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Thermodynamics of the two-dimensional t-J model
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We present results for the thermodynamics of the two-dimensional t-J model on finite square lattices
in the grand canonical ensemble. The specific heat has a double-peak structure independent of J. The
susceptibility shows antiferromagnetic behavior above a critical value J, where for J(J, the ground
state of the one-hole sector has maximal spin. We give evidence that phase separation observed in the
ground state of the t-J model at large Jmay be suppressed at any finite, nonzero T.
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The Hamiltonian of the t-J model is
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where c, =(1—n, )c,t are creation operators in the
Hilbert space without doubly occupied sites. The sum
goes over all nearest-neighbor pairs of a ten-site square

Stimulated by the discussion of whether electron-
electron interactions give rise to high-temperature super-
conductivity, the two-dimensional (2D) t Jmodel a-s the
simplest model containing electron-hopping and spin-
exchange interactions has received renewed interest. '
The t-J model can be obtained either from the one-band
Hubbard model for a large, positive Hubbard U or from
the two-band Emery model. Although both derivations
lead us to believe that J is usually smaller than t in the
copper oxides, the t-J model is theoretically interesting as
a model of strongly interacting electrons even for large
values of J. Apart from a few analytical results concern-
ing the Nagaoka limit, most work on the t-J model has
been done using numerical techniques such as exact-
diagonalization and variational calculations, both of
which address ground-state properties, and Monte Carlo
simulations which unfortunately cannot be extented to
very low temperatures due to the sign problem. Finite-
lattice calculations can, in principle, close this gap, but
the computational effort increases greatly since, at finite
temperatures, all or at least a considerable number of
low-lying eigenvalues must be obtained. In order to
reduce finite-size effects, we performed a study of the t-J
model on a ten-site lattice in the grand canonical ensem-
ble. Working in the grand canonical (GC) ensemble also
allows for a continuous variation of the average electron
number X, even for small lattices by solving the equation
N, =P 'B„lnZoc for the chemical potential p, . Zoc is

the grand canonical partition function defined as

2N

ZGc= g e Zc(N )
N =0

lattice with periodic boundary conditions. In contrast to
conventional exact diagonalization studies, where only
the ground state is calculated, grand canonical thermo-
dynamics requires the calculation of all eigenvalues for
all numbers of holes. We first used as good quantum
numbers S, and k to block diagonalize the Hamiltonian.
The resulting blocks were then diagonalized using an
EISPACK routine.

The finite-size dependence has been checked by com-
paring against the results of the eight-site lattice. For
small hole densities, thermodynamic quantities are rela-
tively size independent. ' When the hole concentration
approaches quarter-filling, the results become more size
dependent due to the small number of eigenvalues for the
few-electron systems. Therefore, we restrict our calcula-
tion to electron densities larger than quarter-filling. At
very low temperatures there are always finite-size gaps
which lead to an activated shape of the specific heat.

The chemical potential p as a function of electron den-
sity n is plotted in Fig. 1 for three different temperatures.
For J=0.4 at higher temperatures, the variation of p
with n is smooth. At very low temperatures, p jumps at
densities corresponding to integer electron numbers
closely resembling the zero-temperature variation. At
J=4.0, we have a smooth curve for all temperatures ap-
proaching a constant chemical potential as a function of
electron density for T =0 which indicates phase separa-
tion (see below). First of all this shows that the grand
canonical calculation allows for a continuous variation of
particle concentration for temperatures larger than the
ones set by the scale of finite-size gaps [cf., Fig. 1(a)j.
Note, however, that the finite-size dependence, which is
seen as T~O for J=0.4, is reduced compared to a free-
electron case as reported in Ref. 8. The second point to
be emphasized is that the abrupt change of n with p for
J=4.0 as T~0 is not caused by finite-size effects because
it extends over the whole concentration regime. The
smaller plateau seen for J=0.4 up to n =0.2 is a different
case caused by the low energy of the two-hole ground
state and will disappear as the system increases.

We have qualitative agreement with the n(p) curves
obtained by Ref. 9 for the Hubbard model using the
Quantum Monte Carlo on larger lattices. Their zero-
temperature plateau corresponds to the sharp drop of p
from the Heisenberg value (pHsn= ~ ).
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FIG. 3. The inverse susceptibility per site as a function of
temperature for J=4.0 and electron densities n =0.95 (solid
line), n =0.85 (dotted line), and n =0.75 (dashed line), and for
J=0.2 at n =0.95 (dash-dotted line).

istence of a phase of quasi-non-interacting particles like
spinless fermions. Therefore, we cannot decide on the ex-
istence of ferromagnetic phases apart from the one-hole
Nagaoka limit.

At finite, nonzero temperature, the question of phase
separation into a hole-rich and an antiferromagnetic
phase arises again. It is not clear whether the phase sepa-
ration observed in the t Jmod-el at T=0 (Refs. 12 and 13)
extends to nonzero temperature. In a finite-size study,
the results for various thermodynamic quantities (i.e., the
free energy) may differ using the canonical or the grand
canonical description. The grand canonical description,
however, represents the thermodynamic limit much
better.

