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Solution for the U-negative Hubbard superconductor including second-order correlation effects
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We analyze the e8'ects of fluctuations on the gap and critical temperature of a superconductor. The
model Hamiltonian chosen is one of the simplest: the U-negative Hubbard model. A diagrammatic
self-consistent approach is used, and a second-order self-energy is calculated in order to take into ac-
count local fluctuations. Our results show a decrease of the superconductor gap and critical temperature
with respect to the mean-field solution. The ratio 2h/k~ T, is not modified, however, by the local Auc-

tuations if the self-energy matrix in a site representation extends only to the lattice nearest neighbors. In
this approximation, the superconductor gap is found to be constant along the Fermi surface. Further
nearest-neighbor interactions introduce a superconductor gap that changes along this surface.

I. INTRODUCTION

The appearance of high-T, superconductors' has
rene~ed the general interest in superconductivity. The
mechanism leading to the Cooper pair formation
(electron-phonon or electron-electron interactions), and
the role played by magnetism in these compounds are not
yet clear. In a phenomenological approach, different
model Hamiltonians have been proposed. ' The aim of
this work is to explore one of the simplest of these phe-
nomenological Hamiltonians (the U-negative Hubbard
model), analyzing the electronic properties beyond the
mean-field approximation. The interest of this analysis is
suggested by the strong electron-electron (e-e) coupling
shown by these high-T, superconductors. In particular,
the coherence length is rather small in these materials,
g-10—20 A, and comparable to the e-e distance. One
may expect that in these conditions, corrections to the
mean-field solution could be non-negligible, and that
quantum fluctuations may play a role in the supercon-
ducting properties of the materials.

%e have chosen to analyze the U-negative Hubbard
Hamiltonian, but a more general case could be discussed
following the same ideas developed below. In particular,
we argue that our results have a more general validity
and can be extended to other, more complex, Hamiltoni-
ans.

In Sec. II, we begin by reviewing the mean-field solu-
tion of this Hamiltonian, introducing, subsequently,
correlation effects through the inclusion of the second-
order self-energy, calculated using a self-consistent per-
turbative approach. In Sec. III we analyze the effects of
fluctuations on the gap and critical temperature, using a
local approximation for the proper self-ener'gy. The rath-
er cumbersome calculation of the second-order self-
energy has been included in Appendix A.

Finally, we have checked the correctness of our self-
consistent perturbative approach, by evaluating the total
energy of the superconductor up to 0 ( U~), as given by
our calculation. It is shown in Appendix B that this ex-
pression coincides exactly with the second-order expan-
sion of the energy calculated in Ref. 15.

II. SECOND-ORDER PERTURBATIVE
SOLUTION OF THE U-NEGATIVE
HUBBARD SUPERCONDUCTOR

%e start from the U-negative Hubbard Hamiltonian:

A'=g(eo —p)h; + g t; c; ci +Ugh;i&;&, (1)
t, o'

where indices i and j run over all atomic positions of the
system. The hopping parameters are t; =t for nearest
neighbor and zero otherwise, and we take U = —

i Ui. As
we will be interested in working with a variable number
of particles, the usual term depending on the chemical
potential, p, is included. A very complete and up to date
review on the problematic of this Hamiltonian can be
found in Ref. 8.

The superconducting solution of Hamiltonian (1) has
been obtained using a mean-field approximation. Our
purpose in this paper is to go beyond, including correla-
tion effects up to second order in a self-consistent pertur-
bation theory. %e will concentrate in studying the trends
of the superconductor gap 6 and the critical temperature
T„as the effects of fluctuations are included. Moreover,
we will only consider the situation in which 6 is much
less than the bandwidth. Therefore, our results will not
be valid, in principle, in the strong-coupling regime.

