
PHYSICAL REVIEW B VOLUME 45, NUMBER 22 1 JUNE 1992-II

Nearly antiferromagnetic Fermi liquids: An analytic Eliashberg approach
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I study a model in which quasiparticles on a two-dimensional square lattice interact via exchange of
antiferromagnetic spin fluctuations, determining when one may write the Eliashberg equations for the
normal-state self-energy and for T, . For parameters which have been argued to be appropriate for high-

T, superconductors, I find the mass enhancement and scattering rate to vary over the Fermi surface by a
factor of the ratio of the antiferromagnetic correlations length g to the lattice constant. The pairing ker-
nel is dominated by high-frequency spin fluctuations, and so T, in the BCS approximation is essentially
independent of g, explaining previous numerical work. The analytic solution suggests normal-state self-

energy effects may not lower T, as severely as in other models of d-wave superconductivity.

The notion that superconductivity may be produced by
exchange of spin fluctuations has a long history in
condensed-matter physics. The p-wave spin-triplet
superfluidity of He is believed to be due to exchange of
ferromagnetic spin fluctuations (paramagnons). ' More
recently, the exchange of antiferromagnetic spin fluctua-
tions (antiparamagnons) has been argued to lead to spin-
singlet higher-angular-momentum pairing in quasi-one-
dimensional metals and heavy-fermion compounds.
Rather detailed attempts have been made to describe the
superconductivity of, e.g. , the heavy-fermion compound
UPt3 using an Eliashberg-equation approach and taking
the experimentally determined dynamic spin susceptibili-
ty as input. One difficulty with the Eliashberg approach
is that it neglects terms of order (cps„/EF), where cosF is
the frequency scale characteristic of the spin fluctuations
and EF is the Fermi energy of the quasiparticles. It is not
clear whether the parameter cps„/E~ is in fact small in
the heavy electron metals. Another difficulty is that
there is as yet no derivation from a more microscopic
theory of the ansatz that quasiparticles in a strongly
correlated electronic system interact by exchanging Bose
fluctuations with propagators given by measured spin or
charge response functions. A third difficulty is that
the properties (including the T, ) of a hypothetical
magnetically-mediated superconductor described by the
Eliashberg equations are much more sensitive to normal-
state self-energy effects than are the properties of a con-
ventional phonon-mediated superconductor. In particu-
lar, the T, is much lower for fixed coupling strength in
the magnetically-mediated than in the phonon-mediated
case and the sensitivity to pair breaking by inelastic
scattering is much greater.

The discovery of high-temperature superconductivity
in doped antiferromagnetic insulators has led to intense
theoretical work on various models of superconductivity,
among which are models very similar to the spin-
fluctuation exchange models previously considered in the
context of superfluidity in He and superconductivity in
heavy-fermion materials. Interest in these models has
been bolstered by the discovery that nuclear magnetic

resonance (NMR) experiments on the high-T, supercon-
ductors may be interpreted as implying the presence of
strong temperature-dependent antiferromagnetic correla-
tions. Several groups have explored the idea that the
superconductivity and the normal-state properties such
as the linear resistivity in these materials may be under-
stood in a model involving conventional bandlike elec-
trons interacting by exchange of magnetic excitations.
One approach has been to use the random phase approxi-
mation (RPA) to the Hubbard model to calculate various
physical properties. Bulut, Scalapino, and Morawitz
have calculated the average quasiparticle damping rate to
second order in the Hubbard interaction, U. Wermbter
and Tewordt have used an approximation to the RPA
susceptibility as a kernel in Eliashberg equations. They
approximated the susceptibility y( q, co ) by the separable
form y(q, co) =Q(q)%(cu) and further approximated Q(q)
by the second-order harmonic

