
PHYSICAL REVIEW B VOLUME 45, NUMBER 22 1 JUNE 1992-II

Oxygen configurations and their eS'ect on charge transfer in ofF-stoichiometric YBazCu3O,

R. McCormack and D. de Fontaine
Department ofMaterials Science and Mineral Engineering, University of California, and Materials Sciences Division,

Lawrence Berkeley Laboratory, Berkeley, California 94?20

G. Ceder
Department ofMaterials Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 23 September 1991;revised manuscript received 3 February 1992)

The relationship between oxygen structure, charge transfer (hole count), and oxygen content in the
YBa2Cu30, superconductor is studied by combining Monte Carlo simulation with existing electronic-
structure calculations. The present model proposes an expansion of the hole count in terms of oxygen
configuration variables for states of an arbitrary degree of order. Configurations are obtained by Monte
Carlo simulation on a two-dimensional asymmetric next-nearest-neighbor Ising model. Calculations of
hole count as a function of oxygen content suggest that oxygen ordering is, at least in part, responsible
for the observed plateau structure of T, versus the oxygen content z. The fact that, in the present model,
the hole count does not exhibit two well-defined plateaus indicates that the value of T, is not simply re-
lated to the amount of charge transfer. Previous models, which claim to predict the 90- and 60-K pla-
teaus on the basis of either electronic-structure or oxygen order considerations, are shown to agree with
experimental findings for (partially) fortuitous reasons.

INTRODUCTION

Despite the great effort expended towards an under-
standing of the mechanisms of high-temperature super-
conductivity, an all-encompassing theory does not yet ex-
ist. The complex behavior of a system like YBazCu30,
typifies the issues that theorists must come to terms with,
and in that sense, it is an ideal system to study from a
theoretical standpoint. Several issues have been clarified
with respect to YBa2Cu30„namely, that T, is strongly
correlated with the carrier concentration and that the su-
perconducting current consists of holes. ' In addition,
superconductivity is believed to occur in the Cu02 sheets,
with the rest of the structure acting as a charge reser-
voir.

One feature of YBazCu30, which is of special interest
is the nonlinear variation of T, as a function of oxygen
off-stoichiometry z. Several groups have shown that
in annealed samples there are two distinct "plateau" re-
gions around 07 and 06 5 at 90 and 60 K, respectively.
Numerous investigators' ' ' ' ' have attempted to
correlate the observed plateau behavior with the varia-
tion of hole count (number of holes in the Cu02 plane per
unit cell) as a function of oxygen content. This is also the
objective of the present investigation; we shall treat the
thermodynamics of oxygen ordering using the asym-
metric next-nearest-neighbor Ising (ASYNNNI) model,
and we shall associate a relative charge transfer to copper
atoms surrounded by different oxygen configurations by
making use of existing electronic-structure calculations.

Theoretical calculations of the pseudobinary phase dia-
gram of YBazCu30, from 06 7,

' which are supported
by a great deal of experimental evidence, ' ' have
shown the system to be quite complicated: It not only

undergoes a high-temperature orthorhombic-tetragonal
(O~TI phase transition, but also has a series of low-
temperature ordered oxygen superstructures which must
appear at equilibrium. The primary orthorhombic phases
of interest are ortho-I (OI) with stoichiotnetry 07 and
ortho-II (OII) with stoichiometry 06 s, although branch-
ing phases which are a combination of these two have
also been shown to exist. ' The predicted phase dia-
gram, with experimental points superimposed, is shown
in Fig. I (branching phases are not included). ' ' Aside
from these structural phenomena, the system undergoes
electronic changes as oxygen is removed; maintaining
charge balance requires the density of holes to decrease.

It is tempting to ask whether there is any correlation
between the O~ T phase transition and the plateau be-
havior of T„'quenching experiments show that there is
not. Rapidly quenched samples of YBazCu30, have un-
dergone the T~O transition, but do not have the dis-
tinct plateau structure of annealed (equilibrium) sam-
ples; they show an almost linear decrease in T, with
concentration of oxygen. However, Veal et al. and
Claus et al. have shown that T, increases by as much
as 30 K during room-temperature aging of these
quenched samples. Monte Carlo simulation, performed
by the present authors, of these aging experiments has
shown that the increase in T, at constant oxygen content
is correlated with the occurrence of time-dependent oxy-
gen ordering. A Monte Carlo study by Poulsen et al.
presents dynamical scaling arguments which also support
the correlation between ordering and the aging experi-
ments. Hence, the formation of ordered superstructures
has a definite influence on the superconducting behavior
of this system.

It is clear that any model of the superconducting be-

45 12 976 1992 The American Physical Society



45 OXYGEN CONFIGURATIONS AND THEIR EFFECT ON CHARGE. . . 12 977

1000

T(K) OI

500—

0
6.0 6.2

I I

6.4 6.6
z (Oxygen Concentration)

6.8 7.0

FIG. 1. Pseudobinary phase diagram for YBa2Cu30, basal
plane computed using ab initio interactions. Experimental
points from Ref. 19 are superimposed.

havior of YBa2Cu30, must reflect both the structure and
the electronic properties of the system. Despite this fact,
many theoretical studies seem to make unjustified
simplifications in one subject area or the other.
Electronic-structure calculations performed by Zaanen
et al. ' and Latge, Anda, and Moran-Lopez' make as-
sumptions concerning the oxygen-defect structure of the
material that are not wholly consistent with either what
has been observed experimentally or predicted theoreti-
cally. Phenomenological studies which examine the
system more from a structural standpoint, specifically the
work of Poulsen et al. ,

' also make assumptions that
cannot be justified readily. %'e present a brief overview
of these and several other methods in Sec. I, followed by
a discussion in Sec. III.