It is convenient to make a change in Hamiltonian (1),
from a localized basis to a Bloch one (the one which diag-
onalizes the one-electron part of the Hamiltonian):

g(Eg P)Cg~cg& g Cg+q tcg tcg' q peg'
k, o k, k', q

(2)

As is well known, the mean-field solution of Hamiltonian
(2) can be obtained from first-order self-consistent pertur-
bation theory. ' '" In order to introduce the formalism
that will be used throughout the paper, we review, briefly,
this mean-field solution. Using the Nambu formal-
ism, " ' we introduce the following 2 X 2 Matsubara ma-
trix propagator:
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6 (k, r) F(k, r)
F'(k, ) 6(k, )

(ia)„+ek —P)F (k, co„)= X2)6 (k, co„)

+X22F (k, co„) . (10)

where

6 (k, ~)=6»(k, r }=—( f', [ck& (r)ckt (0)]),
F(k, r) =6 )~(k, r) = —( f', [ckt (~)c k) (0)]),
F (k, r)=Gz, (k, r)= —(1',[c k&(r)c„&(0)]),

6'(k, )=6„(k, )= —(~,[" „,( )",(0)]&, (7)

which correspond, respectively, to propagation of elec-
trons, annihilation and creation of electron pairs, and
propagation of holes.

In Fig. 1 is shown the graphical convention used to
represent the Matsubara frequency-dependent propaga-
tors, corresponding to the ones defined in Eqs. (4)—(7).
These four propagators are not wholly independent;
F(k, co„)=Ft(k, co„),and 6'(k, ro„)= —6 ( —k, —co„).

In self-consistent perturbation theory one solves the
matrix Dyson equation to any desired order of the per-
turbation

Equations (9), (10), and (12) have the self-consistent solu-
tion:

and

X~z =X&&= —4 =const

2 2
Qk Uk6(kco„)= . +

le~ k lCO~
(14)

The diagonal self-energy [see Fig. 2(c}],can be dealt with
as a simple renormalization of the diagonal level:

E'k+Hartree term —p=—Zk .

The off-diagonal self-energy X,2 will provide the gap
equation and can be calculated from the diagram
represented in Fig. 2(d):

X&z= — gF (k —q, co„—v„) . (12)
v, q

(8)

where the proper self-energ matrix 2, is calculated using
the full matrix propagator, which is then determined in
a self-consistent way. ' ' . C' represents the unper-
turbed propagators and has therefore the ofF-diagonal ele-
ments equal to zero.

To first order in the interaction we have two coupled
equations for 6(k, co„) and F (k, cu„) [see Figs. 2(a) and
2(b)]. These equations can be written in the following
algebraic form:

(i co„e&+@)G(—k, co„)=1+X&&6(k, co„)

+Xi2Ft(k, co„),

est

F (k,a)„)=—ukvk

where

Ek —QFk+b,

1 k
u =1—

U =—1+2 2

2 Ek

k "k 2Ek

+I,
" (a)

(15)

(16)

G (k g i~n):— k, l~n F (k, i~n) = k, i~n

"I (b)

1 ~"

F (k, i ~n)= k, i~n G'(k, i~n ) = k, i~n (ci )

FIG. 1. Graphical convention used to represent the propa-
gators G(k, co„),F(k,co„),Ft(k, co„},and G'(k, co„}.

FIG. 2. Diagrams contributing to the first-order proper
self-energy. Double and single lines represent, respectively,
dressed and undressed propagators. (a) Dyson equation for the
propagator G(k, co„). (b) Dyson equation for F (kco„). (c)
First-order diagonal self-energy. (d) First-order nondiagonal
self-energy.
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(a) (b)

(2)-
(k, i ~r))=

(c) (cI)

(e)

FIG. 3. Different contributions to the second-order proper
self-energy (see the text).

We will discuss further the gap equation [that can be
obtained straightforwardly from Eqs. (12) and (13)], and
its solution in Sec. III.

Let us explore now the possibility of going beyond this
mean-field solution, by calculating higher-order terms in
the diagrammatic expansion of the proper self-energy. In
this paper we will consider the efFect of second-order
corrections.

In Fig. 3 these second-order diagrams of the proper
self-energy are drawn. Diagrams in Figs. 3(a) and 3(b)
are the ones contributing to the diagonal self-energy

Xp, '(k, co„) and in Figs. 3(c) and 3(d) to the nondiagonal
self-energy Xp2'(k, co„). Other second-order diagrams,
like the one represented in Fig. 3(e), can be ruled out be-
cause they are taken into account when using dressed
propagators.