Q (q) =Qo+ Q, [cos(q„a )+cos(q a )],
and then solved numerically for the average mass
enhancement, quasiparticle scattering rate and T„con-
cluding that T, would be too low to be relevant to cu-
prate superconductivity. Other workers' '" have per-
formed similar calculations using non-RPA models for
the magnetic excitations. Closely related work has been
stimulated by the "spin-bag" model of high-temperature
superconductivity. ' The physical picture underlying this
model is of a small number of carriers doped into an or-
dered antiferromagnetic; these are argued to form pola-
ronlike entities which pair, leading to superconductivity.
Subsequent work' has focused on justifying this picture
starting from the high doping limit, by studying models
very similar to those of Refs. 8 —11. However, in this
work' the main focus is on structure in the one-electron
spectral function which occurs at energies somewhat re-
moved from the Fermi energy. I will argue in this paper
that, when the Eliashberg equation I derive are valid, this
structure is not important for low-energy quantities such
as the one-electron mass enhancement.
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In a very interesting recent paper' Monthoux, Balat-
sky, and Pines (MBP) have pursued this idea by formulat-
ing and solving numerically a gap equation for supercon-
ductivity due to exchange of antiferromagnetic spin fluc-
tuations. They assumed that the propagator describing
these spin fluctuations was given by the dynamical sus-

ceptibility inferred from NMR experiments. They wrote
down a three-dimensional integral equation for the super-
conducting gap function. They did not include normal-
state self-energy effects. Their calculation is technically
interesting and different from what has been done previ-
ously because their spin-fluctuation propagator was taken
to be very sharply peaked about a particular wave vector
Q which does not span the Fermi surface. Thus this cal-
culation includes an interplay between commensurate
magnetic fluctuations and an incommensurate Fermi sur-
face. Anther important feature of their calculation is
that the spin-fluctuation propagator was not assumed to
have the separable form y(q, co)=Q(q)%'(co). By use of
symmetry arguments and of several approximations they
reduced the gap equation to a one-dimensional integral
equation, which they solved numerically. They found
several interesting results: (a) the superconducting gap
transforms according to the d 2 2 representation of thex —y
symmetry group D4 of the CuOz plane; (b) the numerical-

ly calculated T, is relatively high and is well described by
a BCS-like formula T, —I exp( —1/I, ), with A. an aver-

age interaction strength. T, did not, in their numerical
results, apparently depend on the long correlation length

g or slow spin-fluctuation frequency cps„characterizing
the antiferromagnetic fluctuations, but instead involved
only the electron-spin-fluctuation coupling constant k
and the energy scale I characterizing spin fluctuations
with momentum far from the antiferromagnetic wave
vector.

Whether the d 2 2 state predicted by Monthoux,
x —y

Balatsky, and Pines is actually observed in the high-T,
materials is unclear. The weak temperature dependence'
of the penetration depth at temperatures much less than
T, is widely believed to be inconsistent with states (such
as the d &,) having nodes in the superconducting gap,x —y
although this conclusion is not universally accepted. '

However, other properties including the temperature
dependences in the superconducting state of Knight
shifts' and of NMR relaxation rate anisotropies have
been argued' to be inconsistent with conventional s-wave
pairing. Angle-resolved photoemission experiments'
have not yet detected the gap nodes in the (1,1) direction
occurring in a d & 2 state.x —y

In this paper I investigate analytically some theoretical
questions raised by models in which exchange of antifer-
romagnetic spin fluctuations is the dominant quasiparti-
cle interaction mechanism in the high-T, materials, and
in particular by the calculation of Ref. 14. I do not dis-
cuss the derivation of such models from the microscopic
Hamiltonian. I do point out some previously unnoticed
experimental consequences of the model. I believe an an-
alytic treatment of the problem is useful because it eluci-
dates the role played by the strong momentum depen-
dence (and the interplay of this with the strong energy

dependence) of the interaction, which was in previous
work either averaged over or treated by a numerical
method which involved approximations and was diScult
to interpret. I study the electron self-energy of the mod-
el, showing that in the parameter regimes believed to be
appropriate for the high-T, material, the self-energy is
given by equations very similar to the Eliashberg equa-
tions arising in the electron-phonon problem. I estimate
the limits of validity of the Eliashberg-like equations, ar-
guing that too near half filling the equations no longer ap-
ply and indicating what additional terms should be add-
ed. Where Eliashberg equations apply, I obtain and solve
approximately the gap equation with and without self-
energy effects and argue that self-energy effects in this
model may be weaker than expected from other models
of spin-fluctuation-mediated d-wave superconductivity,
although a numerical treatment is required for a definite
answer. I also obtain expressions for the mass enhance-
ment and scattering rate, showing that these may have a
dramatic variation over the Fermi surface.