The procedure proposed herein is to expand the hole
concentration in the Cu02 plane as a function of oxygen
configuration variables. The values of the oxygen
configuration variables are obtained from Monte Carlo
simulations on a two-dimensional Ising model that accu-
rately describes equilibrium oxygen ordering in the basal
or "chain" plane of YBa2Cu30, . ' ' ' Since the state of
oxygen order has been shown to affect the electronic
properties of the system, a configuration expansion
should be valid in the study of hole concentration in
YBa2Cu30, . The method is described in detail in Sec. II,
followed by a discussion of the results in Sec. III. A brief
discussion of the calculation of T, will also be given in
Sec. III.

proposed oxygen-defect structure and a tight-binding
model based on density-functional calculations. The
structural model used involves a YBa2Cu30, unit cell
which is doubled along the a direction. In the model, the
two chains in this unit cell are inequivalent. For z )6.5,
one chain is always filled, and the oxygen vacancies are
uniformly dispersed as far apart as possible in the other
chain (with a uniform frequency). For z & 6.5, the filled
chain is replaced by an empty one and the other chain is
diluted as in the previous case. At z =6.5, the unit cell
has one filled and one empty chain. This statistical model
has also been used by other investigators. ' ' The results
of the calculations of Zaanen et al. ' show plateaus in
the hole count versus oxygen content that are consistent
with the observed 60- and 90-K plateaus in T, . The basic
conclusion of this model was that chain fragments longer
than some critical length are responsible for both inter-
layer charge transfer and the plateaus in T, . The rather
artificial nature of the statistical model adopted will be
discussed in more detail in Sec. III.

Latge, Anda, and Moran-Lopez' use the same
fragmented-chain model and a Hubbard-type Hamiltoni-
an. Their results show a plateau in the hole count near
stoichiometry 0& 5 (60 K) but not at high oxygen content
(90 K), in contrast to the work of Zaanen et al. ' Latge,
Anda, and Moran-Lopez' also performed calculations
using randomly dispersed vacancies which predicted no
plateaus in the hole count. These authors state that the
plateau predicted by their model is produced by the
fragmented-chain statistics that have been assumed in the
Zaanen model.

Another set of calculations by Lambin' confirms the
fact that there is a large difference between the electronic
structure of ordered and disordered oxygen
configurations. The basic prediction of Lambin is that
ordered configurations of oxygen will give rise to a higher
hole count than will disordered configurations. Other in-
vestigators have reported the same basic results. ' ' In
addition, Lambin predicts the hole counts for both or-
dered and disordered configurations to vary roughly
linearly with concentration. Lambin uses the three or-
dered structures found in the theoretical phase diagram
computation ' OI, OII, and OIII. For the disordered
structures, a simple probability distribution is assumed
for the site occupancies. These calculations make no ma-
jor assumptions (other than those made with respect to
the validity of tight binding), but they do not take into
account states of partial order.

I. PREVIOUS METHODS OF CALCULATION

Two basic methods of computation will be reviewed
briefly in this section: electronic-structure calculations
and phenomenological calculations based on simple
charge-transfer models. The purpose of this discussion is
to examine these methods and to identify the fundamen-
tal concepts contained within them.

A. Electronic-structure calculations

The electronic structure of YBa2Cu30, as a function of
oxygen content was calculated by Zaanen et al. ' using a

B. Phenomenological correlations

This section will describe attempts at understanding
the behavior of T, versus z by assuming simple charge-
transfer models. The basic idea in these models is that
there is some fundamental structural unit which gives
rise to charge transfer; this basic unit is regarded as ei-
ther the oxygen environment of Cu in the "chain" plane,
or the "minimal size cluster" (MSC) proposed by Poulsen
et al. "

Cu(l) ions are found to be either two-, three-, or four-
fold coordinated by oxygen. If it is assumed, as is gen-
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erally done, that the apical [O(4)] oxygen sites are al-
ways occupied, then these three coordinations corre-
spond to V-Cu-V ( V=vacancy), V-Cu-O, and 0-Cu-0
chain segments, respectively. These three configurations
give rise to different oxidation states for Cu(1) atoms.

A schematic of the basal plane is shown in Fig. 2: Two
types of oxygen sites exist [O(1) and O(5)] along with the
Cu(1) atoms. Oxygen ordering in this plane has been
studied extensively using an asymmetric next-nearest-
neighbor Ising model. ' The three effective pair interac-
tions that were initially used are indicated as V&, V2, and

V3 in Fig. 2. Linear-muffin-tin-orbital (LMTO) calcula-
tions in the atomic sphere approximation (ASA) by
Sterne and Wille give the values for these interactions
as 6.9, —2.4, and 1.1 mRy, respectively, a positive value
denoting a repulsive or "ordering" interaction and a neg-
ative value denoting an attractive or "clustering" interac-
tion. Formation of 0-Cu-0 chains is favored due to Vz,
and nearest-neighbor oxygen atoms [occupied neighbor-
ing O(1) and O(5) sites] are unfavorable due to the highly
repulsive nature of V&. These interactions lead to the
well-known 0-Cu-0 chains that form in the basal plane
at low temperatures ' ' and to the fact that one sub-
lattice [O(5)] is usually completely empty while the oxy-
gen resides in the other [O(1)]. Smaller (positive) interac-
tions along the direction orthogonal to V2, i.e., V3, act as
a repulsive force between the chains that are formed and
tend to stabilize chain superstructures. Interactions V, ,
V2, and V3 stabilize the OI and OII phases; the addition
of V4 stabilizes the OIII phase, the superstructure com-
bination of OI and OII, at z=6.67. Electron micros-
copy ' and diffraction results provide evidence support-
ing the existence of this phase.

Cluster-variation-method (CVM) calculations have
shown that the fraction of fourfold-coordinate Cu(1) sites
decreases linearly with decreasing oxygen concentration,
with a corresponding increase in the twofold fraction.

The threefold fraction goes roughly to zero at the
stoichiometry of any ordered phase since the 0-Cu-0 or
V-Cu-V chains, at this point, become essentially infinite
in length. Away from the stoichiometry of any ordered
phase, chain ends are introduced, thus causing the three-
fold fraction to increase.