The exact expressions of these four diagrams are given
in Appendix A. We are interested, however, in a situa-
tion where b, ((B (B being the bandwidth), and the fol-
lowing approximations can be made in this limit.

First, we neglect dynamical corrections in the evalua-
tion of the gap and critical temperature, taking the limit
cu„~0 in the calculation of the self-energy diagrams.
Obviously, this would not be correct in the strong-
coupling regime where dynamical corrections should be
included.

Within this approximation, the diagram in Fig. 3(a),

X' '(R co„=O)=X' '(R),

XP~'(k, co„=O)=X',~'(k) .

Both expressions are related by

(20)

X(2)() ) yX(2)(R)eik R

R
(21)

We can write, now, the self-consistent equation for
b(k) as

which is the only one that survives in the normal phase,
tends to a constant value (zero in the half-filled band
case), and plays a negligible role in the gap and critical
temperature, simply renormalizing the level e&. On the
other hand, the remaining three diagrams tend to a
nonzero constant value. We can see, however, that the
diagram of Fig. 3(b), which contains two anomalous
propagators (anomalous in the sense of being absent in
the normal phase), F and Ft, must be of order —b, . For
the same reason the diagram in Fig. 3(c) is of order -b, .
It is clear, therefore, that the leading correction in the
limit of the small gap parameter, 6, is given by the dia-
gram represented in Fig. 3(d), contributing to the nondi-
agonal self-energy, and which is obviously of order -A.
It must be remembered that this neglect of terms of order
greater than the leading one is the usual procedure for
obtaining, for instance, the gap equation in the mean-field
approximation.

We are left, then, with the diagram in Fig. 3(d). There-
fore, we approximate the full off-diagonal self-energy
XI2'(k, co„) by this diagram. Details of the evaluation of
the temperature-dependent X'&z' are given in the Appen-
ci1x.

Let us comment that a self-consistent second-order
solution to the Dyson equation (8) can be obtained using
as an ansatz, expressions for the dressed propagators G
and F formally identical to the BCS ones, Eqs. (14) and
(15), the only difference being the appearance of a k
dependence on the gap due, obviously, to the k depen-
dence of XP2'(k, co„). Therefore, we will use Eqs.
(14)—(18) for the evaluation of the diagram with the sub-
stitution of b for h(k). It is important to stress that this
procedure does not imply our "forcing" the self-
consistent solution for the propagators G and F to be
BCS-like. As a matter of fact, the inclusion of a self-

energy will always give a self-consistent expression for G
and F formally similar to the one given by Eqs. (14)—(18)
[with the above substitution of b, by b, (k)], provided we
can neglect the frequency dependence of X' '(k, co„). As
commented above, approximating X' )(k, co„) by its value
at co„=0 is reasonable, as we are only interested in
evaluating the gap parameters and the critical tempera-
ture, and we are in a regime where 5, T, ((B.

Equation (A17) in the Appendix gives our final results
for XPz)(R, co„=O) (the second-order self-energy matrix
elements in a site representation, R being any vector of
the direct lattice), as a function of b,(k), the supercon-
ducting gap, a quantity depending itself on X', z'.

We will use the following shorthand notation:
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&(k)= —X)2(k), (22)

where X,2(k) represents the sum of the first- and second-
order contributions:

X„(k)=X',"(k)+X",,'(k) . (23)

For our purposes it is more convenient to express the
self-consistent condition, Eq. (22), using the site represen-
tation. Then writing b,(k) as

b.(k)=ho+ g 5(R)e'" (24)

we have the following self-consistent equations:

—b, =X"'+X"'(R=O),
—b,(R)=X''(RPO) .

(25)

(26)

Equations (25) and (26) provide a system with an
infinite number of equations which must be trunctated in
some way. For instance, retaining only Eq. (25) is
equivalent to taking a local approximation for the self-

energy, giving a gap with no k dependence. A better ap-
proximation and, probably, a very reasonable one in most
situations, will involve using nearest neighbors in Eq.
(26). For instance, for the two-dimensional (2D) square
lattice, we will have

X)2=XI2'+ XI~'(R =0)

~ g tanh( ~co/2k& T, )p(co)1= dco .
2 co

(33)

From Eqs. (32) and (33) one can derive the well-known
ratio

=3.53
2h

B c
(34)

X' )(k) =X( )(R=O) .