The model I study is of electrons moving on a two-
dimensional square lattice of lattice constant a, with
some dispersion relation c,&. These electrons are subject
to an interaction

Here co„ is a Matsubara frequency, S is an electron-
spin operator, I is a coupling constant, and y, a spin sus-
ceptibility, requires further discussion. Monthoux, Balat-
sky, and Pines' write for the susceptibility as a function
of real frequency for k in the first quadrant (k„,k & 0)

(2)

Here yo is the measured q =0 static susceptibility,
p'~ =-nis a param. eter, and I is a frequency scale charac-
terizing spin fluctuations. To save writing I have
redefined I so that, in the present work,

In high-T, materials it is claimed that yol =—0. 1. The
wave-vector-dependent energy scale I I, is

I „=I[1+(k—Q) g ]/(g/a)

g is the correlation length characterizing the antiferro-
magnetic fluctuations. These are maximal at the wave
vector Q=(vr/a, m. /a). For k in other quadrants, one
must shift Q appropriately.

The susceptibility in Eq. (2) is inferred from NMR ex-
periments. The NMR relaxation rates in high-T, ma-

terials show anomalous temperature dependences. In
Ref. 6 these were argued to arise from low-lying com-
mensurate antiferromagnetic spin fluctuations. The total
dynamic susceptibility was partitioned into a convention-
al Fermi-liquid-like contribution and an anomalous anti-
ferromagnetic part which was assured to dominate at low
frequencies for wave vectors near Q. The susceptibility in

Eqs. (1) and (2) is taken to be the extension to finite cg of
the anomalous antiferromagnetic contribution of Ref. 6.
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yy"(k, a~)=((&i )') & —,',
k, co

(5)

because y" only vanishes as I/co at high co, so the sum on

In particular, it is consistent with dynamic scaling with

mean-field exponents and obviously obeys the Kramers-
Kronig relation between real and imaginary parts of y.
However, it does not obey the total moment sum rule at
T=O,

the left-hand side of Eq. (5) diverges logarithmically. The
simplest way to cure this divergence is to introduce a
momentum-independent cutoff D and assume that
y"(k, co) is given by Eq. (2) for co & D but that y"(k, ai) =0
for co&D. Equation (5) then shows that one must have
D-I . This cutoff means that the real part of g is no
longer given by Eq. (2), but is corrected by a term which
is negligible for k near Q, but important for k far from Q.
With the ansatz y"(co)=0 for ~co~ &D and the standard
spectral presentation for y, I obtain for the Matsubara g

iQ„~ —(2Q„/n. )tan '(Q„/D) I k+—(2I'k/n. )tan '(I k/D)
Y(k, iQ„)= q,—rP'"

r2 —Q„' (6)

/Q„i &r„
k

1
y(k, iQ„)=y,rp'"x

IQ I

' &IQ. I&r„
n

D

(7a)

If I k is comparable to D, then an adequate approxima-
tion is

Equation (6) is finite at iQ„~ = I k and, if I'k is much less
than D, is quite well approximated by

leaving an equation involving Fermi surface quantities
only. In the problem at hand, the characteristic energy
of the boson at rnornentum q, I, is also much less than
the bandwidth, leading one to suspect a similar approxi-
mation is feasible. '

Consider the two low-order perturbation theory dia-
grams for X shown in Figs. 1(a) and 1(b). Using the un-

perturbed Green function Go(k, ice„)=(ice„—ek) ' and

Eq. (6) for y we find that the contribution to X from Fig.
1(a), X», may be written (f and b are the Fermi and Bose
distribution functions, respectively, and g =I yoI p'~ ),

1 —(2/n ) tan 'I'k /D

X(k, iQ„)=y,rp'"x r„/D IQ[&D

(7b)

q, iQ

(a)

One sees from Eqs. (7) that the characteristic frequency
scale for y is D-I. For the high-T, materials values

I -=0.05 eV have been quoted. ' These values of I are
much smaller than the conduction electron bandwidth.