Using the canonical ensemble, the natural extension of
the function e(x) (x being the concentration of holes)
defined by Ref. 13 is e(x, T)=[fc(x,T) fc(0,—T) jlx,

-0.40-

zero. It may be caused by the correlated motion of holes
because its position is proportional to 1/U, or due to lo-
cal spin rearrangements' (of course, in the t-J model we
do not see the excitations across the Mott-Hubbard gap).

In the magnetic susceptibility per site we find, for
J &J„a tendency towards antiferromagnetic behavior,
i.e., the paramagnetic Curie temperature OD obtained by
a fit to the high-temperature points is negative and de-
creases with increasing J (see Fig. 3). Here J, =0.138(1)
denotes the Nagaoka value for the ten-site cluster. For
J &J„the ground state of the one-hole sector has maxi-
mal total spin S. Due to the use of the grand canonical
ensemble, our data are smooth as a function of hole den-
sity and do not jump as erratically as seen in the canoni-
cal calculation of Ref. 11. For very small values of J,
smaller than the Nagaoka value, the susceptibility shows
a tendency towards ferromagnetic behavior around
0.85 & n (0.95, i.e., OD becomes positive. Finite-size
effects, however, become large, maybe indicating the ex-
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FIG. 4. The curve T, (J) as defined in the text. J, is the
Nagaoka value for the ten-site system.

FIG. 5. The free energy per site as a function of electron den-

sity for (a) J =0.4, (b) J=4.0, and T=0.1. The circles (squares)
are the values of fc for even (odd) numbers of electrons; the
solid line is foe
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where fc is the canonical free energy per site. Assuming
a homogeneous finite system, a minimum in e(x) corre-
sponds to a concave fc (or negative compressibility)
below a critical concentration. We use this as an indica-
tion of phase separation to relate our results to the work
of Emery et al. ' At low T, we indeed find a minimum
of e (x, T ) as a function of x which disappears at a J-
dependent temperature T, . In Fig. 4 we show the varia-
tion of T, with J. At T=O, phase separation vanishes at
the Nagaoka value of J. Below T,(J), a phase-separated
state gives a lower value than the fc's of the homogene-
ous phases. In order to allow for fluctuations in the par-
ticle number, we calculated e(x, T) with a grand canoni-
cal free energy foe=0/N+pn, i.e., via a Legendre
transform of the grand canonical potential
0= —P '1nZoc. We could not find a minimum at any
finite temperature even for J=4. To further investigate
this, we note that foc in the phase-separated state is the
free energy obtained from the canonical ones using the
Maxwell construction. Therefore, it should be a straight
line as a function of concentration. In Figs. 5(a) and 5(b)
we show both fc and foe for J=0.4, 4 and at low tem-
peratures. For J=0.4 we see the instability of fc due to
the two-hole state. foe is just convex, which shows that
there is no phase separation. For J=4, fc is concave
and therefore unstable, whereas foe is nearly a straight
line over the whole concentration axis. Here we discuss
the free energy to show the dependence on the mean elec-
tron density. The related grand canonical potential as a
function of p exhibits a discontinuity in slope, which is
related to the abrupt change of n(p, ) [cf., Fig. 1(b)]. The
system therefore exhibits phase separation into a Heisen-

berg antiferromagnet and a hole-rich phase without elec-
trons. The slight convexity of foe gives additional indi-

cation that phase separation may be unstable at any ftnite
temperature. As T~0, we have, for foc,

foe(N, )

Eo(l+ ) —Eo(l )= inf Eo(1 )+ (N, —1 ), (4)
1,1+ l+ —l

where Eo(l) is the ground-state energy per site for a sys-
tem with l electrons. At zero temperature we need only
the ground state and hence the calculations can be ex-
tented to larger systems up to N =20. The main result is
that one observes phase separation if J is suSciently
large. One can use Eq. (5) to determine the critical value

Jps above which phase separation becomes complete. We
get Jps =1.5, 2.2, 2.0, and 2.2 for system sizes N = 10, 16,
18, and 20, respectively.

Summarizing, we have used the grand canonical en-
semble to calculate thermodynamic properties of the 2D
t-J model on a ten-site lattice. This allowed us to vary
the density continuously. The specific heat was shown to
exhibit a double-peak structure rescaled by J. One peak
could clearly be identified as being due to usual antiferro-
magnetic spin-wave-like excitations, the other may be
caused by the correlated motion of holes. Antiferromag-
netic behavior of the susceptibility was found for all con-
centrations apart from J larger than the Nagaoka value.
Phase separation was shown to be indicated by a
straight-line behavior of foe. Finally, we have given the
crossover values of J from a homogeneous to a totally
phase-separated state for lattices up to 20 sites.
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