The purpose of examining the Cu(1) coordinations is
that several studies "" have shown that threefold and
fourfold Cu(1) atoms probably exist as Cu +, while two-
fold Cu(l) atoms are Cu+. Using these oxidation states
and the fraction of Cu(1) in each of these states, it should
be possible to make simple arguments concerning the
hole count as a function of oxygen content. The CVM
study showed that the fraction of twofold Cu(1) atoms
increases roughly as 7—z for 6.5&z&7. If oxygen is
present in YaazCu30, as 0, then the removal of one
oxygen atom destroys two holes. Using this simple mod-
el, it appears that for 6.5 &z &7, the hole count should
decrease approximately linearly with oxygen content as
7—z. Hence, this model, by itself, would not predict the
existence of any plateaus in hole count for 6. 5 & z & 7.

The model proposed by Poulsen et al. ,
' hereafter re-

ferred to as the MSC model, has recently received a great
deal of attention. In this model, only ordered oxygen
domains (either OI or OII) exceeding a certain critical
size can contribute to charge transfer. Indeed, Poulsen
and co-workers state that examining Cu coordination
alone does not produce any plateaus, which is consistent
with the results previously described. The minimal size
cluster for OI is 4X4 (see Fig. 2) and that for OII is 8 X 8;
one defect is tolerated in each cluster to allow for thermal
relaxation. The ASYNNNI model ' was used by Poulsen
et al. to perform a Monte Carlo simulation, and the oc-
cupation of the MSC's was calculated as a function of
concentration. At this point, the ansatz was made that
T, is linearly related to the amount of charge transfer.
Poulsen et al. assign a T, of 93 K to OI domains and 58
K to OII domains, and the net T, is just the weighted
average of the T, for the two types of domains:

2 =93foi+5gfo»

2
~ Q I

~ Q ~

~ Q ~

~ Q ~ ~ Q ~

In Eq. (1), fo» and fo» represent the fraction of each
type of domain at the given concentration (the "cluster
probabilities" for OI and OII MSC's).

The results that Poulsen et al. obtain for T, versus z

are in almost exact agreement with the experimental data
of Cava et al. ' The results of Poulsen et al. are in-

sensitive to the temperature at which the simulation is

performed and are also robust with respect to the
ASYNNNI model interaction parameters chosen. It
would seem, then, that this model is indeed the solution
to the perplexing question of T, versus z. Unfortunately,
we believe that some unwarranted assumptions were
made and that the MSC model is too sensitive to the de-

fect tolerances and cluster sizes.

FIG. 2. Basal plane geometry. Shaded circles indicate O(1)
sites, while open circles are O(5) sites. Small solid circles indi-
cate Cu(1) atoms. Effective pair interactions are shown. The
0-I MSC (see Sec. I B) is indicated by a box.

II. OXYGEN-DEFECT STRUCTURES:
STATISTICS AND CHARGE TRANSFER

The concept of examining finite domains (within a
structure) with a given configuration is extended to a
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FIG. 3. Lattices from Monte Carlo simulation at various
concentrations ( V4 included). (a) OI phase; (b) OIII phase; (c)
Intermediate concentration between OI and OIII; (d) OII phase.

more general treatment, namely, that of expansion of the
hole count in terms of oxygen configuration variables.
This method rests on the determination of cluster proba-
bilities: the probability that a given copper atom in the
lattice is surrounded by a certain configuration of oxygen
atoms and oxygen vacancies. These cluster probabilities
are found using Monte Carlo simulation on the
ASYNNNI model.

All of the Monte Carlo simulations are performed in
the grand canonical ensemble (Glauber dynamics) using a
64X64 lattice (4096 sites) with periodic-boundary condi-
tions. Each simulation was carried out for 1100 Monte
Carlo steps (MCS}, where one MCS involves attempting a
spin flip on every site in the lattice. Examples of several
structures are given in Fig. 3; the characteristic 0-Cu-0
chains are clearly visible, illustrating the asymmetry of
the interactions. The results for the cluster probabilities
were averaged over the last 100 MCS of the simulation
using the results for every tenth step. This procedure
reduces the amount of scatter, but does not affect the re-
sults significantly. The results were found to be essential-
ly the same when the tests were run for 5000 MCS, with
sampling over 1000 MCS. This relative insensitivity to
the simulation length reflects the fact that lattices were
seeded with concentrations that were known to be near
the equilibrium concentration for the chosen chemical
potential. Monte Carlo simulations were performed at q,

temperature of 300 K. At this temperature, all of the or-
dered phases of interest are stable and hence can be ob-
served in the simulation. At lower temperatures, the de-

gree of order will not increase or decrease, but the Monte
Carlo simulation becomes more time consuming due to
slow ordering kinetics. If the temperature of the simula-
tions is increased, the cluster probabilities will change as

some of the ordered phases become unstable (i.e., OII and
OIII).

Past studies have used the basic idea of cluster expan-
sions to compute properties that are functions of
configuration. ' The general method is to expand a
given property of configuration in a complete set of basis
functions which can describe any configuration of the
system. The coeScients in the expansion are then calcu-
lated for the chosen basis. This method has been used
very successfully in expansions of the free energy
and has recently been shown to be rigorous when describ-
ing properties that are a function of configuration. '

Since charge transfer (hole count) is clearly dependent on
the oxygen configurations around copper atoms (Sec. I B),
the hole count at oxygen stoichiometry z can thus be
written as an expansion using a given set of
configurations:

N

h(z)= g h, f, (z) . . (2)
i=1

The sum extends over the number of clusters (N) being
used in the expansion, f, represents the fraction of copper
sites surrounded by the configuration i of oxygen atoms
and/or oxygen vacancies (hereafter referred to as the
cluster probability}, and h; is what we refer to as the
"hole coeScient" for that configuration. This study uses
a cluster figure which consists of two unit cells in the
basal plane and contains eight oxygen and three copper
sites. The number of configurations considered on this
cluster is 14: 6 ordered and 8 disordered. In the context
of this study, "ordered" clusters are considered to be the
clusters distinct by symmetry which are composed of
only 0-Cu-0 and V-Cu-V chains; "disordered" clusters
are all other configurations on the chosen eight-point
cluster figure. This distinction between ordered and
disordered clusters is not essential to the method; it is
only used for simplicity. The configurations used are
shown in Fig. 4 and will be referred to hereafter using the
designations given in the third column . Clusters C& to
C6 in Fig. 4 are the ordered clusters and D, to D8 are the
disordered clusters. The copper atom which is used in
the given configuration is the central atom, depicted by a
small black circle in Fig. 4 (the first column). It should
be noted that the expansion given in Eq. (2) is not an or-
thogonal expansion, but this is certainly not a require-
ment for the current calculations.

