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Weakly frustrated spin- 2 Heisenberg antiferromagnet in two dimensions:

Thermodynamic parameters and the stability of the Neel state
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Using a Schwinger-boson mean-field theory, we calculate the low-temperature uniform transverse

susceptibility g& and spin-wave velocity e for the weakly frustrated spin-2 square-lattice Heisenberg

antiferromagnet with exchange couplings Jl, J2, and J3 to first, second, and third neighbors. By con-

necting g~ and c to the bare coupling of the nonlinear cr model that describes the long-wavelength lim-

it of the antiferromagnet, we are able to improve upon earlier renormalization-group estimates of the
zero-temperature phase boundary separating Neel and magnetically disordered ground states. To
one-loop level in an e expansion we find a disordering transition across a line joining the points

(J2,J3)/Jl (0.15,0) and (0,0.09). Thus, the classical phase boundary (J2+2J3)/Jl = —,
'

is shifted

asymmetrically by quantum Auctuations, as expected when the transition is to a columnar dimerized

ground state.

Introduction. As seen in recent developments, the
discovery of two-dimensional (2D) magnetic structures in
the high-T, superconductors has sparked an intense in-
terest in low-dimensional antiferromagnets. ' In particu-
lar, much effort has been invested in understanding the
effects of the zero-temperature quantum fluctuations on
the 2D ground state for spin S= —,'. Contrary to early
suggestions, there is now strong evidence that the 7=0
ground state of the spin- —,

' square-lattice Heisenberg anti-
ferromagnet with nearest-neighbor exchange is not disor-
dered by quantum fluctuations. However, things turn
more controversial when adding exchange interactions be-
tween next-nearest neighbors. This gives the J|-J2model

l23 yt 12+J3XSR SR+2e er

R,a
(2)

'Pl2=Jlg SR'SR+~+ J2+SR'SR+tt t
R,a R,p

with J),J2~ 0, and where the sums run over all lattice
sites R with attached spin operators SR, as well as over a
( e„e,, ) and P (=e, ~ey), a and P denoting lattice
vectors to half the number of nearest and next-nearest
neighbors, respectively. Studies exploiting modified spin-
wave theories and their equivalents (as well as the phys-
ical N I limit of certain I/N expansions ) predict a
first-order transition at J2/Jl =0.6, separating the semi-
classically established Heel and collinear states. In con-
trast, series expansions, self-consistent perturbations,
numerical studies, " and certain mean-field constructions
suggest that a spontaneously dimerized (spin-Peierls)
phase may open up for some intermediate range of values
of the frustrating coupling J2. Other proposals for mag-
netically disordered phases have also been made, such as
the chiral and twisted spins liquids. '

Some time ago, two of us' used a renormalization-
group (RG) approach to address the problem of Neel sta-
bility for an extension of the Hamiltonian in (1), the Jl-
J2-J3 model:

with J3~ 0. For large spin, and in the presence of local
Neel order (weak frustration), the dynamics of the order
parameter was found to be governed by a quantum non-
linear o model with a bare coupling gn given by

5 1
go dS(S+ I) c»

Here c, the spin-wave velocity, and», the uniform trans-
verse susceptibility, are given by the same expressions as
in spin-wave theory (SWT), using units where gp =1."
With a—= (J2+2J3)/Jl, one has c =J8(l —2a)JlS and

» =1/(8Jl), the latter being independent of frustration.
From a one-loop recursion relation for the infrared cou-
pling flow of the model, ' and a physically proper lattice
regularization, ' a zero-temperature disordering transi-
tion at the fixed point value go=4' was obtained. This
then gives a critical frustration a, . For any spin S
the result closely mimics that obtained by studying
O(1/S) corrections to the sublattice magnetization in

SWT, ' supporting the use of a one-loop approximation
for the fixed point. '

Turning to small spins, the semiclassical parameters in

(3) will pick up corrections from quantum fluctuations.
We argued in Ref. 10 that these corrections can depend
only weakly on the frustrating couplings J~ and J3, so that
we could use the quantum corrections for the unfrustrated
interaction to a good approximation. For spin —,', the
correction factors are Z, =1.18%-0.02 and Z» =0.52
~0.03. ' ' Inserting these numbers into (3) one finds a
transition at a, =0.22 ~0.04. This is substantially lower
than the semiclassical prediction a, =0.4, as expected in

the presence of strong destabilizing quantum fluctuations.
However, considering the very large discrepancy between
this result and that of the modified spin-wave theories,
where the Neel state is actually stabilized beyond the clas-
sical boundary (a„=0.6), the issue needs to be reexam-
ined. This we shall do in the present paper by attempting
a direct calculation of c and» in the presence offrustra
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tion. Rather strikingly, our improved stability estimate
reveals a signature characteristic of a transition to a
columnar dimerized phase.

