
PHYSICAL REVIEW B VOLUME 45, NUMBER 22 1 JUNE 1992-II

New class of singlet superconductors which break time reversal and parity
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A class of singlet superconductors with a gap function A(k, co„) which is odd in both momentum and

Matsubara frequency is considered. Some of the physical properties of this superconductivity are dis-

cussed and it is argued that in many cases there is no gap in the quasiparticle spectrum and these su-

perconductors will exhibit a Meissner eA'ect.

Some recent models of high-T, superconductors with
unusual structure of the gap function A(k, co„) have intro-
duced general questions about the possible symmetry
types of the gap for singlet superconductors. For example,
Mila and Abrahams' discussed a singlet superconductor
with a gap which is an odd function in (k —kF). This
form, as discussed by Anderson, annihilates the effect of
strong short-range repulsion.

A careful symmetry analysis leads us to the conclusion
that in addition to the standard BCS-like singlet gap func-
tion, there is a new, apparently unnoticed, class of singlet
superconductors, whose gap function LL(k, co„) and anoma-
lous Green's function are odd in both Matsubara frequen-
cy m„and momentum k.

I

Nearly two decades ago in a little-noticed article,
Berezinskii considered the possibility of unusual S=1
triplet pairing in He. He argued that it is permissible,
from the point of view of symmetry of the superconduct-

ing gap, to have a phase in which the gap function is a
vector in spin space for triplet case, odd in Matsubara fre-

quency, and even in momentum k. Although it is now

commonly believed that, in the observed phases, the gap in

superAuid He is even in frequency and odd in k, there is

no symmetry restriction which prohibits the phase pro-
posed by Berezinskii.

We shall adapt Berezinskii's approach to the singlet
case. We introduce the anomalous Green's function in d
dimensions,

pp
(k, co„)=—g „dr„dr e'"'e'"'(T, Vt, (r, r) Vrtt(0, 0) )gtt, ,a —p

with the notations g,tt =(t'oy ),tt a spin metric tensor, r the
Matsubara time, and P=l/T. Note that the anomalous
Green's function is explicitly written in a general spin-
singlet form; the function F(k, co„) is a true scalar:
S+F(k,co) =0, where S+ =QS;+ is the total spin-raising
operator. The same discussion holds for the anomalous
self-energy W(k, co„) and the gap function h(k, co„).

If one assumes that the spatial wave function for the
singlet Cooper pair is an even function under k —k,
the standard BCS expression for the gap h(k, r)
cx:(T,Vt1, flic —1,1) is recovered. We do not want to make
any assumptions at this point, so the anomalous Green's
function F and anomalous self-energy W are taken in the
form of the general singlet, Eq. (l). Then the only con-
straint on the possible symmetry of F and W follows from
the anticommutativity of the y operators in F, and we im-
mediately get, for the singlet case,

F(k, co„)=F(—k, —co„),

A(k, co. ) =a( —k, —co.) .

(2a)

(2b)

There are two distinct ways to satisfy Eqs. (2) in terms of
definite symmetry types of the gap.

(a) The standard Eliashberg-BCS singlet gap which
is even both in co„and k, h(k, co„)=6(—k, co„)=d(k,

I—co„). For this kind of pairing the equal-time anomalous
Green's function is nonzero, leading to the usual oA-
diagonal long-range order (ODLRO). Then the equal-
time Cooper pair orbital wave function has to be sym-
metric in electron coordinates since the spin wave function
is a singlet and antisyrnrnetric.

(b) Singlet superconducting pairing with a gap which is
odd in both k and co„,

F(k, co„)= F( k, co„)= ——F(k—, —co„),

a(k, co„)= —a( —k, co„)= —a(k, —co„) .

(3a)

(3b)

In this paper, we shall consider this kind of singlet super-
conductivity. Equation (3b) implies that the spin-singlet

gap is described in terms of an odd orbital function, while,
at the same time, the spin function is odd. There is no
violation of the Pauli principle because the equal-time gap
function vanishes since the gap is odd in cu„. The physi-
cal consequences of this behavior of the gap are far reach-
ing. For example, such a system does not exhibit conven-
tional ODLRO which requires a nonzero equal-time
anomalous correlator.

Before discussing the physical properties of such a su-
perconductor, we consider the microscopic Eliashberg
equations which lead to this kind of gap function. With
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standard Nambu-Eliashberg notation, the matrix Green's function has the form

Eco„Zk(co„)rp+ W(k, co„)r ~

ro„Z k (ron ) + ( W(k, con ) (
+ ek

The one-loop self-energies in the superconducting and normal channels are

W(k', ro„)
W(k, con) = —T g Vkk (ron —

ron )
2n k ', ' ro„Zk (con )+ok+ W(k', ron)

[I Zk(ron)]tron =T g Vkk (ron —
ron )

& ron'Z k (ro'n )'
n', k' ro„Zk (co„)+ ek + (

W'(k', ro„) (

(4)

(Sa)