In order to demonstrate how cluster probabilities are
computed for a given structure, a sample OII domain is
shown in Fig. S. In order to determine the cluster proba-
bilities for any structure, it is necessary to examine all of
the copper atoms and determine to which cluster (given
in Fig. 4, first and third columns) these copper atoms cor-
respond. In Fig. S, the copper atom labeled 1 is in cluster
C2, while the copper atom labeled 2 is in cluster C4. Ex-
amination of this structure shows that all of the copper
atoms are in either of these two clusters, and the number
of copper atoms of each type is the same. Hence, for the
OII structure, the only nonzero cluster probabilities are
C2 =C4 =

—,'. Obviously, the procedure of cluster-
probability determination becomes much more diScult
for structures which possess an arbitrary degree of order.
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structures and for several disordered structures. The
hole coefficients are then found by solving a system of
linear equations where each equation resembles Eq. (2).
For example, in the current study, 14 hole coefficients are
needed, so we need at least 14 equations like Eq. (2) in or-
der to solve the system by simple matrix inversion. In or-
der to generate these equations, we need to know the
cluster probabilities for a set of structures for which the
hole count has been computed. This will be done for four
perfectly ordered structures and a series of artificially
generated structures which possess disorder.

Computation of the cluster probabilities (f, ) of the or-
dered clusters in perfectly ordered structures is relatively
straightforward (as described previously) and can be done
by inspection for OI, OII, OIII, and the empty structure
(at z=6). The hole counts for the ordered phases [ho„
ho«ho, », and hz (h, ~,„at0&)] are then written accord-
ing to Eq. (2) as follows:

FIG. 4. Configurations used in cluster expansion. Clusters
are shown in the first column, with a brief description given in
the second column. Shaded circles indicate oxygen atoms, open
circles are vacancies, and small solid circles are Cu(1) atoms.
The third column gives the designations used throughout the
paper, and the fourth column indicates the hole coefficients.

A. Computation of expansion coefBcients

The hole coeScients in Eq. (2) (h, ) are found using
electronic-structure parameters calculated by Lambin. '

The results of Lambin are particularly useful in our study
since he calculates hole counts for four ordered super-

Cluster C
&

The values for ho, , ho„,ho„r,and hE are 0.25, 0.14, 0.17,
and —0.02 holes per unit cell, respectively. ' The hole
coefficients for clusters C, and C6 can be found by in-

spection from Eqs. (3) and (6): h, =0.25 and h &
= —0.02.

In addition to these chain superstructureghases, Lam-
bin also computed the hole count for a 2/2a X2&2a X c
phase, originally proposed by Alario-Franco. The cal-
culation was performed by Lambin at 5=0.125. The
only nonzero cluster probabilities for this structure are
for cluster C, and for several clusters containing five oxy-
gen atoms on O(1) sites; these are found by examining the
structure for 5=0.125 given in Ref. 45. We will make
the assumption at this point that the hole coefficients for
all disordered clusters with the same number of oxygen
atoms are the same. Hence, we can group these clusters
containing five oxygen atoms together. The expansion
for this structure is then written as

1

VJ

Q ~

~ &i ~

Cluster C4

FIG. 5. Example of the determination of cluster probabilities
for an OII structure. Shaded circles are oxygen atoms, open cir-
cles are vacancies, and solid circles are Cu(1) atoms. Cu(1) atom
1 is surrounded by cluster C~, while Cu(1) atom 2 is in cluster

C4. These are the only two types of Cu(1) atoms in the OII
structure, and there are equal numbers of them. The only
nonzero cluster probabilities for OII are C~ =C4 = ~.

hAF —6h1+ 6h (7)

The hole coefficient h, is already known, and Lambin
gives h A„avalue of 0.20 holes per unit cell. We can then
solve for the hole coefficient of disordered cluster D~;
rearranging and solving Eq. (7) yields h d& =0.19.

At this point, three hole coefficients have been comput-
ed; it remains to compute the other eleven. This will be
done by generating a system of equations of the form
Ax=b, and then solving for the vector x. We have not
used Eqs. (4) and (5) yet, so these are the first part of the
matrix A, but since there are 11 unknowns, we need at
least nine more equations to solve for all coefficients.
These remaining equations are based on the hole counts
for the artificially generated structures used by Lambin;
cluster probabilities for these structures are found using
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the same probability distributions as those that were used
in Ref. 10.

After the cluster probabilities are computed, it is found
that the resulting matrix A is singular and hence cannot
be solved by matrix inversion. At this point, we elect to
solve the associated least-squares problem: Find a vector
x that minimizes the Euclidean length of the residual vec-
tor r= Ax —b. Values of the vector x can be computed
using the singular value decomposition (SVD) of the ma-
trix A. The least-squares solution of the problem yields
the hole coefficients given in the fourth column of Fig. 4.
The SVD yielded a matrix of the fifth row, and the solu-
tion had a standard error of 1.95 X 10

The details of the computations performed are rather
extensive and complicated. The interested reader is re-
ferred to the Appendix, where we present the specifics as-
sociated with all aspects of our computational method:
disordered cluster-probability computation and the solu-
tion of the problem using the SVD of matrix A.

B. Computation of cluster probabilities

The expansion coefficients (h;) to be used in Eq. (2)
have now been determined. All that remains is to deter-
mine the cluster probabilities (f; ) as a function of con-
centration. In the previous section on hole coefficient
computation (Sec. IIA), the cluster probabilities that
were discussed were for either idealized or artificial struc-
tures; those are not to be used in the computation of the
actual hole count. In order to find the hole count for a
more physically realistic system, we generate cluster
probabilities using Monte Carlo simulation on the
ASYNNNI model, which allows the description of states
which possess an arbitrary degree of order.