Sch winger bos-on mean +el-d theory (SBMFTJ. In-
spired by the success of the SBMFT to cleanly produce
the parameters c and g& for the unfrustrated spin- —,

'

Heisenberg model, ' this is the method we choose also for
the present problem. Since the SBMFT yields good esti-
mates of these parameters in the presence of disordering
thermal fluctuations, we do expect the theory to be applic-
able also in the presence of enhanced quantum fluctua-
tions due to (weak) frustration.

Following Arovas and Auerbach, ' we introduce two
boson operators b„R (tu =1,2), and write

d k

(2/r) ' cosh(28k)(nk+ 2 ) —(S+ —,
' ) =0,

d k

(2z) ' sinh(28k)yl k(nk+ z ) 2 QI =0,

d k

(2tr) ' cosh(28k)y k(nk+ —,
' ) ——,

'
Q =0,

(i ia)

(1 I b)

(i ic)

with j=2,3. Here nk =[exp(ptok) —1] ' is the Bose dis-
tribution function, and Ok is given by

For any set of fixed values of Ji, J2, J3, and inverse tem-
perature p = I/kttT, the parameters 1I„QI, Q2, and Q3 are
obtained by numerically solving the integral equations
corresponding to a stationary free energy:

SR 2 bpR rspPvR 1 (4) tanh(28k) = 2J }Oiyi, k

~+ 2J2Q272k+,2J3Q3)'3, k
(i 2)

with the local constraints b„Rb„R =2S. Here a=( o", o',

a-) are the Pauli matrices, and summation over repeated
(Greek) indices is implied. By a /r rotation of the spin
operators (and the corresponding local states) around the

y axis on one sublattice, the Hamiltonian in (2) gets
transformed into

/t 123 J I Z II R,c +J2Z II R.tl +J3Z )I R.2a
,A 8 8

Ra RP Ra

+g&R [b„Rb„R—2S],
R

(s)

The link operators remain to be defined:

+RbbIRb , IR+b+b2Rb2R+b ~

~R.b blR bIR+ b+b2R b2R+b ~

(7a)

(7b)

To generate a mean-field theory, we do the Hartree-
Fock decoupling

+Rb+RS. +R (+bRII)+(+Rb)+Rb +(R b)+(R b~)

(8)

and assume that the condensates Ql =—(AR, ), Q2
=(XR tl), and Q3 =—(SR 2~) are uniform and real. As long
as the frustration is weak and does not change the charac-
ter of the ground state, this assumption is reasonable since
real condensates have been shown to minimize the free en-

ergy of the unfrustrated model. '

Replacing the local Lagrange multiplier A, R by a single
parameter A. , the resulting mean-field Hamiltonian is easi-
ly diagonalized in momentum space, and yields free bo-
sons with dispersion relation

where the last term has been added to enforce the local
constraints, and the summands are defined through

X
II R,s Y +R,b+R.b ~

Turning off J2 and J3, these equations collapse to those
obtained by Arovas and Auerbach ' for the ordinary
Heisenberg model via a functional-integral method. In
our case, however, the frustrating terms in (S) come with
the "wrong sign,

"and preclude a similar treatment.
Thermodynamic parameters. The spin-wave velocity c,

as well as the mass m, of the excitations, can be obtained
by expanding (9) to second order in k and writing tok in

the form tok =c[(mc) +k ] '/ . This yields

c = [2J I Q I
—2(J2Q2+ 2J3Q3) (&+2J2Q2+ 2J3Q3)] '

(i3)

mc =[(X+2J2Q2+2J3Q3) —(2JIQI) ] '/ . (i4)

The mass m goes to zero as T 0, since the excitation
spectrum is gapless in the Neel state.

To obtain the spin-wave velocity c in the T 0 limit,
we have solved Eqs. (11) for S= —,

'
in the temperature

range 3 & J I p & 11, fitted c to a power series in T, and ex-
trapolated down to T=O. As a check, we have also calcu-
lated c at T=O by using a zero-temperature version of
SBMFT. The resulting c is plotted versus the frustrating
coupling in Fig. l. The three slices of coupling space that
we have chosen are (J2,J3)/Jl =(O, a/2), (a/2, a/4), and
(a, o), with 0(a( —,

' (a= f being the classical transi-
tion point).

In the unfrustrated case, the mass m Ix'exp( —const/T)
as T 0. ' Since frustration increases the magnitude of
quantum fluctuations, whereas temperature increases
thermal fluctuations, it is interesting to examine how the
mass varies with frustration at a fixed finite temperature.
Even if we have not made any extensive analysis, it ap-
pears that m scales with frustration as an exponential for
small a, as indicated in Fig. 2.

Turning to the uniform susceptibility, its rotational
average g is connected to the structure factor S„,(q, t) by

Mk [()I.+ 2J2Q2T2k+ 2J3Q3$3,k) (2J I Q I gl.k) g= z,„(q =o, t =o),1

8
(is)

The geometrical factors are here given by

)/I. k 3()/ )l2k 2 (,cosk„+cosk, , ),
yp g =cosk„coskI, .