Consider now the electron self-energy due to the
electron-boson interaction. When the boson propagator
is only weakly momentum dependent, the problem be-
comes essentially identical to the electron-phonon prob-
lem. The electron-phonon theory involves two pararne-
ters: a dimensionless coupling constant A, which may be
of order unity, and a truly small parameter A(coii/E~). ,

The smallness of the second parameter leads to two
simplifications. One is that "vertex correction" diagrams
are of order coD/EF relative to noncrossing diagrams,
and so may be neglected if A,coD/E~ «1. The terms of
order (coD/EF) may be shown to lead to a closed form
self-consistent integral equation for the self-energy. The
second, related simplification produced by the small value
of coD/EF is that only electronic states near the Fermi
surface are important, so that one may integrate analyti-
cally over the magnitude of the electron momentum,

k-q, im-iQ

q1 'Q1 q2, iQ2

(b)

k —q 1
IM —I Q1

k —q1 q2
ICO —IQ1 —IQ2

k —q2
l(0 —IQ2

FIG. 1. Low-order perturbation-theory diagrams for the elec-
tron self-energy X. The solid line represents the electron propa-
gator, the wiggly line the spin fiuctuation. 1n the crossed dia-
gram 1(b), if the external momentum k is on the Fermi surface,
w may choose q& and q& so that two of the internal momenta,
say, the first (k —

q& ) and third (k —q2), are also on the Fermi
surface. The third line will then in general be displaced from
the Fermi surface by a momentum of order the antiferromag-
netic wave vector g, leading to an energy denominator of order
2p, where p is the chemical potential measured from half filling.
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x[b ( x)+f ( E )]
X i,(k,

iso�

) =g
(I & +x )(iso —x —E )

The self-energy determines three quantities of possible
physical interest: X(k, ice=0) gives the shift in the Fer-
mi surface at T=O, BX/Bco, and BX/Bk determine the
mass enhancement, and X"(k,co+i5) gives the scattering
rate. As may be seen easily from (8), for BX/Ba~ and X"
the relevant values of cq are those within an energy of or-
der I or D of the Fermi surface, while for X(k, ico=O)
and BX/Bk the region near the Fermi surface does not
contribute at all.

Consider first BX/Bco and X". The constraint that e~
be near the Fermi surface means that once the direction
of q, 0, is fixed the magnitude of q may vary by an
amount b,q-x/vF(8~). But when q varies over this
range then the other factor in the integral,
q-=x/~'+rk

q
varies by an amount which we may

estimate from Eq. (4) to be

5y" rl —
q (k —q —g)g /a x

I'„,+x' 1+(k—q —Q) ( vFa
(9)

Thus the relative change in y" is small, of order N(9~ )D,
because if (k —

q
—Q)g)) 1 then all of the factors in (9)

except x/UFa are of order unity and the integral is dom-
inated by x of order D, while if (k —

q
—Q)(-1 then ei-

ther x -D/g or I k «x. Very similar arguments ap-
ply to the scattering rate; thus for these quantities it is
permissible, up to terms of order N(6~)D, to integrate
over the magnitude and angle independently, setting
~q~ =q~ in r„

The renormalization of the Fermi surface, which is
determined by X(k, i co„=O), is a different matter. The E

integral is not convergent so that whole zone is impor-
tant. Further, the integrand is odd in c, so the region
near the Fermi surface cancels. In the usual Eliashberg
theory X(k, ice„=O)=0. In the present situation we ex-

pect it to be small (more precisely, since a uniform shift
of the chemical potential is not important, we expect the
variation around the Fermi surface of X to be small). I
have calculated the leading order diagram numerically
and found that it is indeed small relative to BX/B~, pro-
vided the model is suSciently far from the nesting insta-
bility, as discussed below. Further, the renormalization
of the Fermi surface should not affect the estimates of the

mass enhancement or scattering rate appreciably.
The estimate for BX/Bk is very similar to that for

X(k, iso=0). By explicitly differentiating Eq. (8) with
respect to k one may show that the integrand for BX/Bk
is related to that for X(k, i co=0) by a factor

ra —
q (k —

q
—Q)g /a

I 2 +x 1+(k—q —Q) g

which is always less than unity. Thus if X(k, ice=0) is
negligible, so also is BX(k,ice=0)/Bk. Henceforth I
neglect BX/Bk, and so determine the mass enhancement
from BX/Bco.