(Sb)

where Vkk (ro„—ro„) is some effective interaction. These
equations are written with the assumption that the same
interaction enters into both Eqs. (Sa) and (Sb); the effect
of impurities is neglected. It follows from Eqs. (3a) and
(3b) that only the odd components in k, k', ro„, and ro„of
the potential Vkk (ro„—ro„) contribute in the momentum
integral and frequency sums in Eq. (Sa). As indicated
earlier, we assume in this paper that Zk(co„) is an even
function of k and ro„Othe. r possibilities will be discussed
in a subsequent paper. Then only the even-in-k and
odd-in-ro„components of Vkk(ron —ro„) enter the right-
hand side of Eq. (5b). The k dependence of the normal
self-energy near the Fermi surface is usually weak, so we
shall neglect it in Eq. (5). We see that there are no intrin-
sic inconsistencies within the Eliashberg formulation
which forbid the odd gap solution of Eq. (3b).

In what follows, we discuss how an interaction mediated
by phonons can lead to the odd gap,

2 2 Akk (co)ro
Vkk(Q») =a Dkk(IIn, ) =a — dro&4 e +0„,
where 0» ron

—ro„ is an even (bosonic) Matsubara fre-
quency. Then antisymmetrization in Dkk(ro„—ro„) over
m„automatically implies antisymmetrization over co„. In
the phonon case, there needs to be sufficient k dependence
in Dkk (0) to be able to produce odd-in-k, k' interactions.

I

k. k'm„m„

c'(k+ k') '(k —k') '
o)c

ckF

2

where co, is the maximum phonon frequency. The linear-
ized gap equation is then

(

Phonons do not contribute to the (odd) pairing kernel of
Eq. (Sa) if they are described in the Einstein approxima-
tion with k-independent spectral density A (co).

To illustrate, consider the weak-coupling (Z= I ) limit
of the Eliashberg equations (5). Although interaction
with phonons does produce a Z-factor renormalization, we
neglect it for this discussion. Our purpose here is to give a
discussion based on a model interaction and not to propose
an actual phonon interaction. Thus, we assume Z= l and
that the odd-pairing kernel arises from the odd part of an
interaction mediated by acoustic phonons with

c'(k —k')'
Vkk(n) =a2 2, 2 2

(7)
c k —k' +2n 2

For k-k'-kF the frequency in the phonon propagator is
usually small in comparison with the term containing the
momenta: (Q(«c(k —k'(. This allows us to expand
Vkk(D) in Eq. (7). Keeping in mind that only the odd-
in-k, k', ron, and ro„components contribute to the gap
equation (5a), we obtain

k k'co„ro„h(k', ro„)
a(k, ro„) = (4a 2/Tc )2g

n', k' k +k' —4 k k' ro„+ok
(8)

From Eq. (8), it follows that the gap has to be linear in

frequency up to the cutoff ro, . We shall use the ansatz

a
1 = 1+ —'x

ac
(lO)

Here %pa„=a(ckF, ro, ), where a is a positive constant of
order unity.

The thermodynamics of this phase is diAerent from the
one for BCS superconductors: For intermediate couplings
a & a„ the gap equation leads to a nontrivial solution in

a(k, ro. ) = "
d(k, co„)

co kF

with d(k, ro„) =de(ro, —(ro„(), where e(x) is a step
function. Combining Eqs. (8) and (9) when T & ro„we
find that the gap equation exhibits nontrivial solutions
above a critical temperature T, , where

the temperature range T„&T & T, , where T„,of or-
der co„ is the temperature at which the smallest value of
ro„ in the sum of Eq. (8) exceeds the cutoff, rendering the
right-hand side zero. In the region just above T, , the
system is described by a Ginzburg-Landau (GL) theory
with order parameter (d( ee (T T„)'~ . At larg—er values
of the coupling, a & a„ the lower critical temperature
T, goes to zero and the lo~er GL region vanishes. Berez-
inskii found analogous results in his treatment of the
odd-frequency gap for triplet pairing. Detailed analysis of
the thermodynamics and GL theory of this phase will be
given else~here.

A special case of the odd gap will occur if the form of
the interaction admits a solution of the form d(k, ro, )
=k dsgn(n). In this case, the T, equation from Eq. (5a)
is precisely that of a p-wave BCS superconductor and the
condensed phase occurs for T, & T & 0. We shall not dis-
cuss this possibility further.
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We conclude that the only criterion for a physical sys-
tem to choose between odd and even gaps is the overall
minimum of the free energy. From our discussion, it fol-
lows that the standard BCS s-wave superconductivity will
have lower energy, at least for a weak electron-phonon in-
teraction. However, if one takes a short-range repulsion
(as in the Hubbard model) into consideration, the "no-
double-occupancy" constraint Pi, h(k, to) =0 must be
obeyed in the superconducting state. This is automatical-
ly satisfied for the odd gap and in this case, odd pairing
may be favored over the conventional BCS state whose en-
ergy will be raised by the repulsion.

