those computed at p= 2 . The apparently weak depen-
dence of A„on p may be partially due to the fact that
(from particle-hole symmetry) h„(p) is even about p =

2 .
Turning to the conductivity, it has been conjectured'

that precisely at the transition the system is metallic.
Furthermore, the value of conductivity should be univer-
sal, as has been discussed for the d=l case and also for
the d=2 pure system MISF transition. "'2 At A„ the
ground-state conductivity has been computed here by the
Kubo formula,

1 I
e eo

Reo(co) - Re dte'"'(yoI [J„(t),J„(0)]I yo)

(5)

with the current operator J, =(ie*J/2h) g, b8 a ~ba .
e is the charge carried by one boson (e =2e for Cooper
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FIG. 3. Phenomenological renormalization-group function "
vs disorder strength for all pairs of L =2, 3, 4 for the superfluid
density p, and M y (inset).

FIG. 4. Compressibility as a function of disorder strength for
IL =2, 3, 4 at p= 2 . The dashed line indicates the infinite sys-

tem, exact result from ignoring the hopping term.
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pairs). The current-current time correlation function in
the integral was computed by repeated application of the
operator exp(iHdt/h ) to J„(tlto) using a Trotter breakup
and averaging over disorder. The L =3 data for o(to)
suggest a low (but not zero) frequency value of cr/a(i
=0.055 and for L=4, cr/cry=0. 105. cry =e—* /h A.

s-
suming a I/L correction implies an infinite system val-
ue of cr,/ng =0. 17 ~ 0.01. A I /L correction yields
tr„/trg=0. 25+ 0.02. It is not clear what is the exact
form of the correction, indeed, a more careful finite-size
scaling analysis needs be performed before a reliable value
can be deduced. A heuristic argument can be given in

favor of a I/L correction: the integral fo dtoReo(co)
is equal to tr try(( —T„)—p, ), where T„ is the kinetic en-
ergy per site in the x direction. All of the data computed
here obey this sum rule. Numerically, I find the correc-
tions to (T,) and p, are I/L (i.e., I/L'). Now, assuming
the correction to Rea(at) comes from an overall rescaling
factor at most to (as the data suggests), then there should
be a I/L correction for Reo(to) at small co. The conduc-
tivities computed at p= —,

' are consistent with a I/L be-
havior, and extrapolate to a value cr, /try =0.15 ~ 0.01.

The value tr, /og-0. 15 —0.17 is not unreasonable, as
Cha et al. '' have found in d= 1 that an appropriately
defined universal conductance for the Bose glass to
superfluid transition is 25% lower than that for the MISF
transition, and, for the d=2 MISF case they find o,/
oq =0.2S5+ 0.02. The lower value at the Bose glass to

superfluid transition suggested by the present data is,
therefore, consistent with the d =1 trend.

In summary, I have reported a finite-size scaling study
of the d=2, T=O, Bose glass to superfluid phase transi-
tion in which the critical exponents g, P, ri, z, and v and
the universal conductivity have been computed. z is found
close to 2, in agreement with the prediction of Ref. l. One
may argue that the system sizes (L =2, 3, 4) are too small
to study the critical phenomenon reliably. It is possible
that the results reported here may be biased due to the
small lattices considered. This would certainly be the case
if large or rare domains of disorder or a long crossover or
localization length play a crucial role in the transition.
The most likely scenario seems, however, that the true ex-
ponents are close to those reported here since nothing
unexpected happened in the finite-size scaling analysis.
Present work on 5X5 lattice with Ny =12 should allow
one to address more carefully the magnitude of correc-
tions to scaling for this system.
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