Now turn to the contribution of crossed dlagIams such
as Fig. 1(b). In the electron-phonon problem these are
negligible because if we put two of the electron lines (say
the first and third) on the Fermi surface, the second will
in general be far from the Fermi surface. In the present
case, because the interaction is sharply peaked in mornen-
turn space, this is not so. The rnomenturn carried by a
spin fluctuation is q —Q+O(g ). Thus we may esti-
mate the energy of the intermediate electron line as
E~

—q-e —Q+vF/g. Now in a model with perfect

nesting, e~
—Q =2@, so the energy denominator appear-

ing is not the Fermi energy E~ but (2p+vz/g), which is
much less than EF near half filling. Thus after integrating
over the boson frequency we find that the crossed dia-
gram is smaller than the leading diagram by a factor of
order AD/(2~p, ~+v~/g) with A, =g No/D. By using the
expression for g given above Eq. (8) and assuming
yo-NO, this estimate becomes (NDI ) P' D /(2~ p ~

+v~/g). Thus the theory we discuss is only valid to
leading (i.e., zeroth) order in D/(2@+ vF /g). The density
of states is either nondivergent or, in models with nesting,
only logarithmically divergent as p goes to zero. Thus,
errors due to the approximation of integrating first over
the energy [terms of order N(8 )D] are less important
than errors due to the neglect of crossed diagrams for a
wide range of p. The physics underlying these estimates
is that the electronic energy vz/g corresponding to the
momentum scale of the boson g

' is much greater than
the typical boson frequency D, so the frequency depen-
dence of the boson is more important than its momentum
dependence.

To summarize, if the parameter D /(2@+ vF /g ) is

sufficiently small, one may follow the usual Eliashberg
procedure, obtaining the following equations of the self-
energy:

dO
[1—Z(8k, iso„)]ice„=— N(9 )n T pi sgn(Q„)I g(k —p, ice„—i 0„)2'

n

(loa)

and

dO W(0~, 0„)
n

(lob)
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Here the wave vectors k and p are restricted to lie on the
Fermi surface, which is assumed to be topologically sim-

ple, 8k is an angle parametrizing the Fermi surface, and
N(ek) is the density of states at angle ek. These equa-
tions should hold for the model of Ref. 14, where the
values I =0.1 and p= —0.5 (in units where t =1}were
assumed. The linearized gap equation of Ref. 14 is
equivalent to our Eq. (10b) except that they have set
Z = 1, have chosen to perform the frequency sum instead
of the momentum sum, and have taken D~~. Equa-
tions (10 ) may be solved straightforwardly on a comput-
er. Equation (10a) is an integration and Eq. (10b) may be
reduced to the inversion of a matrix defined on the
Matsubara frequencies. Here I present an approximate
analytic solution, based on Eqs. (7) for y, which reveals
the important energy scales.

Begin with the equation for the normal self-energy Z.
One quantity of physical interest is the Fermi surface
mass enhancement, m'/m —1 =k,i,. Within the Eliash-
berg approach this is given by lim oZ(k~, co)=A,k, be-
cause, as shown above, c}X/Bk is negligible. It may be
reasonably approximated by

d8
A,„=Z(k, ice„=aT)=g f N (8 )/r„

2

It is clear from Eq .(11) that for each k, two possible cases
can arise: either for some p on the Fermi surface,
~k —p —

Q~ -g ', in which case A,z may be large, or for
all p on the Fermi surface, ~k

—
p —Q~g))1, in which

case A, & will be small. Which case arises in any given cir-
cumstance depends upon the band filling and Fermi-
surface shape, upon g, and possibly upon the position of
k on the Fermi surface. A particularly interesting case
occurs for the parameters used in Ref. 14, which are very

r(e„,8, ) =r.,„(e„,e...„)+,' rp,'(8, —8...„)' . (12)

Inserting (12) into (11) and integrating yields [not explic-
itly writing the dependence of r;„(ek, e~;„)],

2
' 1/2gN, Ip

(13)

