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Metallic and magnetic properties of the t-J model: One-site approximation
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The t-J model is analyzed by means of the Caron-Pratt approximation. With the use of a self-

consistent cluster calculation, the magnetic phase diagram and the temperature and hole-concentration

dependence of the antiferromagnetic and metallic order parameters are obtained.

I. INTRODUCTION

The theory of strongly correlated fermion systems on a
two-dimensional lattice has been developed currently in
connection with high-T, superconductivity. ' The mag-
netic properties of the layered oxide superconductors
with the Cu02 plane should contain important informa-
tion about the mechanism of high-temperature supercon-
ductivity. One of the simplified models which are con-
sidered to include the essential physics of these materials
is the t-J model. This model can be obtained as the
large-U limit of the Hubbard model. The t-J Hamil-
tonian is given by

H= t g d; —d~ +J g (S;.S ,'n;nj—)
——pgn;,

(ij )o (ij) i

where d; =(1—
n; )c;, S;= ,'c; o'~c,—tt, and

n, = g c, c, . c; creates an electron of spin o at site i;
n; is the particle-number operator. This effective Hamil-
tonian is restricted to the Hilbert subspace with one or
less electrons on each site, and the constraint of no dou-
bly occupied site is ensured by the definition of the d;
fermion operators. The parameters t and J describe the
hopping matrix element and the Heisenberg coupling be-
tween nearest-neighbor sites. The main results on the tJ-
model have been obtained either from mean-field-

type " or numerical' ' calculations. In this work a
self-consistent cluster approach, based on the Caron-
Pratt approximation, ' is applied to investigate the
magnetic and metallic properties of high-T, materials.
The simple cluster calculations are performed to examine
the phase diagram of the t-J model and the dependence
of the antiferromagnetic and metallic order parameters
on the doping concentration and temperature.

II. CARON-PRATT APPROXIMATION

In order to examine the antiferromagnetic properties
of the Cu02 planes, we decompose the square lattice into
two sublattices A and B in such a way that all neighbors
of a site from sublattice A belong to sublattice B and vice
versa. We propose to use a generalized cluster Caron-
Pratt approximation' to obtain the metallic and mag-
netic phase diagrams for the t-J model. In this approach
we take into account a one-site cluster and self-
consistently couple the cluster to its environment by con-

sidering the surroundings as a particle reservoir which
can exchange electrons with the cluster. The hopping be-
tween the cluster and immediate neighborhood is re-
placed by fermion source terms, which can create or an-
nihilate electrons in the cluster. Namely, we replace the
kinetic term in the Hamiltonian t g—d, d
by zt(d; (d—)" ' '+H. c. ), where (i j) are the nearest
neighbors and z is the coordination number. ( )" '

denotes the thermal average for the sublattice A (B). If
site i belongs to sublattice A, all its nearest neighbors be-
long to sublattice B and the thermal averages are calcu-
lated for sublattice B and vice versa. The superex-
change interaction and correct energy associated with the
charge fiuctuations are treated in the mean-field approxi-
mation with the same self-consistency condition as in the
kinetic term [replacing g (S, .SJ ,'n;nj —) —by
z(S;(S')" ' ' —

—,'n, (n)" ' ')]. Then the resulting Ham-

iltonian becomes a sum of one-site Hamiltonians,

y HA (B)

with

HA (Bl t y [d~t (d )B (A)+((d )e)B (A)d
]

+zJ( S( S)sB (A) ) n (n )B (A) pn )

Tr[exp( PH)0,]—.

0; Tr exp( PH)— (4)

p= 1 lk~ T, ktt is the Boltzmann constant, and the Hamil-
tonian H is given by (2). The anticommutation properties
of the operators d; and d. ~ imply that the averages

(d; ) and (d. ~ ) cannot be simple c-numbers, but they
must obey

[d, ,dt ] =I(d, ),dt, ]

=[d;., (d,'. )I=[(d;.&, (d,'. )]=0,

where N is the number of sites. The sublattice index ( A

or B) depends on which sublattice site i belongs to Un-.
der the assumption that each atom in the environment
behaves in the same way as the one we are looking at
(within the framework of a given sublattice), the averages
( ) " ' ' can be calculated as expected values of the
operators in the site i (for i belongs to sublattice A or B,
respectively), (0)" ' '= (0; ) for 0;=d;~, d;~, Sf, n, ,
where
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for i @j or o Ao '. ' The same relations must be
satisfied by averages of pairs of the operators d;,d. ~ and

d,~,df .. A similar situation occurs in quantum field

theory, where the Grassmann numbers are used to de-
I

scribe fermion sources. The one-site Hamiltonians (3)
consist of an even number of fermion operators and fer-
mionlike numbers and thus commute at different sites.
For instance,