Let us consider some of the physical properties of an
odd gap superconductor. An important consequence of a
gap which is odd under r —r and under r~ —r is
that one has broken time reversal and parity. This leads
to the existence of the orbital Goldstone vector d(k, ro„)
which is analogous to the orbital momentum vector in the
triplet superconductors. Below we will assume that d is a
real vector; however, there are other possibilities.

With our ansatz, the quasiparticle spectrum for such a
superconductor is gapless. Indeed, if we assume the gap
function has the form in Eq. (9) with a real d(k, to„)
which is smooth and even in ro„and k, then we find from
the poles of the Green's function, Eq. (4) (in weak cou-
pling, Z= 1), that

~a

[1+(k d ) '/(k Fto ) '] ' '
Thus quasiparticle excitations in such a superconductor
are gapless; the only effect of superconducting correla-
tions is an effective mass renormalization, mq =m[1
+ (k d) /(kFto„) ] 't . From this point of view this super-
conductor is essentially a normal metal with nonlocal su-
perconducting correlations. Note that the gap vector d(k)
and the mass renormalization vanish when kJ d. The
gain in free energy in the superconducting state is given

I

by the standard BCS expression,

= —
2 Wpd 2 (12)

where the gap is assumed to have the form of Eq. (7) with

d(k, ro„) independent of ro„and where No is the density of
states at the Fermi surface. This formula also follows
from the observation that the effect of such pairing on the
low-energy states is an increase of the density of states
N -Num /m. This results in an energy change bE

ro, (N —No) which is equal to the right-hand side of
Eq. (12).

There is no static order parameter since F(r~, r2, t~,
t~) =0. Nevertheless, the global electromagnetic U(1)
group is broken because even for nonequal times t t, t2 and
space points r~, r2, the existence of the anomalous correla-
tor implies

(y, (t ~, r~ )gati(t2, fp)) e' (y, (t ~, r~ ) gati(t2, r2))

under this transformation. This suggests that the elec-
tromagnetic response of these superconductors will be the
same as for BCS superconductors; they will exhibit a
Meissner effect. In order to calculate the kernel in linear
response, we shall use standard expressions from the BCS
theory, and take into account the frequency and momen-
tum dependence of the gap. Because the gap function is a
scalar in our case, the correction to the gap function
h(k, ro„) which is linear in the gauge potential A, is pro-
portional to divA. In the gauge divA =0, we can use the
linear-response theory with the unperturbed gap function
given by Eq. (7). This can be checked within linear-
response theory directly with the use of the Peierls substi-
tution k k+2eA. The kernel for the static response has
the form

(13)

The fact that the kernel is logarithmically divergent
means that this particular type of superconductor is of the
Pippard type at low enough temperatures (the tempera-
ture has to be very small because of the weak logarithmic
divergence). In the vicinity of the critical temperature,
however, the temperature dependence of the penetration
depth is that of the gap squared,

2m [1+(d/to, ) '] 't'
15

Ne 'rr (d/to„) ' d2

where g~ =(+ —,
' k v and analogous notations for the

gap. From Eq. (13),we can find the asymptotic kernel for
small momenta, assuming that the gap h(k, ro„) is essen-
tially linear in momentum and frequency as in Eq. (7),

co, (d/to, ) 2

[1 + (d/ro )~] &ti

This makes this superconductor of the London type in the
vicinity of T, . If we assume that the gap as a function of
frequency has larger power than unity, we can obtain a
penetration depth which is finite in the whole range of
temperature.

In conclusion we found a class of singlet superconduc-
tors with a gap which is odd in both momentum and fre-
quency and we showed that there is no symmetry restric-
tion which prohibits this kind of gap function. The physi-
cal properties of these superconductors are rather unusual.
Parity and time-reversal symmetries are broken; this leads
to Goldstone modes and makes these singlet superconduc-
tors analogous to superfluid He. There is no gap in the
quasiparticle spectrum, and the equal-time anomalous
(pair) correlator vanishes. Hence, there is no ODLRO in

the usual sense but we find that there is a Meissner effect.
Static impurity scattering will be pair breaking, as is usual
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for anisotropic superconductors. At moderate coupling,
the normal phase reenters belo~ T, . The coherent state
appears to be a result of pairing among the thermally ex-
cited quasiparticles which are present at nonzero tempera-
ture. All these nontrivial properties deserve further inves-

tigation.
Note added in proof T.he calculations reported here

are only illustrative —they are designed to elucidate some
general properties of odd-gap superconductivity. In the
acoustic-phonon case discussed above, the Z-factor renor-
malization actually renders the condition of Eq. (10) im-
possible to satisfy. It was brought to the authors' atten-
tion' that due to the positivity of the square of the

eA'ective coupling, the structure of any kernel Vkk(O)
which arises from a boson exchange process is such that a
simultaneous solution of the two Eliashberg equations,
Eqs. (5a) and (5b) is improbable. This issue and the con-
sideration of other effective couplings for the odd-gap case
will be treated in a forthcoming publication. ' '
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