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Analytic calculation of ground-state properties of the one-dimensional t-J model
with a modified Gutzwiller wave function
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An effective Hamiltonian equivalent to the t-J model is derived. We calculate analytically the
ground-state energy and correlation functions for a modified Gutzwiller wave function using the tech-
nique developed by Metzner, Vollhardt, and Gebhard. We obtain results that are significantly better
than those for the usual Gutzwiller wave function, and that are close to the exact results in some cases.

Much of interest in the Hubbard model and its cousin,
the t-3 model, has been stimulated after the suggestion by
Anderson' that it might describe high-temperature super-
conductors. Although they are the simplest models for
the strongly correlated electron systems, the understand-
ing we have for them is still limited. So far, an exact
solution has only been found for the one-dimensional
(1D) Hubbard model. There is no exact solution for the
t-3 model even in 1D, except in the supersymmetric
(J =2t) and other limiting cases, although numerical cal-
culations for clusters have been extensively performed.
Analytically, many approximate methods have been
developed, such as the slave-boson and the Schwinger-
boson mean-field theories as well as their extensions to
include fluctuations. The problems with these ap-
proaches are associated with the fact that constraints that
account for strong correlations can only be treated on
average. We will use the Gutzwiller variational approach
to deal strictly with these constraints.

Gutz wilier proposed a variational wave function
(Gutzwiller wave function, GWF) and suggested an ap-
proximate scheme for evaluating expectation values. The
Gutzwiller approximation (GA) can result in a metal-
insulator transition, as first observed by Brinkman and
Rice, and has been applied to many systems. ' Kotliar
and Ruckenstein" showed that the GA can be derived as
a particular saddle point in the slave-boson approach.
There have been many efforts to go beyond the GA using
numerical techniques. ' ' Recently, Metzner and
Vollhardt, ' and Gebhard and Vollhardt' calculated
analytically the ground-state properties and the correla-
tion functions of the GWF for the 1D Hubbard model.
The ground-state properties are, unfortunately, qualita-
tively inconsistent with the exact solution in the limit of
strong correlations. Yokoyama and Ogata' showed that
the GWF is a good trial function near the supersym-
metric point for the 1D t-3 model, but it still failed to
give correct analytic behaviors for correlation functions
near kF. Using the variational Monte Carlo method,
Yokoyama and Shiba, '7 and Hellberg and Mele'
remedied some unsatisfactory features for the Hubbard
model by modifying the GWF. Very recently, Hellberg
and Mele' reported numerical work for the phase dia-
gram of the 1D t-J model using the variational approach.

Hard-core bosons are often introduced to represent
holes (or spins) for the t Jmodel in conjuncti-on with the

slave-boson (or Schwinger-boson) approach. Most ap-
proximation schemes end up accounting only on average
for the hard-core nature of these bosons. The other con-
straint that no site is simultaneously occupied by a boson
and a fermion is also treated on average. We suggest us-
ing a Jordan-Wigner transformation to transform the
hard-core boson into a fermion so that the Pauli ex-
clusion principle will automatically ensure that no site is
doubly occupied by holes. We then suggest a trial GWF
in which double occupancy of the two kinds of fermions
(representing holes and spins, respectively) is projected
out of the free-fermion wave functions. Both constraints,
i.e., no double occupancy by holes or by a hole and a spin
are therefore, imposed exactly.

Most calculations that go beyond the GA or GWF are
mainly for 1D systems, because the 1D model is relatively
easy to explore and the exact solution is available for
comparison. It could also share some properties with the
2D systems. The present paper is also restricted to the
1D t-3 model. We will utilize the techniques developed
by Metzner and Vollhardt' and Gebhard and
Vollhardt' to do the analytic calculation of the energy
and correlation functions for our trial wave function. We
find results that are significantly better than those for the
usual GWF. The analytic and approximation-free calcu-
lation here might be helpful in the search for a better trial
wave function and understanding of electron correlations.

We start by writing the t-3 Hamiltonian in terms of the
hole and one spin variables and introducing our trial
wave functions and then we calculate analytically the
ground-state energy and correlation functions.

The t-3 model can be derived from the large-U Hub-
bard model. In order to get an equivalent Hamiltonian to
the t-3 model, we start from the Hubbard Hamiltonian

H= t g (c; c, +H—.c. )+Urn, tn, i,
(t,j) I

where c; (c, ), as usual, are the electron creation (an-
nihilation) operators at site i; and n, (—:c, c, ) are the
number operators of electrons. In the large-U limit, one
site can be occupied by no more than one particle. The
particle concentration in this limit is usually written as
n =n, +n, =1—5, with 6 the doping.