From Eq. (A17) in Appendix A, we have

(35)

XI2'(R=O)

tanh( t/co +6 /2k' T)p(co)
dco ~

2 +co +b,

(36)

irrespective of the detailed form of p(co). (Notice that
this is due to the fact that both integrals diverge in the
same way if 6 and kB T, go to zero, keeping
2b, /ks T, =3.53. )

Let us turn now our attention to the effects of fluctua-
tions on the gap and critical temperature, as introduced
by our second-order calculation.

First, we will analyze the simplest case, approximating
XI2'(k) by its local part:

+2XI2'(R, )[cos(k„a ) +cos(k a ) ] . (27) where P is defined as

were R&=nearest-neighbor vector, and a is the lattice
constant. Accordingly, we introduce the following b(k)
function:

p &g& p( e2 )p( e3)f -2fd3() )) (37)

b(k) =80+23, ,[cos(k„a)+cos(k„a)] (28)
Then, the self-consistent Eq. (25) gives the following

gap equation:

and write down the following equations of consistency:

—
do = XI2'+XI2'(R=0},

—bi=XI2'(Ri) .

(29)

(30)

III. THE SUPERCONDUCTOR GAP
AND THE CRITICAL TEMPERATURE

We will discuss now the main results of our calcula-
tion. Let us consider first the mean-field solution, intro-
duced in Sec. II.

The self-consistent Eq. (13}leads us to the well-known

gap equation:

~ g tanh(Yco +b, /2k' T)p(co)1= dc' ~2 co +co +6 (31)

p(co}
—"+co +6

while the critical temperature T, is given by

(32)

where p(co) is the unperturbed electronic density of
states. The superconductor gap at T=O is then easily
obtained from

tanh(+co +5 /2k' T)p(co)1= dco, (38)
2 co +co +5

where U'= U+PU .
The term XI2'(R=O) in Eq. (25) has the opposite sign

to the first-order term, X',z'. As a result, 6 is smaller than
the mean-field gap. Thus, we conclude that the second-
order correction tends to decrease the superconductor
gap. This effect is analogous to the decrease of the corre-
lation gap in the U-positive Hubbard model when fluc-
tuations are included, as should be expected, due to the
mapping between the U )0 and U (0 models at half
filling. '

The same can be said of T„which decreases too. The
ratio 26/kB T, is not changed, however. This is under-
stood by realizing that, whatever the form of p(co) and
g(co), the integrals appearing in Eq. (38) give the same
value for the case T =0 as for the case T =T„~=0, if
we take in both cases 24/kB T, =3.53.

Let us comment now briefly on the effect of a nondiag-
onal nearest-neighbor self-energy in the self-consistent
equations [see Eqs. (29) and (30)]. Let us consider, for the
sake of simplicity, the case of the 2D square lattice dis-
cussed in Sec. II. Then, the energy dispersion for the
electron band, with nearest-neighbor interactions, yields
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E(lt )'= E'o +2r [cos( k» 0 ) +cos( ky a ) ] (39)

(40)

This equation shows that [cos(k„a)+cos(kYa)] is a
constant at the Fermi surface. Then, we conclude that in
the approximation we are considering [see Eq. (28)]

( U/ Be&
'2

U Be~—2 ln(2) — ln
B k~T, m

where y is the Euler constant. This equation yields

(46)

(47)

1/B if ~a) &B12
0 otherwise, (41)

e+ being the Fermi energy.
As a result of this, with the inclusion of nearest-

neighbor terms in the self-energy, the superconductor gap
is still a constant and independent of k. Moreover, fol-
lowing the argument given for the on-site approximation,
it is easy to show that also in this case 2b, lk~ T, =3.53,
although 6 and kz T, are reduced somehow by the local-
field effects associated with the nearest-neighbor self-
energy. The inclusion of further terms in the site expan-
sion of XI2'(lt), beyond nearest neighbor will introduce
some k dependence on the gap. One hopes these correc-
tions to be negligible for a 3D system, but maybe they
ought to be considered for a detailed calculation in the
2D case.