The Monte Carlo simulation is performed as described
at the beginning of Sec. II. At each concentration, the
fraction of copper sites which exist in the configurations
given in Fig. 4 are found. A check was performed to en-
sure that these cluster probabilities summed to 1 (correct
normalization), and this was found to be the case for all
concentrations.

The ordered cluster probabilities shown in Figs.
6(a) —6(c) are given in symmetric pairs: Each cluster is
paired with its O(1) sublattice "oxygen complement"
[O(5) sites vacant]. The reason for this choice is to illus-
trate the fact that complementary cluster probabilities
are mirror images of each other as a function of concen-
tration. The trends illustrate exactly what one would ex-
pect: At the stoichiometry of any ordered phase (OI, OII,
OIII, and the empty structure at 06) the dominant
nonzero cluster probabilities are for those clusters which
are used to construct the given phase; these probabilities
sum to 1. Clusters C, and C6 are shown in Fig. 6(a), with
each having a probability of 1 at 07 and 06, respectively
[Eqs. (3) and (6)). Clusters C2 and C4 are given in Fig.
6(b) (right and left, respectively), with each having a
probability of —,

' at OII stoichiometry [Eq. (4}]. At OIII
stoichiometry, Eq. (5) predicts that the probability for C2
is —', and that for C3 is —', . Examination of Figs. 6(b) and
6(c) shows this to be the case.

Disordered cluster probabilities are given in Figs. 7(a)
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and 7(b). Complementary clusters D, and D5 are given
in Fig. 7(a), while cluster D3 is shown in Fig. 7(b). Each
of these clusters has its maximum probability when the
stoichiometry is between any two of the ordered phases.
All other disordered cluster probabilities (Dz, D4, Ds D7,
Ds} are zero across the concentration range. The fact
that D2 and D4 vanish emphasizes the point that, at the
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0.25 0.30 pansion of the present model will now be discussed in
turn.
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FIG. 8. (a) Relative contributions to the total hole count
from ordered configurations (solid circles) and disordered
configurations (open circles). (b) Total hole count (solid circles)
found using cluster probabilities given in Figs. 7 and 8. Open
circles show the total hole count for structures which are disor-
dered on the O(1) sublattice.

temperatures of interest, the system prefers to form long
0-Cu-0 or V-Cu- V ( V =vacancy) chains, with a
minimum number of chain ends. Clusters D6 —Ds have
zero probability due to the highly repulsive nearest-
neighbor oxygen interaction.

C. Computation of hole count
as a function of concentration

The hole count as a function of concentration can now
be computed from Eq. (2), using the cluster probabilities
given by Figs. 6 and 7 and using the hole coefficients from
Fig. 4. The relative contribution from the ordered and
disordered configurations is shown in Fig. 8(a), where
solid circles are the contribution from clusters C& —C6,
and open circles are the contribution from clusters
D) -D8.

The total hole count, which is the sum of the two
curves in Fig. 8(a), is given in Fig. 8(b) (solid circles). At
high oxygen content, no plateau in the hole count is pre-
dicted. Rather, the hole count initially decreases almost
linearly with concentration. The initial decrease is fol-
lowed by a region (6.5 (z (6.75) where the decrease is
much slower, which indicates that the 60-K plateau in T,
is probably due to a relatively constant hole count. For
oxygen content less than z =6.5, the hole count decreases
rapidly again, and goes to zero near z =6.3. The negative
final value of the hole count rejects the fact that Lam-
bin' obtains a negative value for z =6.

The open circles in Fig. 8(b) show the hole count for
structures which are completely disordered on the 0(l)
sublattice. The cluster probabilities in this case are found
as products of point probabilities (see Sec. II A), since all
of the pair and multisite oxygen correlations vanish in the
disordered phase. As has been observed in other theoret-
ical investigations, ' ' the hole count for the disordered
structure is lower at all concentrations than the hole
count for the ordered chain structures.

III. DISCUSSION

The fragmented-chain model of Zaanen et al. ,
' the

MSC model of Poulsen et al. ,
' and the configuration ex-

A. Fragmented-chain model

The basic conclusion of Zaanen et al. ' was that oxy-
gen chains longer than some critical length are responsi-
ble for both interlayer charge transfer and the experimen-
tally observed plateaus in T, . This statement correctly
asserts the importance of the oxygen chain statistics in
the system, i.e., the number of chains longer than some
critical length. In addition, the idea of a critical chain
length recognizes the fact that shorter chains increase the
fraction of threefold-coordinate copper atoms (chain
ends), which in turn should reduce the amount of charge
transfer. These ideas, put forth in the Zaanen
fragmented-chain model, illustrate some important phys-
ics in the system, yet despite this fact, the plateaus they
obtain in the hole count are somewhat fortuitous.

The oxygen-defect model of Zaanen et al. agrees at
three points with ab initio phase diagram calculations
performed by two of the authors the OI structure at
z=7, the OII structure at z=6.5, and the empty struc-
ture at z=6. Away from the stoichiometry of these or-
dered phases, the two pictures diverge, and we believe
that the fragmented-chain model of Zaanen and co-
workers becomes unphysical. It is generally accepted
that off-stoichiometry is accommodated in the chain
plane, but there is no justification for assuming that
within the chain plane vacancies only occupy half of the
chains. Theoretical work' has pointed out that vacan-
cies will form chains at low temperature; this is in stark
contrast to the fragmented-chain model, which assumes a
uniform dispersal of vacancies within a chain. In addi-
tion, recent work by two of the present authors has
shown that the fragmented-chain model artificially
creates a plateau in the fraction of fourfold-coordinate
copper atoms for 6.5 &z & 6.75; more accurate CVM cal-
culations do not predict this plateau in the copper coordi-
nation. In essence, then, the 60-K plateau calculated us-

ing the fragmented-chain model is an artifact created by
this plateau in the fraction of fourfold-coordinate copper
atoms; it is independent of the electronic-structure calcu-
lations.