Equation (13) implies a mass anisotropy around the Fer-
mi surface of order g for the parameters given, because if
k is along (ll), I;„-Ia /g, but for k along (1.0),I;„-I. Apparently similar results have been obtained
by Monthoux in a numerical calculation. We now con-
sider the imaginary part of the self-energy. Analytically
continuing Eq. (10a) we find

similar to those used in other work and have been argued
to be relevant to YBa2Cu307. In this work the electronic
dispersion was given by the tight-binding form
rk= —2(cosk„+cosk ) —p, (we take the hopping t =1
and the lattice constant a =1}with p= —0.5. In addi-
tion, I =0. 1 and /=3 were assumed. In this case for
k= kz(1, 1) on the zone diagonal I find that the minimum
of (k —p —Q) occurs for p oppositely directed to k, with
~k

—
p

—Q~g-0. 6, implying a large Az, while for k per-
pendicular to the zone face [k parallel to (1,0)] the
minimum in k —p —Q occurs for p nearly parallel to (0, 1)
and the value of ~k

—
p

—
Q~ (-4 implying a small A, z. We

may make a more accurate estimate by defining I m;„(ek )

as the minimum as p ranges over the Fermi surface of
1 (g +(k —p —Q) ). The dependence on angle away
from the minimum value is quadratic. Indeed, if for fixed

0k the minimum value of I occurs at an angle 8;„then
I find (not writing the e~ dependence ofpF),

X"(k, co+i5)= f N, (e~)f [b(x +co)+f (x)]y"(k p,x)—dep dx (14)

Consider first T=O. The integral over x may be per-
formed leaving

deX"(k, co+i5)= f No(e )in[co +I q p)/r„p .

(1 /I )' than the naive Fermi-liquid estimate co /1
If r;„(ek)«co«r then for those 8&'s for which

co & I i, , the scattering rate is ln(co/r& z), so that in-

tegrating over this range gives

(15) x-(k, ~+i5)-g'N, (~/r)'" . (17)

As with A,&, different behaviors occur in different cir-
cumstances. The various regimes are shown in Fig. 2. If
co « I;„and I;„«1 then one may expand the log and
perform the integral obtaining

I
X"(k, co+i5)=

4~ 1I pF2

1/2
CO

2
~ml~

(16)

This is the expected Fermi liquid behavior. Note, howev-
er, that the scattering rate is smaller by a factor of

The regime of p s for which co) I & gives a similar con-
tribution. Finally, for co))I',

X"(k, ai+i5)-g Noln(co/I ) . (18)

Very similar behavior occurs as a function of tempera-
ture; one just replaces co by 2m T in Eqs. (16)—(18). Note,
however, in the low-T regime that X" —T /I I;„,and
that it is possible that r;„-g' —T ' (cf. Ref. 6). Thus
if g is T dependent, and if k and g are such thatr;„-g, the low-T dependence ( T & I';„)is X- T.

For the parameters considered in Ref. 14, I;„for k
parallel to (1,1) is less than the temperature, while 1
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The large variation over the Fermi surface of the real
and imaginary parts of the self-energy implies that vertex
corrections to the conductivity will be large. Thus the
naive inference ' of a linear-in-T resistivity from the
linear-in-T average self-energy is not necessarily valid.

We now turn to the superconducting properties de-
scribed by Eq. (10b). The superconducting gap function
W must transform according to an irreducible representa-
tion (which we label by a) of the crystal symmetry group
in this case D4. We choose to write

W(8k, ice„)=b (8k, i'„)P (8k ) . (20)
0—

0

FIG. 2. Frequency dependence of imaginary part of self-

energy for k along (1,1) calculated from Eqs. (12) and (15), with

frequency units such that
2

I p+ =1, and parameters chosen so

that I;„=0.2 and g'No/2+= 1. For sufficiently small co,

X"-~'; for intermediate m, X"-~' ' crossing over to X"-inca
for larger values of co. The insets display the small [inset (a)]
and large [inset (b)] co regimes more clearly; in each case the
solid line is calculated from Eq. (15) and the dashed lines from
the approximations in the text.