In order to analyze more specifically the previous re-
sults for the gap and the critical temperature, we present
here some analytical and numerical results for a very sim-
ple case. To this end, we consider the most simple depen-
dence for the unperturbed density of states:

So, the critical temperature enhancement with respect
to its mean-field value:

(48)

is exactly the same as for the gap. Therefore, within this
approximation, the ratio

2h 2m.

k~T,
(49)

26Mp-—0.0267 eV,

25„„=0.0040 eV,

(50)

(51)

where 2h„„and 26M„represents, respectively, the gap
calculated with correlation effects included, and in the
mean-field approximation. Due to Eq. (47), there is an
equivalent decrease T, .

is not changed with respect to its mean-field value, as it
was discussed above.

For an estimation of the order of magnitude of this de-
crease, let us take B =2 eV and U=0.40 eV. We find
from Eqs. (43) and (45)

1 = ln ——2 ln(2) — ln
B B

(42)

A comment should be made on the parameters of the
model, B and U. Though it has no physical meaning to
attempt any direct comparison between our results for 6
and T„and those of the actual systems, some fitting can
be made for B and U, in order to get values of 5 and T,
not too far from the ones found in experiments for the
high- T, materials.

From Eq. (42), we have

Be
—&~l &'I (43)

with

where B is the bandwidth. We place the Fermi level at
v=0, and approximate the second-order self-energy by
its local part.

Then, Eq. (38) can be easily solved for the cases T =0,
b WO, and T =T„b=0. For T =0, we find

IV. CONCLUSIONS

These results show the important effect that local Quc-
tuations introduce in the superconductor gap and critical
temperature, although the ratio 2A/k~ T, is not changed
with the self-energy matrix elements extending only up to
nearest neighbors. It should be mentioned, however, that
we cannot exclude that further interactions, with XI&'(R)
extending up to second or third neighbors [or what could
be even more important, the inclusion of electron-
electron interactions in Hamiltonian (1) between different
sites ), might introduce a gap variation along the Fermi
surface. Work along these lines is in progress in our labo-
ratory.
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I

U'I =
/

U/ [1 2 ln(2) I UI IB],
whereas the mean-field value is

(44)

APPENDIX A: CALCULATION OF THE
SECOND-ORDER SELF-ENERGY

B —apl vl (45)

Obviously, as
~

U'~ &
~
U~, there is a decrease in the gap.

For T = T, and 6=0, we have

The most compact way of evaluating self-energy
corrections in the superconducting phase is using the full
matrix notation of Nambu [see Eqs. (3)—(7)]. To this end,
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is convenient to write down the Hamiltonian (2) as a
function of the Nambu matrix propagators. (A similar
procedure can be found in Ref. 11 for the case of the su-
perconductor phase of the electron gas. )

Defining the matrix field operator:

Ck)

C

we can write the Hamiltonian as

(Al)

rf (~k P)[ek2(r3++0) 4]+ rf (~k P)[ Pkp(r3 gowk] rf [ Pk+q2(r3++Owk][|(k' —q2(r3 +0) Pk']
k

where the matrix ~~ is

V3=
1 1

1 —1
(A3)

(A4)

The only change in the usual Feynman rules is that
each vertex coupling an electron line to an interaction
line includes a factor —,'(r3+ro) for spin up and —,'(r3 —r())
for spin down, as mentioned above.

and 7 p is simply the identity matrix.
It is worth noticing the difference between vertex with

spin f, characterized by a matrix factor —,((1i+1p), and
the ones with spin 1, for which the factor is —,'(v& —ro).

Written in this form, we can apply the Feynman-
Dyson perturbation theory on the interaction term A';„,
to calculate the matrix propagator:

(k, )= —(&,[y ( )l(„(0)]) .

X2,'(k, „)=X''(k, „) .
(A5)

As commented in Sec. II, diagrams like the one drawn
in Fig. 3(e) do not contribute to the self-energy when us-
ing a self-consistent perturbation theory because they are
included when using dressed propagators.