The appearance of the limited 90-K plateau in the re-
sults of Zaanen et al. cannot be explained in a similar
fashion. Examination of Zaanen et al. 's hole count for
high oxygen content shows that this plateau is not nearly
as well defined as the plateau centered at z =6.5 (60-K re-

gime); a minor alteration in the fit curve could make this
plateau disappear entirely. Additionally, Latge, Anda,
and Moran-Lopez' using a Hubbard-type Hamiltonian
and the fragmented-chain model, predict no high oxygen
content plateau in the hole count. This inconsistency
shows that the fragmented-chain model does not neces-
sarily explain the 90-K plateau.

One basic conclusion that can be drawn from the stud-
ies of several investigators ' ' ' is that there is a large
difference between assuming ordered and random distri-
butions of vacancies and that the choice of the ordered
arrangement is crucial. This is the source of our objec-
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tions to the fragmented-chain model. The (thermo-
dynamically favorable) arrangement of oxygen into long
0-Cu-0 and V-Cu-V chains should produce the greatest
amount of charge transfer, and hence a higher hole
count. This is consistent with both the experimental
work of Veal et al. and Claus et al. and with the
theoretical studies by the present authors.

B. MSC model

The main point that should be realized about the MSC
model of Poulsen et al. is that it contains four explicit
and an undetermined number of implicit fitting parame-
ters which can be manipulated to describe the T, versus z
behavior. The implicit fitting parameters are the loca-
tions of the plateaus, which are given by the
stoichiometry of the ordered clusters (OI) and OII, in the
case of Poulsen et al.). The explicit parameters are the
two coefficients in Eq. (1), which fix the plateau heights,
and the defect tolerances for the OI and OII MSC's,
which fix the width of each plateau. These parameters al-
low for a great flexibility, i.e., virtually any T, curve
could be fitted just by altering the plateau heights,
widths, and locations.

Calculations performed by one of the authors using
codes provided by Poulsen has shown that the current
MSC model fails when the OIII phase is included (i.e., it
predicts a T, near 0 K). This shows that the MSC model,
as it stands, is truly a minimal model; charge transfer
from other domains aside from those used in the MSC
model is clearly important. The model could easily be
corrected to account for this deficiency by simply adding
another term for OIII in Eq. (1), although then one would
need to add two more fitting parameters (a defect toler-
ance and a weighting factor for the OIII MSC).

The questions of MSC size and defect tolerance were
not adequately addressed by Poulsen et al. , and another
set of calculations was performed to assess the sensitivity
of their model to these parameters. As the MSC size is
increased, the cluster-probability overlap (i.e., the con-
centration interval over which both OI and OII have
nonzero probability) between the OI and OII MSC's de-
creases if the defect tolerance is kept fixed. This causes
local maxima to develop in the behavior of T, versus z.
Hence, the tolerances must be increased to keep the
amount of overlap constant. In addition, cluster overlap
obviously decreases if no defects are allowed in the OI
and OII domains. All of this essentially means that, in
order to obtain plateaus using the MSC model, a finite set
of configurations must be considered as having equivalent
charge-transfer characteristics, and this finite set in-
creases with the MSC size.

C. Configuration expansion

It has already been stated that the configuration depen-
dence of charge transfer in this system allows us to use an
expansion in oxygen configuration variables. For simpli-
city, our study uses a cluster figure which consists of two

adjacent unit cells in the basal plane. This choice could
be altered to allow for larger clusters, as long as the
choice can be made consistent with the electronic-
structure calculations. The only problem with expanding
the size of the cluster figure is that the number of
different possible configurations on this cluster rises ex-
ponentially with its size.

In a sense, Poulsen et al. performed a cluster expan-
sion of their own, but with only two large clusters, OI
and OII. Defect tolerance effectively expands this basis,
collapsing all OI and OII clusters with either zero or one
defect (17 and 65, respectively) into single OI and OII
clusters. This "collapse" tends to lose information about
the structure. The proposed method of cluster expansion
uses a complete set of 14 basis clusters. The assumption
that each disordered cluster with the same number of
filled and empty sites has the same coefficient is a similar
approximation, although it could be removed. Then,
there would be no degeneracy for the disordered clusters,
and the inversion problem would become more compli-
cated due to the large number of variables. Treating each
disordered configuration individually would especially be
a problem if the cluster size were increased, in which case
the degeneracies rise markedly. In the present model, it
is unclear what effect this assumption concerning degen-
eracy has on the results, but in the model of Poulsen
et al. , the effect is quite clear: The width of the plateaus
in T, versus z can be altered at will by changing the num-
ber of defects allowed in a given cluster.

The method of cluster expansion is exact up to the
point where the expansion coefficients are determined. In
order to find these coefficients, two things are required:
determination of the disordered state cluster probabilities
and the actual solution of the system of equations. Disor-
dered cluster probabilities are found using the same dis-
tribution that Lambin used for the computation of hole
counts of disordered structures. Whether or not this is a
completely accurate description of the disordered state, it
is consistent to use the same distribution for the cluster
probabilities.

The solution to the system of equations is accom-
plished by solving a minimal least-squares problem with
the SVD of the cluster-probability matrix. This method
of solution is preferred when solving a linear system
which involves a rank-deficient matrix, and it provides a
minimal length solution vector which is unique. The hole
coefficients determined by the least-squares method are
merely the expansion coefficients which best represent the
electronic-structure data using the chosen configurational
basis. If the basis were expanded to treat more
configurations as being distinct or contracted to treat
more as equivalent, then the numerical values of the
coefficients would change to reflect these basis function
modifications.

An assumption in the determination of ho1e coefficients
is that the ab initio hole counts, found by tight binding
(TB), are an accurate representation for the system. The
results found by the present model will only be as good as
the electronic-structure parameters used to find the ex-
pansion coefficients. The question then becomes, how
good is the tight-binding approach of Lambin' at



12 984 R. McCORMACK, D. dc FONTAINE, AND G. CEDER 45

describing YBa2Cu30, ? This author readily acknowl-
edges several shortcomings in the reproduction of the
band structure, but claims that the essential details are
present. Calculations by other authors ' yield hole
counts which are consistent with those of Ref. 10. The
assumptions made in the cluster expansion model are
consistent with those made by Lambin; hence one can
conclude that the cluster expansion model should at least
predict the correct trend in h (z ).

