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Strong quantum oscillations in the order parameter of two-dimensional type-II superconductors
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Strong magnetic quantum oscillations in the order parameter are predicted to appear at low tempera-
tures in extremely type-II, highly two-dimensional superconductors. The mean-square modulus of the
order parameter over the entire vortex lattice near H„(T) is calculated using the Gorkov s scheme in the
semiclassical approximation. It is found that the strong magnetic quantum oscillations in the order pa-
rameter may yield a periodic reentrance of the superconducting state in the vicinity of the upper critical
field, smearing greatly the superconducting transition. In systems with critical fields as high as those in

the high-T, cuprates, the fine structure of the oscillations is affected by the pairing correlation. The ex-
perimental feasibility of observing quantum oscillations in the highly two-dimensional, high-T, bismuth
compounds is discussed. They are found to persist well below H, 2(T), indicating the possibility of ob-
serving quantum oscillations in the order parameter at experimentally accessible fields.

The discovery of the high-T, superconductors intro-
duces into the group of layered conductors a new family
of superconducting materials, and poses a challenging
question concerning possible mechanisms for the high-T,
superconductivity. Since the conventional (BCS) super-
conductivity is caused by the instability of the Fermi sur-
face (FS), the detailed study of the FS is, obviously, of
primary importance in any attempt to sort out these
mechanisms. The most powerful methods of studying FS
in normal metals are associated with the magnetic quan-
tum oscillations of the thermodynamical and transport
properties.

The effect of magnetic quantum oscillations in the su-
perconducting state was considered theoretically by Gun-
ther and Gruenberg' and by Ragagopal and Vasudevan.
In investigating the layered dichalcogenide 2H -NbSez,
Graebner and Robbins observed experimentally
significant magnetotherma1 and dHvA oscillations well
below H, 2.

It is well known that a strong anisotropy of the FS
results in the enhancement of the magnetic quantum os-
cillations. In a two-dimensional electron gas, the elec-
tronic density of states is singular at the Landau levels.
The third dimension smears out this singularity, thus
strongly reducing the strength of the magnetic quantum
oscillations. The highly two-dimensional (2D) character
of the relevant electronic properties in some of the high-

T, materials, e.g. , the bismuth-based compounds, sug-
gests that magnetic quantum oscillations in the supercon-
ducting state could be sufficiently strong to be used as a
source of reliable Fermi-surface information.

However, experimental studies of the Fermi surface in
this family of materials will not be easy both because the

normal-state resistivity is so large and because the critical
temperature and field are so high. The latter disadvan-
tage may turn, however, into a great advantage if the
desired quantum oscillations can be observed in the su-
perconducting state, far below T, . Our preliminary
theoretical analysis shows ' that there is no fundamental
obstacle to the coexistence of superconducting order and
magnetooscillations in extremely type-II, highly 2D su-
perconductors such as the high-T, oxides. Furthermore,
despite their large normal-state resistivity, some of the
high-T, materials exhibit nearly zero residual resistivity
as extrapolated from the high-temperature normal-state
data. ' The large values of the critical parameters, T, and

H, z, may now be used to advantage, since they enable one
to work at very high magnetic fields (and low tempera-
tures) in order to resolve individual Landau levels, but
without destroying the overall superconducting order.
The observation of quantum oscillations in the supercon-
ducting state would be of great importance not only as a
Fermi-surface probe, but also as a way of sorting out the
very nature of the yet unknown pairing mechanism in
this class of materials.

In this paper we present an analytical expression for
the mean-square modulus of the superconducting order
parameter at large, quantizing, magnetic fields for a rnod-
el two-dimensional electron gas in the semiclassical limit
(i.e., many occupied Landau levels) corresponding to real-
istic experimental conditions. Previous attempts to cal-
culate this quantity"' did not take into account the
effect of Landau quantization.

We assume a two-dimensional free-electron gas model
with a simple BCS pairing interaction under a strong
quantizing magnetic field in the vicinity of H, z(T) for an
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arbitrary temperature 0 & T(T, . For the sake of simpli-

city, we assume that the effective e-e interaction V is in-

dependent of the field. Near the critical point, the order
parameter b,(r) is small and the superconducting free en-

ergy can be expanded to fourth order:

F, = —Jd r, d r2 Q(r„r2) ——5(r, —r2) b, *(r2)b(r, )
1

+ f d r~d r2d r3d r4R(r&, rz, r3, r4)

X b, (r~)b, '(r3)b, *(r~)b,(r, ),
k~T

Q(r„r2) =
2 g G t (r2, r, ; —co„)G~(rz, r„'co ), (2)

I
Xo

I,T
R(r&, r2, r3,r4)=, X Gt(r2 ri' co.)G&(rz r4 cot t t ~4

X G t (r3, r4, —co„)

X G ) (r3, r),'co„) . (3)

FIG. 1. The semiclassical picture of pairing in a 2D electron
gas under a magnetic field. The paired electrons occupy large
cyclotron orbits with centers at xo, xo separated by a distance
lxp —xpl of about twice the cyclotron radius of the Fermi
cylinder, i.e., 2kF a&. They remain coherent (i.e., satisfy

k» = —
k» ) within a small distance lr2 —

r& l aH.