AE ~ I;„-10meV, (19a)

and the momentum resolution required is (a is the lattice
constant)

for k parallel to (1,0) is greater, so that for k parallel to
(1,1) X"-T'~ while for k parallel to (1,0) X"-T . Be-
cause the range of k's about (1,1) for which X"—T'~ it-
self scales as T', these equations lead to Fermi-surface-
averaged self-energy varying as T, as previously
found 8 —1 1, 14,23, 24

These considerations are not directly applicable to the
reduced T, materials La, 85Sro»Cu04 and YBa2Cu306 6

because the parameter yo [cf. Eq. (2)] deduced from
N MR experiments is strongly temperature depen-
dent, ' implying the development of a gap in the spin
excitation spectrum. For these materials a naive applica-
tion of Eq. (18) would lead to a X" which decreased with
temperature more rapidly than T. However, in Ref. 16 it
is argued that for these materials onset of a spin gap im-

plies that the form for y(q) assumed in Eq. (2) is unlikely
to be valid for co of order room temperature or greater.
The analysis presented here thus must be modified in or-
der to treat these materials. Monthoux, Balatsky, and
Pines' argue that one should simply introduce a temper-
ature dependence of the coupling parameter I to com-
pensate for the temperature dependence of go. In our
view a more systematic treatment of the effects of the on-
set of the spin gap is required.

The variation of mass and scattering rate over the Fer-
mi surface should be observable in angle-resolved photo-
emission. Their absence would rule out this model. The
energy resolution required is

Here P (8k ) is the partner function corresponding to the
a irreducible representation and b, (8k,i'„) is a function
with the full symmetry of the crystal. The P are nor-
malized so that

d8kf P.'(8„)P~(8„)=&.p . (21)

We consider first the weak-coupling limit, where we set
Z(k, ice„)=1. As may be seen from Eq. (13), the condi-
tion for the applicability of this limit is, roughly,

g No/Qr;„r «1; this is a very stringent condition.
We also make the BCS approximations, which amount to
neglecting the frequency dependence of the gap function
and setting i'„=0 on the right-hand side of Eq. (10b).
The sum on i Q„may be performed; the resulting gap
equation is

d8 N(8 )
W(k)= —g f Pz ~(T)W(p) .

k —p

(22}

dO
W(k)= gNoD„Q(T) f —

2 2 W(p) .
2~ r,„(k)+rp,'8,'

Here Pz (T) =ln(D/T) is a slowly varying function of
k —p. We first consider a gap function transforming as
the trivial representation P =1. In this case the angular
integrals are dominated by the region where I;„(k) is

smallest, i.e., by k parallel to (1,1). We may analyze the
problem as we did for A,z. We find [assuming that b,(k)
does not vary too strongly about the Fermi sur-
face] a pairing interaction which is repulsiue (unfa-
vorable for superconductivity) and which scales as

g Noln[ I /max( I;„,0)]. Because the integrals are
dominated by the regions for which k —p is near Q, the
same conclusion holds for the d partner function, be-
cause Pd =1 if 8k =+(m/a, vr/a) and Pd = —1 if

xy xy

8k =+(n/a, —m. /a). T. hus, as pointed out by Monthoux,
Balatsky, and Pines, ' within weak coupling the only pos-
sible symmetry for the gap function is d 2 &, for which

x —y
P vanishes for k parallel to Q. To understand the struc-
ture of the gap equation in this case we again consider
two cases; k parallel to (1,1) and k parallel to (1,0). If k is
parallel to (1,1) the gap function W(k) vanishes, as does
the p integral in Eq. (22). If k is parallel to (1,0) the gap
function is nonzero and we may write

b,k &Q(2kF —Q) +g -O. S/a . (19b} (23)
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The 8 integral in Eq. (23) is dominated by the p's near

where I;„(k—p) is minimal. As we have seen, this in-

volves p's near (0,1). For these p's, W(p) and JV(k) are
of opposite signs; the interaction is therefore of the
correct sign to produce superconductivity. The p in-

tegral may be performed, yielding essentially the same re-
sult as we previously obtained for the mass enhancement
for k parallel to (1,0). Of course, for the parameters be-

lieved to be relevant for high-T, superconductivity, only
spin fluctuations of momentum farther than g

' from the
antiferromagnetic point enter. This explains the numeri-
cal result of Ref. 14 that T, was independent of g in this
model. It is not correct to think of the strong low-lying
antiferromagnetic correlations as producing supercon-
ductivity in this model.