The central result of this paper is the hole count as a
function of oxygen content. The solid circles in Fig. 8(b)
predict the qualitative behavior of hole count correctly:
The number of holes decreases with decreasing oxygen
content. Unfortunately, no plateau at 90 K is predicted,
contrary to the predictions of both the fragmented-chain
and MSC models. The initial rapid decrease in hole
count can be explained by the increase in the number of
chain ends [threefold Cu(1) atoms]; this is reflected in the
cluster probability for cluster D5 [open circles, Fig. 7(a)].
As the oxygen content is further decreased, OIII followed
by OII ordering stabilizes the hole count by decreasing
the number of chain ends. Hence, the curvature in the
hole count decreases in the region 6.5 &z & 6.75, creating
a weak plateau. The rapid decrease in hole count past
OII stoichiometry is again due to the rapid increase in
the number of chains ends, which is reflected in cluster
probability D, [solid circles, Fig. 7(a)]. The hole count
for completely disordered structures [Fig. 8(b), open cir-
cles] clearly illustrates that disordered configurations
yield a much lower hole count than do ordered
configurations. No "plateau" in the hole count for
6.5&z &6.75 is observed for the disordered structures
because the stabilizing influence of the ordered structures
(OII and OIII) is not present. The lower hole count for
completely disordered structures is consistent both with
previous theoretical calculations ' ' ' and with experi-
mentally observed time-dependent ordering in quenched
samples.

The present method describes a procedure for comput-
ing the hole count as a function of oxygen content. The
information needed to convert Fig. 8(b) to T, (z) is the
functional form of T, as a function of hole count, T, (h).
A great deal of work has been done in this area. ' ' ' '

Two basic conclusions can be reached from past work:
(1) A lower critical hole count exists for superconductivi-
ty and (2) a saturation regime exists beyond which T, de-

creases with increasing hole count. The behavior of
T, (h) is decidedly nonlinear, which makes the task of
prediction much more difficult. Herein lies the essential
problem in attempting to predict T, (h) from the results
in Fig. 8(b). Small changes in the functional form of
T, (h) have pronounced effects on T, (z). Reproduction of
the experimental results thus becomes a fitting procedure
of questionable merit. One very important piece of infor-
mation can be derived from attempts to do exactly this,
namely, that the saturation regime for h &0.22 appears
to allow for a plateau at 90 K, even though there is no
plateau in the hole count. This implies that it is possible
for a theory to predict no high oxygen content plateau in
the hole count and yet still be consistent with the 90-K
plateau observed in experiments.

CONCLUSION

The problems surrounding the understanding of the su-
perconducting behavior of YBa2Cu30, as a function of
its oxygen stoichiometry are numerous, and many have
attempted to come up with plausible models which
correctly predict this behavior. It became clear after
some work was done that oxygen ordering in this system
was quite seminal. With this fact in mind, several groups
were able to reproduce the famous plateau behavior of T,
as a function of oxygen content.

The fragmented-chain model of Zaanen et al. ' recog-
nized the importance of oxygen ordering, and the fact
that a large number of chain ends (short, fragmented
chains) reduced the amount of charge transfer in the
YBa2Cu30, system. Unfortunately, the plateau centered
at z =6.5 (60 K) that Zaanen et al. computed appears to
be an artifact of the rather artificial oxygen-defect statis-
tics that were assumed. Several other investigators' '
used the same fragmented-chain model; results were simi-
lar in all studies, except for the conspicuous absence of
the 90-K plateau in the study of Latge, Anda, and
Moran-Lopez. ' The MSC model of Poulsen et a1. ' also
recognized the importance of oxygen ordering,
specifically the existence of the two ordered oxygen struc-
tures, OI and OII. Despite its agreement with experi-
ment, the MSC model is not as meaningful as it appears
to be: The model succeeds due to a large number of ad-
justable parameters.

The current method of cluster expansion produces
some interesting results, but it does not yield the plateau
structure in the hole count that had been anticipated.
We do not believe that this is a failure of the present
model. The cluster-expansion method provides evidence
to support two important conclusions: (1) the 90-K pla-
teau is not due to a constant amount of charge transfer
(plateau in the hole count) and (2) the 60-K plateau is a
direct consequence of the formation of ordered oxygen
structures (OII, OIII, etc.).

Based on the above conclusions, it is clear that any
correct prediction of hole count as a function of oxygen
content will probably not give the predicted plateaus in

T, . In order to explain the plateau behavior of T„new
attempts must be made to develop a theory which corre-
lates charge transfer (hole count) with T, . In general, it
appears that such a theory must predict a nonlinear rela-
tionship between T, and the amount of charge transfer,
which experiments have already indicated to be the
case. ' ' ' In any case, the question of the relationship
between oxygen structure, charge transfer (hole count),
and T, requires more concerted theoretical e6'ort in the
future.
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the number of O(1) sites that are filled. Hence, if the total
number of filled sites is k, and the number of O(1) sites
filled is i, then the number of O(5) sites filled is k —i .The
multiplicity mk of a given configuration is given by the
product of two binomial coefficients, one for the six O(1)
sites and one for the two O(5) sites:

APPENDIX: COMPUTATIONAL INFORMATION

j.. Cluster-probability computation
for artificial structures

mk=
l

2

k —i
6I 2!