In the above equations G (r, r', co ) is the free-electron
thermal Green's function with spin o. in the presence of a
magnetic field H oriented perpendicular to the layers
(along the z axis) and co„=(2v+ 1 )m ks T /fi,
v=0, +1,+2, . . . , the thermal Matsubara frequencies.
Note that the kernels Q and R vary on the length scale of
the thermal mean free path g=kvz/rrksT, while b, (r)
varies on the magnetic length scale aH =(cA/eH )'~ . For
high magnetic fields (and low temperatures), g) aH and
the nonlocal character of the kernels prohibits the use of
the gradient expansion, which simplifies greatly the
analysis near T, . ' Semiclassical conditions, EF &)A~„
with co, =eH /( m, c), m, the in-plane cyclotron-
resonance mass, are still assumed, however, so that using
the Landau gauge A = (O, Hx, O) wave functions:

ik y
%„1, (x,y)=e ' P„(x—xp)n, k

with x p
=QH ky and the WKB approximation for

P„(x—xp):

ence length, the contributions to the free energy decay
exponentially with p [see Eqs. (12) and (13)]. It is there-
fore sufficient to know the form of the single-electron
Green's function appearing in Eqs. (2) and (3) for p ~ aH,
which satisfy lr, —r2l ((SnpaH in the semiclassical limit
(i.e., np)&1). Using the Poisson rule for the sum over
the Landau levels, this leads to the following result:

G (rz, r„co„)

im,
exp( ie Ap—/cA)g (p, co, )J (co),

+2m(2n )'

where

g (p, co,)=+aH/pexp i(+2n p p/aH)sgn(co„)

[P„(x—xp)]„
1/2

(2n —
g )

' cos[s„(g)],

(c() and

where g=(x —x p ) /aH and

s„(g')= —,'g(2n —
g )' +n arcsin(g/+2n ) mn/2, —

J (co.)=1 1 —exp 2min p sgn(co, ) —, (7)

the calculation of G (r„rz,'co„) is significantly simplified.
Here the integral over k (xp) is performed by the station-
ary phase method, which is consistent with the semiclas-
sical (WKB) approximation.

The picture of pairing which emerges from this semi-
classical analysis is as follows (Fig. l): Any two paired
electrons occupy large cyclotron orbits with centers
xp x p seParated by a distance lx p

—xp l
of about

2aH'1/ 2n p n p:Ey' /Aco » 1 . They remain coherent
(i.e., satisfy k'= —k ) within a distance p= lr, —r2l not
larger than the magnetic length aH. Outside this coher-

where p—=r, —r2, np =np —
—,'+(co, /co, )o/2, co, =eH/

cmp with mp the free-electron mass, and A is the vector
potential at the position —,'(r&+rz). Note that, in the
semiclassical limit, 1/ 2n p =+2np+0(1/+2np).
Thus, the only important dependence on the electron spin
in this limit is through n p appearing in the denominator
of Eq. (7). With this expression for the Green's function,
the kernels Q(r, , r2) and R(r, , . . . , r4) are readily ob-
tained.

It should be noted here that in a 2D electron gas under
a strong magnetic field, EF is not field independent.
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The influence of this effect on the magnetization and on
the spin relaxation in high magnetic fields has been stud-
ied in detail in Refs. 5 and 6. In real 2D systems, howev-
er, the strong oscillations of the chemical potential are
severely damped as a result of various, material-
dependent, factors. ' We shall not dwell on this subject
here, and in what follows we assume Ez =const(H).

A general variational form for b, (r) in the symmetric
gauge, which is restricted only by the assumption that the
condensate of Cooper pairs is in the ground Landau level,
can be written as' '

(Matsubara) frequency formalism is equivalent to the real
frequency one only at discrete values of the temperature
T for which vD is an exact integer. We therefore restrict
the temperature in our calculation to these values. The
zero-field limit of A and B in Eqs. (10) and (11) is ob-
tained where a »1, i.e., where aH/g»1. In this limit

1/(v+1/2), B—+ —,
' g„o1/(v+ 1/2), the

well-known results near T, . '

It can be readily shown that

where

(~k~ T, )
(A —I/A),

2B

v —1D

(9)

A=2
v=O

Re(q, )y, (10)

b, (r) = b,oexp( —
—,'zz*+ —,'z )g(z),

where z =(x+iy )laH, and g(z) an arbitrary entire func-
tion in the complex plane. Specifically, we write g(z) as a

.16 2n.i nz /a
Fourier sum: g(z)=g„" „c„e ", where a„ is an
arbitrary constant and c„are variational parameters. Us-
ing this variational form and the symmetric gauge expres-
sions of the kernels Q and R in Eq. (1), the multiple in-
tegrals associated with both the quadratic and the quartic
terms can be performed analytically. ' Applying the
variational principle to the free energy F, I c„],we get a
set of nonlinear equations, which is solved exactly by the
array c„corresponding to a periodic vortex lattice, pro-
vided that the amplitude ho satisfies the algebraic equa-
tion'
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where X is the total number of vortex lines threading the
superconductor. Thus, Eq. (9) provides an explicit ex-
pression for the square modulus of the order parameter
averaged over the entire Abrikosov lattice. Figure 2
shows numerical results for ho(H, T) in the range of the
relevant parameters, which may characterize the
Bi2CaSr2Cu208+ phase of the Bi-containing supercon-
ductors, if the weak-coupling BCS theory is assumed to

is the lowest eigenvalue of the linearized gap equation, '

and B is associated with the quartic term. We have found
that, ' to a very good approximation, B can be written as