I now consider the effect of relaxing the condition

g No /'t/I;„I « 1. First, I discuss including the
normal-state self-energy. Note that the gap function van-
ishes where the normal self-energy is largest; this will

probably lead to a finite region of gapless superconduc-
tivity near (1,1) (in contrast to the gapless point suggested
by the weak-coupling approach) but may not reduce T,
too much. On the other hand, in the region where the
gap function is large, the paring interaction is basically of
the same strength as the interaction entering normal-state
self-energy, thus the parameter g defined in Ref. 5 may be
close to unity. Normal-state self-energy effects were
found in Ref. 5 to be particularly large only for g & —,'.
Thus I believe that normal-state self-energy effects will

not affect qualitatively the results presented here.
The superconductivity found in the present calculation

is likely to be different from that found in other d-wave
superconductors in one interesting way. Because the
nodes in the gap occur at the points on the Fermi surface
where the interactions are strongest, it seems likely that
the low-lying quasiparticle excitations would have a large
mass, so that the change in superfluid density due to
these thermal excitations could be unusually small at low
T, possibly reconciling the penetration depth results"
with a d-wave order parameter.

One important caveat should be mentioned. Because
the pairing kernel for the d 2 2 state was found to be

X

dominated by the large to, q+Q region, one may question
the validity of including only the interacting due to the
low-lying antiferromagnetic spin fluctuations of Eqs. (1)
and (2) in the pairing kernel. The higher-lying Fermi-
liquid-like terms will have a small additional effect on the
normal-state self-energy calculation, and will affect the
pairing calculation in two ways: Because the energy scale
is higher, the cutoff I will be increased, but because the

momentum dependence is weaker, the relative strength of
the d 2 2 interaction will be decreased. Numerical work

X JP

is required to determine which effect dominates.
It is interesting to consider the relationship of the re-

sults presented here to those obtained in the spin-bag cal-
culations. ' ' The spin-bag results have two aspects.
One is a pairing mechanism involving local suppression
of antiferromagnetic order. ' The expression of this
mechanism in the highly doped, metallic case is argued to
involve crossed diagrams related to that shown in Fig.
1(b).' The second aspect involves a "pseudogap" struc-
ture in the single-particle spectral function. ' The results
of this paper imply that in the parameter regime (g NzD)
(D/(2~p~+Uz/g) &&1 in which the Eliashberg descrip-
tion applies, the crossed diagrams cannot contribute to
pairing. The pseudogap structure of the single-particle
spectral function' is a slightly different matter. The cal-
culations exhibiting this pseudogap involved evaluating
the diagram shown in Fig. 1(a); this is the leading-order
approximation to the Eliashberg equations. Thus the
pseudogap may occur in the Eliashberg equations. From
the results of Refs. 13 one may see that the pseudogap
occurs at an energy —2

~ p ~
from the Fermi surface.

From the arguments given in this paper or in Ref. 13, one
may see that this is the energy of a final state produced
by scattering an initial state at the Fermi surface by the
antiferrotnagnetic wave vector Q. The results presented
here show that if the Eliashberg condition
(NOI) D/(2~@~ ) &&1 is satisfied, this peak is at too high
an energy to be relevant for the mass enhancement,
scattering rate, or superconductivity.

In conclusion, I have shown that the model in which
quasiparticles interact by exchanging spin fluctuations
which are described the phenomenological susceptibility
obtained from analysis of NMR experiments may be
studied analytically via the Eliashberg equations, if the
chemical potential measured from half filling is not too
small. I wrote down the relevant Eliashberg equation in
a form I hope is convenient for future numerical work
and obtained an effective mass and scattering rate which
vary dramatically around the Fermi surface, being largest
in the (1,1) direction. I also showed that the d-wave su-

perconductivity found in this model' is due essentially to
high-energy spin fluctuations and not to the strong low-

lying AF fluctuations producing the mass enhancement
and scattering.

I thank the authors of Ref. 14 for a discussion of their
work prior to publication. Some of this work was per-
formed at the Aspen Center for Physics.
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