(6—i )!i! [2—(k i—)]!(k i )!—
(A6)

Computation of the cluster probabilities for the
artificially generated structures is accomplished by using
the simple probability distribution given by Lambin for
the O(1) and O(5} site occupancies. The probabilities that
the O(1) and O(5) sites are filled with an oxygen atom are
given by the following equations (for 6.5 & z (7):

( ( ))
1 —+I—(25)

4

x(o(1))=1—5—x(o(5)),

(Al)

(A2)

where 5=7—z. For this study, we would like these prob-
abilities to fall between zero and 1, so we normalize to ob-
tain true point probabilities:

P(o(1))=

p(o(5)) =

x{0(1)}
x {O(1)}+x (O(5) )

x{0(5))
x {0(1))+x(o(5) )

(A3)

The cluster probability for a given oxygen-vacancy
configuration on the eight-point cluster figure is then
found as a product of the point probabilities given in Eq.
(A3). For example, in the point approximation, the prob-
ability of finding a copper atom surrounded by cluster C,
is given by

P(C, ) = [P{o(1)}] [1—P{o(5)) ] (A4)

6 8

h "(z)= g n'f'h + g P/, h"
j=1 k=1

k

(A5)

pd-
k

i = max(0, k —2)
{m

/&
m Q fi/g }f/c (A5a)

In Eq. (A5), the summation over j corresponds to ordered
clusters C, —C6 (denoted by a superscript o); n' is the.
multiplicity of cluster C. (nj'=2 for j =3,5 and 1 other-
wise). The second summation in Eq. (A5) corresponds to
the eight disordered clusters, D1 —D8 with k indicating
the number of oxygen atoms on the eight-point clusters
figure (D/, ). The summation over i in Eq. (A5a) indicates

since the probability that an O(5) site is empty is given as
1 —P(o(5) ).

At this point, the situation becomes slightly complicat-
ed, since we want to make sure we treat the ordered clus-
ters with a given number of filled sites as being distinct
from the disordered clusters with the same number of
filled sites. We can write an explicit form for a "disor-
dered" hole count based on Eq. (2), differentiating be-
tween ordered and disordered clusters:

The cluster probabilities for clusters Ci —C& in Eq. (A5)
are given by equations analogous to Eq. (A4), where
probabilities are computed for all O(5) sites being empty.
Similarly, the cluster probabilities in Eq. (A5a) for the
disordered hole coefficients (h/, ) are given by

f„'=[P(O(1))]'[P(O(5))]"-'[1—P(O(1) )]'-'

X [1—P(o(5) )] (A7)

In order to achieve a separation between the ordered and
disordered clusters, it is necessary to subtract out the
probabilities for the ordered clusters with k filled sites.
In Eq. (A5a), this is accomplished by the correction term
m/', 5&;, where 5/, ; is the Kronecker delta and mi is the
number of ordered configurations with k filled sites. The
Kronecker delta is used, since ordered configurations will
exist only when the O(5) sites are empty, i.e., when k =i
The multiplicities mk can be found using Fig. 4, includ-
ing the factors n'. for each cluster: mk=1, 3, and 3 for
k =6,4, and 2, respectively. This process of separation is
important because the whole purpose of the cluster ex-
pansion is to distinguish different configurations.

The procedure outlined above accomplishes the desired
separation between ordered and disordered clusters when
computing the hole count for the structures generated
with a simple probability distribution. A careful analysis
of all of the above manipulations shows that, indeed, the
cluster probabilities in this "disordered" expansion [Eq.
(A5)] sum to 1, as they should. Now that all of the disor-
dered cluster probabilities can be computed (with correct
normalization), we can compute the remaining 11 expan-
sion coefficients.

2. CoeNcient determination

h (z)= —0.3S(7—z)+0.25 . (AS)

Now we have a basic problem of the form A x =b, where
A contains cluster probabilities, x represents the desired
hole coefficients, and b contains the hole counts for the
structures represented by the cluster probabilities in the

The values of the coefficients for clusters C1, C6, and

D5 are known from Eqs. (3), (6), and (7). This leaves 11
unknowns, and hence we need at least 11 equations to
solve for the remaining coefficients. The two ordered
structures provided two of these [Eqs. (4) and (5)], and
the remaining equations are found using Eq. (A5) for nine
(or more) values of z between 6.5 and 7. The calculations
made by Lambin for the disordered structures show that
the hole count for these structures essentially falls on a
line of the form
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columns of A. For the current problem, the first two
rows of b are given by the hole counts for OII and OIII
(0.14 and 0.17), and the remaining rows (hole counts) are
found using Eq. (Ag) for evenly spaced values of z be-
tween 6.S and 7. In this situation, the matrix A is found
using Eqs. (4) and (5) for the first two rows, followed by
Eq. (A5) for the remaining rows.

The problem at this point is to account for the fact that
we already know the values of the coefficients for C&, C6,
and D5. This is accomplished by correcting the vector b

using the values of the hole coefficients which have al-
ready been determined along with the corresponding
cluster probabilities:

h„„„=h—0.25f, —0. 19P5 +0.02f 6 (A9)

This final correction allows us to solve for the 11 un-
knowns. Unfortunately, if we use the matrix A we have
just constructed, it is found that it is singular (i.e., not in-
vertible).

We can, however, solve the least-squares problem:
Find a vector x such that the Euclidean length of the re-
sidual vector r=Ax —b is a minimum. Values of the
vector x are computed using the singular value decompo-
sition of the matrix A (see, for example, Ref. 46). The re-

suiting coefficients are given in Fig. 4, fourth column.
The matrix A was found to have a rank of S using the
above tolerance. The standard error in the solution is
defined as

1/2rr
d

(A 10)

where r is the residual vector and d is the rank deficiency
(full column rank minus actual rank= 11—5=6). The
least-squares solution found a standard error of
CT =1.95 X 10

In any problem in which the SVD is used, it is neces-
sary to determine what singular values may be neglected
(i.e., those which are effectively zero for the problem un-
der consideration). In the current problem, we neglect
singular values which are smaller than the largest singu-
lar value multiplied by the numerical tolerance in the
vector b (which we assume to be 0.01 holes per unit cell).
The SVD with a minimal least-squares approach pro-
duces a minimum length solution vector which is unique,
despite the rank deficiency of the system. Ideally, we
would have liked a system with full column rank, but the
electronic-structure calculations of Larnbin were not per-
formed for enough ordered structures to allow this.
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