Representing by X» „X&& &, X&2 „and X&2 &, respec-(2) (2) (2) (2)

tively, the four diagrams of Figs. 3(a), 3(b), 3(b), and 3(d)
we have the following expressions:

Using these rules we can evaluate 2( )(k, (v„), the
second-order matrix self-energy. In Figs. 3(a) and 3(b)
are represented the diagrams contributing to the diagonal
matrix element, X((i)(k,co„), and in Figs. 3(c) and 3(d) the
ones contributing to XI2)(k, co„). The other two matrix
elements, X2, '(k, (o„) and Xzz'(k, cv„), are related to
X'(, '(k, (v„) and X'(2'(k, co„) by

X'ii,'b(k (v )=
2

G (k —q, co„—v„)G(k'+ q, ro'„+v„)G'(k', (v'„),
v„,m„

g F (k —q, ro„ —v„)G'(k —q —q', co„—v„ —v„' )F(k—q', co„ —v„' ),
'2

g F (k q, co„—v„)F(—k'+q, co'„+v„)F (k', co„'),
v„,m„

(A6)

(A7)

(A8)

XPi', b(k ~. ) =
'2

G(k —q, (v„—v„)F (k —q —q', (v„—v„—v'„)G'(k —q', (v„—v'„),
q~q v, v'n' n

(A9)

where (v and co'„represents fermionic discrete frequencies whereas v„and v'„are bosonic ones. The Green functions
G, F, F, and G' are defined in Eqs. (4)—(7).

In Sec. II it is argued that the nondiagonal self-energy X((z)b(k, co„) gives the leading term ( -b, ) for the obtainment of
the gap and critical temperature. We proceed, then, to obtain the explicit expression of the full temperature-dependent
X'(2'b(k, co„). We have

2

(p) . 1 U b(k —q —k')
X(2 (k, iso„)=—— g [uk qvk q. A (ice„,Ek q q. ,Ek q, Ek q )

q, q'

+(uk quk q. +vk qvk q. )B(iso„,Ek q q. ,Ek q, Ek q )], (A 10)

where we have made the following abbreviations:

f(Ei,Eq, E3 )
A ico,E,E,E f( E, , E2, E3—) f(E(,—E2,—E3)— —

i co„—E
&

—E2 —E3 i co„+E
&

—E2 E3
f( E„E2,E3)—

(A11)
i co„—E) +E2+E3
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and

f ( E ] Ez E3 )
B(tco„,E, ,Ez, E3 ) =

i co„+E)—E2+E3
f( E—, , E—z, E3)
i co„—E) —E2+E3

(A12)

f(Ei,Ez,E3):n—r(Ei }nr(Ez)nr(E3)+ns'( E&)nz( Ez)nz( E3)

where nI; is the Fermi distribution function.

(A13)

For the discussion made in the paper, it is convenient to calculate this self-energy in a site representation:

XIz'(R, ice„)=—g XIz'(k, ice„)e
1

k

(A14)

where R is any vector of the direct lattice. Then, from Eqs. (A10), (All), and (A12), and making use of the transla-
tional symmetry of our system, we have

~ ( k )
—i ( k

) + k z+k )R3

rI, '(R, t~„)=—2 . 1 U &
e

kl, k2, k3

[uk Uk A(ice„,Ek, Ek, Ek )+(uk uk +vk uk )B(ice„,Ek, Ek, Ek )] .

(A15)

Now, this last expression can be simplified a great deal, as we are only interested in the limit of low temperature
and small gap (both much smaller than the bandwidth).

First, we note that for very low temperatures, most of the Fermi factors appearing in Eq. (A15) [through Eqs. (Al 1)
and (A12)], can be taken as either 1 or 0. A special caution must be followed when dealing with the term b,(k, )/Ek

1

and its corresponding Fermi factors, because the logarithmic divergence that can arise from this term must be taken
into account in a proper way. With this caution, we can take B=0 in Eq. (A15), and rewrite the remaining term as

1 U
X',z'( R,co„)=— b, (k, )tanh(PEk /2) —ik1R 1

e Qk Vk in)„+Ek +Ek +Ek
1 2 3

i cu —Ek —Ek —Ek
1 2 3

(A16)

where P= 1/k~ T.
We can simplify further the above expression, taking inside the parentheses Ek —

~
Zk

~

(remember that b && band
l l

width). Moreover, as we are interested in the region where co„~0, we will neglect the frequency dependence in Eq.
(AS), setting co„=0.