O. I2

HtT)

~H ~H
B =P„

'2v —1D

Re(q„)5„,
v=O

0. IO

where p„ is the well-known geometrical factor' of the
Abrikosov lattice and the rest depends only on the nor-
mal electron properties. In the above equations

y = e
—a~ —(1/2)p

(12)
0

oo

fi,= 2m. f e [erf(p/&2) ] dp,
0

exp(2m' /co, —i neo, /co, )
q [cosh(2m', /ro, —irrro, /ro, )+cos(2mEF /pro, )]

(13)

(14)

where a =2(2v+1)aH/g and A. =N(0) V is the effective
BCS coupling constant with N(0) =m, /2M the 2D den-
sity of states of the electron gas, T, = 1.134(n TD )e
the zero-field transition temperature, g=fivF /m. k~ T„ the
zero-temperature coherence length, TD is the cutoff tem-
perature, vD = TD /2T, and Ace, =eH /m oc is the Zeeman
splitting of a Landau level. Note that our imaginary
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FIG. 2. (a) The mean-square modulus, 60, of the supercon-
ducting order parameter as a function of the magnetic field H
near H, 2( T) for T= 1 K. Superconductivity disappears in re-
gions where 50&0. The selected values of the parameters used
are EF=2029 K, m, =2.22mo, TD =977 K, and T, =87 K.
Note, that spin splitting starts being visible above 40 T. (b) The
condensation energy (A —1/i(. ) [see Eq. (10)] (thin curve) and

60 (thick curve) as functions of H in a small window between 36
and 37 T, illustrating how the pair-breaking effect due to spin
polarization can be quenched by a feedback effect in the pair-
pair repulsion.
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be valid for this material. The selected values of the pa-
rameters are T, =87 K, EF =2029 K; m, =2.22mo and

TD =977 K. The value of the coherence length at T=0
obtained from these values is go

=26.4 A, which is a
reasonable number for the in-plane coherence length.
Figure 2 shows that, at low temperatures (1 K), the mag-
netooscillations in b,o near H, 2(T} are quite strong and
remain considerable well below H, 2. The large oscilla-
tions in Ao around H, z lead to periodic disappearance and
reentrance of superconductivity with 1/H.

The fine structure of the oscillations, if observable, con-
tain not only Fermi-surface information, but more direct
information, concerning the pairing correlation itself. To
illustrate the potential significance of this fine structure,
we consider a couple of oscillations in the field range
H =36—37 T (Fig. 2). One expects that Zeeman splitting
will show up if the ratio m, /mo is not an integer. Here,
however, our result for b,o(H, T} does not show any Zee-
man spin splitting of the main dHvA peaks, although the
ratio m, /mo =2.22 is not an integer. The reason for the
absence of this splitting becomes clear after considering
separately the numerator A —1/A, and the denominator
8 in Eq. (10): In contrast to b,o, the peaks of both 3 and
B in this field range are spin split, so that the dips appear-
ing in the peaks of B tend to cancel the dips appearing in
the peaks of A. Thus, the pair-breaking effect associated
with the spin polarization in the magnetic field can be re-
duced, or even disappear completely, since the feedback
of this pair breaking on the pair-pair repulsion tends to
lower the superconducting free energy.

Obviously, impurity effects will act to wash the oscilla-
tions out. This will take place by smearing the oscillating
factor q in much the same way as in an ordinary dHvA
ffect 4, 5, 16

To summarize, we have shown that the mean-square
order parameter for an extremely type-II superconduct-
ing state of a 2D electron gas in the clean limit is a
strongly oscillating function of the magnetic field near
H, 2(T) at low temperatures. These oscillations are found
to persist at fields well below H, z and may lead to a
periodic reentrance of the superconducting state well
above Hc2

It should be noted that a detailed application of our
theory to systems with short coherence lengths, such as
the high-T, oxides, must address the effect of fluctuations
in the order parameter. As far as the amplitude bo is
concerned, however, the effect of fluctuations is expected
to diminish considerably at low temperatures (and high
fields) far below T, . The subject of fiuctuations of vortex
lines is clearly beyond the scope of the present paper.
However, the remarkable decoupling found between the
oscillatory part of B, which reflects the behavior of the
normal electrons near the Fermi surface, and the part as-
sociated with the flux lattice, may indicate that flux lines
motion should not affect the oscillations in ho.

Note added in proof. It should be noted that the au-
thors in Refs. 18 expressed strong doubts concerning the
reality of reentrant superconductivity as presented in Ref.
15. In Ref. 19 we showed that the likelihood of such a
reentrance phenomenon is greatly enhanced in highly 2D
systems.
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