The Hamiltonian (1) can be transformed into a
negative-U Hubbard model by the following canonical
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transformation '

c; t =exp(ig. R;)c, &, c; t =c; t,
C,. &=exp( —iQ.R, )c,. t, c,. t=c; t,

(2)

H = t—g (d;tdj. tdj-td, t+. H. c. ) —t g (d, td t+H. c. )

&i,j) &i,j)
—Jg (d;td t .N—;tN~g N—;)N~) ) —Jgn;t,

&i j &

where exp(iQ. R;)=1 for R, at A sublattice and —1 for
R,. at 8 sublattice. The Hamiltonian (1) becomes

H= t —g (c; c +H. c. ) —Ugn; &n, t+Ugn; &
. (3}

H = t g [h; hjbj b;—+h; h (1 N, )(1 N—j )+H—.c. ]
&ij )

—Jg [b; b (1 N,")(1 —N") N; N—" N—~N"]-
&i j &

Jgb;tb;—, (4)

where J—4t /U, N; —b;~b;, and N;"—h;~h;. The terms
involving more than two sites have been neglected in (4).
A similar effective Hamiltonian valid in the case of J~O
was derived earlier by Batiev. The Hamiltonian (4)
should be an alternative description of the usual t-J mod-
el.

In one dimension, one can transform hard-core bosons
into fermions by the Jordan-Wigner transformation

b, =f, exp i7rg fr~fr (5)

The previous restricted Hilbert space is now equivalent in
the new fermionic variables to the condition that no site
is doubly occupied. We use the Gutzwiller projector to
take into account this constraint. Denoting h; by d;& and

f; by d;t, the variational wave function has the familiar
form

If nt =n& =(1—5)/2 for the original particles, we have
that nt =(1—5)/2 and nt =(1+5)/2, so that there are
more down-spin particles than up-spin ones for the
transformed particles. In the large U case, all up-spin
particles will be paired with N(1 —5)/2 down-spin parti-
cles, or else there will be an energy cost U for each un-

paired particle, as seen from (3). There is a gap U be-
tween the upper and lower bands. In the lower band, we
have N(1 —5)12 pairs and 5N unpaired particles. We in-
troduce the fermion operators h, for the unpaired parti-
cles and the operators b,~=e;~&c;

&
for pairs, which can be

shown to satisfy the hard-core boson commutation rela-
tion. For each site there are three possible states, which
are b; l0), h; l0), and l0). The usual second-order per-
turbation theory then gives the effective Hamiltonian of
(3) as

which is the effective Hamiltonian we will discuss below.
In this paper we will take n

&
=n ~, which implies 6= 3.

It is only in this case that expectation values can easily be
evaluated analytically. Nevertheless, certain general
features of our approach can be identified from this
specific case.

The ground-state energy E=(glHlg) can be ex-
pressed as

—= —t—gs[n~ t
—(S~+(q)s~ ( —q) ) ]

q

———gs, [n, t
—(pt(q)pt( —q))

q

—(pt(q)pt( —q) ) ]
—J(1—5)/2, (8)

where p (1)=gkdk+~ dk and E~ =2 cosq. It can be
easily shown that

(S&+(q)S& (
—q)) =Cq (q)/2,

(p&(q)pt( q)) =[—Cz (q)+Cz (q)]/4+(n & ) 5q0

(p~t(q)pf( —1))=[C s(q) C(q)]/—4+n Tn ~5

Here Cps and Cz are, respectively, the pseudospin and
density correlation functions of d particles, and are
defined by

c„"( )=(s;( )s„'(— ) &
—(s')'5„,

(10)
(q)=(p"(q)p ( —q)) —(p )'5, 0,

where S~(q)—:p t(q) —
p &(q) and p"(q) =p t(q) +p t(q).

Cps(q) and Cz (q) have already been found analytically
in Ref. 15, and for convenience, we list them here

T —ln(l —Q}, 0& lQl ~n
CSS( ) —ln(1 n), n—

l Ql 1;

1
1

F(n —Q)
2 F(n)

, 0& lQl &2(1—n)

2(1 n)+ ——ln, 2(1 n) lQl & n-
Cg (q)= ' 2 F(n —Q)

2(1 n)+ —l—n +lnF(Q n), —Q F(n' Q)—
F(Q n)—

ly&=&[1—(1—g)n tn t]lg&, (6)
n&l

l
Q&1.

where lP) is taken to be the free-fermion sea of d;t and

d;&, and g =0 here.
We note that

(@ld,'„d, ,(1 N, ', )(1—N,', )l@)=—(@id,ttd,„ly) .

We can therefore rewrite (4) for the trial function (6) as E/N= —2at —PJ . (12)

Here F(x)=1—x, Q—:q/~, n' =2 n, and n—=(—1+5)/2.
nz in Eq. (8) has also been formulated in Ref. 14 and can
be determined by a recursive calculation. From these ex-
pressions and (8), we obtain the energy
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We find a=0.2603 and P=0.2565. For the usual
GWF, aG =0.2448 and PG =0.4896. Using the Bethe an-

satz and perturbation theory for small J, Ogata and Shi-
ba obtained as=0.2757 and Ps=0.2554. Compared
with the exact solution, the present result is better than
that for the usual GWF.