Then, converting the summations into integrals:

XI&'(R, t0„=0)=U
3 Jdk&

[(2n )"]'
6(k, )tanh(PEk /2)e

QZ„+b, (k, ) I ~k, I
+

I &k, I
+ 14, 1

(A17)

where n is the dimension of the lattice. This is our final result.

APPENDIX B: CALCULATION OF THE
GROUND-STATE ENERGY

In this appendix we calculate the ground-state energy
of the superconductor, as given by our self-consistent
perturbative method.

It is shown that it coincides, up to 0( U ), with an in-

dependent calculation, ' consisting of a perturbative ex-
pansion of the free energy.

Finally, we rederive the gap equation obtained previ-
ously in Sec. III, minimizing the ground-state energy
with respect to the gap parameter.

We first derive an exact expression for the ground-
state energy of the Hubbard superconductor as a func-
tion of the one-particle Green functions. As we will

F(k, t=G&z(k, t)= —i(T[ck, (t)c k„(0)]),
Ft(k, t ) =6» (k, t ) = i ( T[c t „,(—t )c „,(0}]),
G'(k, t)=Gz, (k, t)= —i(T[c „,(t)c k (0)]) .

(82}

(83)

(84)

The obtainment of the T=0 Green functions is

straightforward from the Matsubara ones. The prescrip-
tion in this case is tnvial: substitute ice„~co+ig for the
electron part of the spectrum and ice„~co—ig for the

work at T=O, it will be more convenient to use the
Green functions as defined in the T=O formalism, in-

stead of the Matsubara ones. We have

G(k, t)=G„(k,t)= —i(T[c„(t)ckt, (0)]),
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hole part. '

Now, from the Hubbard Hamiltonian, Eq. (2), the fol-
lowing exact result can be derived (see, for instance, Ref.
16):

G,'(k, co) =G„(k,co),

G,'(k, co) = —G22( —k, —co) .

Then, it is easy to write Eq. (B5) as

(B6)

(B7)

1 CO+ Ek(H) = g fdco G, (k, co),
27Tl 2

(B5) (8)= . ada) G„(k,co)
27Tl 2

where the contour integral must be taken in the up-
perhalf part of the complex plane.

The subindex c on G, (k, co) indicates that causal
Green functions must be used. It would be more con-
venient, however, to write down this expression as a
function of the Nambu Green functions, Eqs. (Bl)—(B4),
we are using to describe the superconducting phase, in-
stead of the causal ones. We have

1
—CO+ Ek

. /dc' G22(k, co),
27Tl

(BS)

where the contours of integration of the first and second
integrals are to be taken in the upper and lower complex
half-planes, respectively.

We can modify this expression, making use of the
Dyson equations for G» and G22, and write Eq. (BS) in
a more useful form for our purposes:

1
. fd~[ kGll(k ~)+2X11(k ~)G11(k ~)+2X12« ~)G21« ~)]

Kl

+ . f dco[EkG22(k, co) ——,'X22(k, co)G22(k, co) ——,'X21(k, co)G12(k, a))] .
7Tl

Again, the contour must be taken in the upper and lower complex half-plane, respectively.
Equation (B9) can be written in a more compact form, making use of the full matrix notation:

(89)

(8)= . f da) Tr[(ekro+ —,'fr", )G],
27Tl

(Blo)

(B12)

(B14)

Now substituting in Eq. (B9) and neglecting terms of order greater than 0(U ), we have
2 2 2 2 2

U

k, k, q

(Ukuk q
—ukUkuk qUk q)(Vkuk+q —ukVkuk+qVk+q)

Ek+Ek +Ek+q+Ek q

2() ~ N 1~5
k

(B15)

taking the precaution, on evaluating the trace, of integrating the first element in the upper complex half-plane and
second one on the lower. The matrices T3 and 'Tp are defined in Appendix A.