[d; (d; ),dJt (dJ )]=d; j(d; ),d, j(dJ . ) dt—dt ~ [(d, ), (dJ, ) j

+[d;,dJ ~ j(d; )(dJ ~ ) —dj ~ jd;, (d ~ )j(d; )=0,

(6)

where le ) is a state without electrons in ith site. On the
base (6) the operators d;tt, d;t&, S,n; take the form

0 0 0 0 0 0

d;& = 1 0 0 , d;& = 0 0 0
0 0 0 1 0 0

(7)
0 0 0

S'= 0 —' 02

0 0 —1

0 0 0
n;= 0 1 0

0 0 1

and the Hamiltonian (3) is

p geB (A) geB (A)
T

HA (B) gB (A) gB (A) p

gB (A) p gB (A)

(8)

where

gA (B)— r(d ) A (B)
cT l o 7

A 3 (8) —1zJ(+(Sz) A (B)+ I ( ) A (B))+ 2 2

(9)

Let us focus our attention on a given site from sublattice
A, and so the sublattice index will be omitted. The appli-
cation of the forthcoming analyses to a site from sublat-
tice B is quite straightforward. The energy spectrum can
be obtained from the secular equations

E' E'(A+ A )+E(—A+ A IJ, I' IJ,I')— —

+lz, l'A +la, l'A+ ——0. (10)

The Hamiltonian (8) can be easily diagonalized, and the
corresponding eigenvectors are given by

for i'
Since the Hamiltonian (2) is a sum of commuting

terms, expression (4) can be simplified and the averages
can be calculated self-consistently with respect to the
one-site Hamiltonian (3):

&o, &=
Trl exp( PH"—' ')0,. ]

(5)
Trexp( PH" '—')

If the site i belongs to sublattice A, the average has to be
calculated with the Hamiltonian H and vice versa.

The Hamiltonian (3) operates in a Hilbert space
without states of doubly occupied sites, spanned by the
basic vectors

Iq'k) =trgll &+pk 2&+ygl3&,

where

ak= 1+ +, (12a)
(Ek —A+ ) (Ek —A )

(Ek —A+ )
(12b)

(ER —A )

where Ek are the solutions of Eq. (10).
According to (7), at zero temperature we get

(d, „)=a,P, , (d, , ) =a,

&S,'& =-,'(P', —y', ), &n, & =P', +y', ,

(12c)

(13)

III. RESULTS AND DISCUSSIONS

The system of nonlinear equations (5), (9), (10), and (12)
has been solved self-consistently for various values of n
and t/J at zero and nonzero temperatures. The solutions
determine the phases of the model as follows: (i) b, =O,
insulating phases (I); (ii) AWO, metallic phases (M); (iii)
(S ) "= (S ) =0, paramagnetic phases (PM); (iv)
(S )"=(S ) %0, ferromagnetic phases (FM); and (v)

where a„P&,y, are calculated from Eqs. (12) with E, be-
ing the lowest eigenvalue of the Hamiltonian (8). It is
easy to show that at half filling the ground state of the
Hamiltonian (8) is antiferromagnetic. The half filling
((n ) =1) and normalization constraint ((VIV) =1)
gives a&=0, and all the "metallic" parameters' ' '

have to be equal to zero. In this case the Hamiltonian (8)
(assuming that site i belongs to the sublattice B) takes an
extremely simple form:

0 0 0
H = 0 A+ 0 (14)

0 0

Assuming (S )"&0, the lowest eigenvalue of (14) is
E~ =A". From Eqs. (12) and (13) we obtain p, =O,
y&=1, and (S ) = —

—,'. Replacing H with H in Eq.
(14), we get E

&

= A +, p&
= 1, y &

=0, and ( S,') "=
—,'.

At finite temperature and/or at finite doping, there ex-
ist ferro-, antiferro-, and paramagnetic solutions, and the
free energy determines the nature of the ground state.
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FIG. 1. M
centration

~ . etallic order parameter 6 as a f t f hunc ion o ole con-
cen ration 6 at zero temperature for t/J =5.0 1 0 and 0.2.