(ioa)

(lob)

where

2 ~ d'k
S,-„(q =O, t =0) =— —,

' nk(nk+ 1) .
(2 )'

Here, a factor 3 has been inserted in the right-hand side
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FIG. l. The T=O spin-wave velocity vs frustration a. The
lines correspond to (from the top) SBMFT with (J2 J3)/J)

(O, a/2), (a/2, a/4), and (a,O), and SWT, respectively.

FIG. 3. The T 0 uniform transverse susceptibility vs frus-

tration. The lines correspond to SWT and SBMFT with (from
the top) (J2,J3)/J~ (O, a/2), (a/2, a/4), and (a,O), respective-

ly.

of (16) to correct for the mean-field treatment of the local
constraints. ' At T=O (Neel state), the longitudinal
component gt should vanish, and hence the transverse
component g~ =

2 g. In Fig. 3 we have plotted the T=0
extrapolations of g& for the same slices of coupling space
as above. As seen in Figs. 1-3, all three parameters, e, m,
and g&, exhibit a weak anisotropy in coupling space, with
the anisotropy increasing with the magnitude of the frus-
tration a. Let us stress that the region where we expect
our SBMFT results to be reliable is roughly constrained
by the Neel boundary, to be estimated next.

Stability of rhe Neel state. We now use the SBMFT
values for g~ and c to improve upon the estimate of the
phase boundary of the Neel state. To do this we use Eq.
(3) with the SWT parameters replaced by the SBMFT
parameters, and with go at the fixed point 4'. The
phase boundary is thus given by the solutions in

(J2,J3)/J ~ space to the equation

The phase diagram we arrive at is shown in Fig. 4. The
new Neel boundary is almost a straight line, joining the
points J2/J ~

=0.154~ 0.004 and J3/J~ =0.089 ~ 0.002.
(The estimated uncertainty is entirely due to our numeri-
cal calculations. ) The classical boundary a, = —,

'
is seen to

be shifted more by quantum Auctuations along the J2 axis
than along J3. This phenomenon has been observed ear-
lier in the transition from a columnar dimerized state to a
Neel state. ' The reason appears to be that the J2 cou-
pling stabilizes the columnar phase more than J3 does, be-
cause it acts directly in competition with J ~ in the matrix
element of "resonance" of nearest-neighbor parallel di-
mers. ' It is important to stress that our calculation, in
contrast to Refs. 6 and 9, detects this asymmetric shift via
a method that does not favor the formation of a columnar
phase. While our boundary points (J2,J3)/J) =(0.15,0)
and (0,0.09) are lower than those in Ref. 6, they are close
to the result in Ref. 9 where (J2,J3)/J~ =(0.19,0) and
(0,0.13).
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FIG. 2. The logarithm of the mass vs frustration for SBMFT
at temperature P=l I/J~. The curves correspond to (from the
bottom) (J2,J3)/J~ =(O, a/2), (a/2, a/4), and (a,O), respective-
ly.

FIG. 4. The T=O phase diagram for the JI-J2-J3 model with
S=

2 . The solid line marks the Neel boundary obtained in this
paper, while the short-dashed line shows the semiclassical o
model result, with SWT values for c and g~. The long-dashed
line represents the classical result.
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Summary. To the extent that SBMFT is a reliable
guide to estimate the parameters c and g& for weak frus-
tration, our result indicates, to one-loop level in an e ex-
pansion, that the domain of Neel stability for the spin- &

J)-Jp-J3 model is strongly reduced by quantum fluctua-
tions. The asymmetric shift of the classical phase bound-

ary further suggests a transition to a columnar dimerized
ground state.

It remains to be explained why the zero-temperature
version of the SBMFT, as exploited by Mila and co-
workers, yields a result in conflict with ours. These au-
thors find a transition for the J~-J2 model at Jz/J~ ——0.6,
to be compared with our prediction Jz/J~ =0.15. The
Neel domain in Ref. 4 is identified by looking for solutions
of the T=O analogs of our mean-field equations in (11)
(with J3=0) in the presence of a Bose condensate. In

other words, the mean-field theory is used to directly
probe the order parameter, which sensitively depends on
fluctuations. Also, it is assumed that there are no inter-
mediate phases in between the regions of Neel and col-
linear order. In contrast, in our approach no assumption
is made about the character of the state on the other side

of the boundary. Further, we use the SBMFT to probe
quantities which do not change character across the tran-
sition, and hence are less sensitive to fluctuations. The
phase boundary is instead located by a renormalization-

group argument, with the mean-field values of these pa-
rameters as input data. From our experience with classi-
cal phase transitions, it seems that the latter approach
should be the more reliable. However, more work is need-

ed to conclusively resolve the issue.
Note added in proof Yo.shioka has informed us that a

SBMFT calculation of the susceptibility at T=O in the
presence of a magnetic field may yield slightly larger
values of g~ than reported here (where possible vertex
corrections due to the magnetic field have been neglect-
ed). This would imply a somewhat larger Neel phase than
shown in Fig. 4. See D. Yoshioka, J. Phys. Soc. Jpn. 58,
3733 (1989).
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