We pass now to evaluate the expression of the energy, up to 0(U ), substituting in Eq. (B9) the second-order self-
energies, calculated from Eqs. (A6)—(A9). The explicit form of these self-energies is

'2
Q2 U2 Q2 v u ~ v ~U + k —q k'+q k' k —q k'+q k'

(Bll)
N

q k co Ek q Ek Ek +q+ l P co+ Ek q+ Ek+Ek'+q —l'g

Q U Q
2 2

(2)
iu Q U U 'Q 'Vk —q k —q k —q —q k —q k —q k —q k —q k —q —q k —q k —q

q q Ek q Ek q~ Ek q q~+i g co+Ek q+Ek q~+Ek q q~ i g
'2

X(21 (k ~) U Qk qVk qQk Uk Qk+qUk+q Qk qUk qQk Vk Qk+qVk+q
(B13)

Ek q Ek Ek+q+lP + k q+ k+ k+q
'2

(2)
Q Q ~U .V V Q ~V ~Qk —q k —q —q' k —q —q' k —q' k —q k —q —q' k —q —q' k —q'

N e co Ek q Ek q Ek q q~+l& co+Ek q+Ek q +Ek q q,

where n is the number of electrons per site. This is the
same expression found in Ref. 15 for the expansion of
the energy up to 0(U ).

The second-order term of Eq. (B15) presents some
features of interest related to the discussion of Secs. II
and III ~ It can be decomposed into four different contri-
butions coming from the four terms of the numerator.
The one containing the term Ukuk qV k.uk+q comes from

I

the contribution of the diagram in Fig. 3(a) (Xp, ', ). The
term conta1111llg QkVkQk qVk qQk Vk Qk+qVk+q 1s pro
duced by the diagram in Fig. 3(b) (XP2', ). Obviously,
these two terms will not contribute to the gap equa-
tion in the limit of small gap parameter The re-
maining two terms, containing the factor

2 2
QkVkQk qVk qVk Qk+q are equal and come fron1 the

diagrams in Fig. 3(b) (XP1'b), and 3(d) (XP2'b). Both
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b (k) =X,2(k, to=0) =X",2'+XI2'(k, co=0) . (816)

In this expression all terms of order greater than the
leading one ( —b, ) must be neglected in the limit of small

terms contribute in O(b, ) to the energy and give the
leading second-order correction when deriving the gap
equation.

It may seem surprising that the self-energy diagram,
X'&& b(k, to) [see Fig. 3(b)] that we have neglected when
deriving the gap equation in Secs. II and III, because it
was of order -6, must be included in order to obtain
the correct energy and, hence, the correct gap equation
when obtained from the energy.

There is no contradiction in this. In Sec. II, the gap
equation was obtained from the self-consistent condition

However, when calculating the gap equation from the
energy, the diagonal self-energy X&,'&-5 must be in-
cluded in order to obtain an expression for the energy
correct in order 6 .

To illustrate this point, we will derive the gap equa-
tion from the expression of the energy, using the same
approximations as those in Sec. III. First, we approxi-
mate the four self-energies, X&&'„X&&'&, X&z'„and X&2'b,

by their local value:

XI. ' ~—+XI '(k, co), i,j =1,2, a=a, b . (817)
k

When doing this, the expression of the energy is not
exactly that of Eq. (815). Instead we have

U2 (vku —ukvkuqv )(vk u —uk vk uq vq. )
2 2 2 2

& k, k, q, q k+ k+ q+EqX (818)

2 2 2
U QkVkQqUqUk Q

q

k, k', q, q'
I
~k I

+
I eq I

+
I ek I +

I ~q I

2 (819)

We are interested in retaining only the terms that will
contribute to the gap equation in the limit 6~0. Then,
we approximate the second-order term of the above
equation by

where

Uk Q

N' k, q I~k I+ I&q I

(822)

Now, from the condition
Finally, we have the following gap equation:

we have

(820)

k k

(823)

2Ek N k 2Ek N k 2Ek
=0,

(821)

where U'=U+PU . For the case of a half-filled band
and a constant unperturbed density of states we have
P=21n2/B as in Eq. (44).
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