FIG. 3. AF order
tration 6 at z

~ . der parameter S as a function f h ln o o e concen-
6 at zero temperature for t/J =5.0, 1.0, and 0 2~ ~

(s'&"= —(s' ' o0, antiferromagnetic phases (AF).
The metallic order parameter b, is defined by

6 =6 +b

In the insulating region (b, =0) th dIn
' —,e mo el can be solved

ana ytica y giving a generalized Ising-like AF solution:

( S,'& "=—( n; & tanh( —PzJ (S'& ")
1

4t/J+1 (19)

insulating region (n =1) a rea
si e "ecause of the sin

, a real particle motion is impos-
single-occupancy constraint, but a

virtual hopping can occur '

Foror each value of the ratio t /J, there is
in concentr

ere is a critical dop-
concentration above which magnetic l t'c so u ions o not

5 can be
n e case of zero temperature th e cnttca value

, can be calculated from Eqs. (9), (10), (12), and 13:

(s,'&'= —(s'}"
with the Neel temperature Tz..

k~T~= ,'(n; &zJ . —

The free ener in thgy
'

he insulating region is given bn y

F=k&T ln(n; & .

(17)

(18)

Below 5, there exist AF as well as FM solution
all values of t

so utions, but for
o /J the AF solution minimizes the free ener-

gy. The phase diagram is shown in F . 2. F
ri ical doping concentration 5, =0.05; this is in

ment" as
agreement with the results obtained baine y mean-Geld treat-
ment as well as Monte Carlo methods. ' F'
shows the AF or

o s. igure 3
e or"er parameter as a function of d

concentration.'on. The AF order parameter S is defined by

'
n o oping

In order to obtain the metallic solutions, the system of
n so ve numerically for

e a ice z =4). In the case of zero doping (n =1),
the only solution has an insulating nature' oth

tes minimize the free energy. %hen decreasin
the doping concentration 5 (5:—1 —(n &n, & ), the metallic
parameter 6 tends to zero as is h

' F' .is s own in Fig. 1. In the

s =+(s,'&, (20)

where the si n'g "epends on which sublattice site i belon
to. Increasin the n

'

g e number of nonoccupied sites destro s
si e r eongs

the AF order, and a secon-

'
es es roys

econd-order phase transition to the
nonmagnetic state appears at the threshold

'
Th

critical do inping concentration decreases with the increase

5

"1',
4'3':

"l

kT/J = 0.00
.----- kT/J = 0.50
— —kT/J = 0.TS

—kT/J = 0.90

0.5 ..

0.4-"-

0 2-"-

8=0.04

0 1-"-

. . AF
0
0.0 0.8 0.4 0.8

Q.O ":::
0.0 0.4

kT/J
0.6 0.8 1.0

FIG. 2. Ph~ . Phase diagram in the plane t /J h 1vs o e concentration
6 for temperatures kT/J =0.00 0.50, 0..75, and 0.90.

FIG. 4. TeTemperature dependence of th AF de or er parameter
S for hole concentration 6=0.01 0.03 , and 0.04 for t/J =5.
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of the temperature of the system. The AF order parame-
ter S versus temperature T is plotted in Fig. 4. The mo-
ment the temperature reaches the critical value (the Neel
temperature), a second-order phase transition is observed.
The Neel temperature is plotted as a function of the dop-
ing concentration in Fig. 5. When the dopirig concentra-

FIG. 5. Neel temperature as a function of hole concentration
for tiJ=5.0, 3.0, and 1.0.

tion decreases, the Neel temperature tends to the value
calculated from Eq. (17), approaching this value in the in-
sulating region (n = 1).

The main aim of the present work was to examine the
ability of the mathematically simple Caron-Pratt ap-
proach to characterize the magnetic and metallic phases
of the t-J model. On the other hand, the simplicity of
this approximation is obtained by neglecting many im-
portant effects: The analyses were performed at the
mean-field level, losing local spin and charge fluctuations
and the lattice topology, and therefore details of the elec-
tronic spectrum were lost. The present approach is not
applicable to describing superconducting states. This ap-
proximation may be improved by taking into account
larger clusters, for which not only I, M, FM, AF, and
PM, but also resonating-valence-bond, flux, ' chiral,
or dimer phases could be defined.
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