In our description, the kinetic energy of the up-spin
electrons is given by the second term in the first brackets
of (8), which is equal to a—'r = —0.2758t. It is surpris-
ing that a' equals, to within numerical accuracy, az, the
value obtained using the Bethe ansatz, implying that we
have a very good description for the motion of up-spin
electrons in the small-J limit. We analyze this result as
follows. The electron kinetic term is usually written as
T= —g e~n (q)w, ith n (q) the electron distribution
function. We can formally write the kinetic term in (8) as
T= tgq —e n (q), where n (q) is a pseudoelectron-
distribution function, as will be briefly discussed later.
n (q) is shown in Fig. 1. n &(q) (the solid curve) is a con-
tinuous function at the Fermi surface, whereas in the usu-
al GWF case the distribution function, shown by the
dashed curve in Fig. 1, has a jurnp at the Fermi surface.
As the real electron distribution function n (q) is con-
tinuous at the Fermi surface, the kinetic energy of up-
spin electrons in the present description is expected to be
better. However, for down-spin electrons, n

& (q) given by
the first term in the first brackets of (8) is the same as the
distribution function of the usual GWF (the dashed curve
of Fig. 1). It will fail to give a good energy, as observed

by Metzner and Vollhardt' for the Hubbard model in
the strong correlation limit.

The real electron spin-correlation function Cz (q) and
the density correlation function Cz (q) can be defined in

a similar way to (10). It is easily shown that Cg (q) and

Ca (q) have the following relations with the pseudospin
and density correlation functions Cd (q) and Cd (q):

Cgs(q) = [Cd (q)+9Cd (q)]/4,

C„(q)=[C& (q)+C (q)]/4 .
(13)
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FIG. 1 ~ The distribution function used for the kinetic energy.
The solid line and the dashed line correspond to up- and down-

spin electrons, respectively.

Figure 2 shows the spin-correlation functions for the usu-

al GWF (dashed curve) and for our wave function (solid
curve) CR (q) h. as a sharp cusp at q =2kF, and decreases

as q increases, in contrast to the q-independent behavior
for the usual GWF. This feature is qualitatively in agree-
ment with the Monte Carlo simulations. This means we
have a rather good description for correlations of spins
and holes at short range (i.e., large q). However, for
small q, d Cps/'dq2) 0, not less than zero, as seen in the
numerical calculations. This unpleasant feature is a re-
sult of the asymmetry of the trial wave function for up-
and down-spin states.

The density correlation function can be easily shown to
be equal to the hole-hole correlation function C„(q).'

For J~0, the hole correlation is just the density correla-
tion of the free spinless fermions, the exact result for
which is shown in Fig. 3 by the dotted curve. The densi-
ty correlation functions of the present work and the usual
GWF are shown by the solid and the dashed curves. The
density correlation we obtain is close to the exact result,
and is much better than that for the usual GWF.

Now we briefly discuss the electron momentum distri-
bution. In the present description, an up-spin electron is
actually represented by a fermion and a boson [or a fer-
mion with a phase given by (5)]. The momentum distri-
bution function n t (k) is
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FIG. 3. The density correlation function C& (q). The

present result (solid curve) is compared with the exact result
(dotted curve) of J~O and that for the usual GWF (dashed
curve).
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FIG. 2. The spin correlation function Cz (q). The present

result (solid curve) is compared with that for the usual GWF.
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(14)ee(h) —=X(c ec&&e
' ' )= —X(h h&fi eep —ice Xf„f„—Xf„f„,' , f )e

jl jl n(I n'&j

which would usually need to be calculated numerically. A very similar expression has been evaluated by Weng et al.

who obtained, using the bosonization technique, n (k), which agrees with the exact result for the limit J—p0

n (k) n-(kF) —cik kF—i' sgn(k —kF) . (15)

On this basis we would expect that n&(k) calculated from Eq. (14) should give reasonable results. In contrast, the

momentum distribution for down-spin electron n i (k) is

nt(k)=1 —(h&+kh&+k)
——g h bifid exp in—g f„f„—g f„,f„,

jl n (I n'&j

i(Q k) (R —R()
e (16)

As there is a jump at Q+k =k~ for (h&+kh&+k ), there
will be a discontinuity for n

&
(k).

In this paper we have derived an effective Hamiltonian
equivalent to the t-J model. This Hamiltonian is
represented by one kind of boson and one kind of fer-
mion. Applying the Gutzwiller projection to these two
kinds of particles, we have obtained analytically the ener-

gy and the spin and density correlation functions. Our
trial wave function, though simple, improved the usual
Gutzwiller wave function and could produce almost per-
fect properties in some cases, such as the energy for elec-
trons with one kind of spin and the density correlation
function. However, for the other spin (say, down-spin)
electrons, our wave function, based on the same approxi-
mation as the usual Gutzwiller wave function, failed to

give a good description. The trial wave function pro-
posed by Hellberg and Mele' has the correct spin sym-
metry. But there are still some deviations of the energy
they obtained from the exact one. From the present
study we find that projecting out the double occupancy of
a site by a spin and a hole can give good results for the
energy. A trial function with not only this feature but
also with the correct spin symmetry would be interesting.
This is planned to be the subject of further investigation.
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