
PHYSICAL REVIEW B VOLUME 45, NUMBER 22 1 JUNE 1992-II

Theory for the effects of impurities on the Raman spectra of superconductors
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A gauge-invariant theory for the effects of impurities on the electronic Raman scattering by pairs
of quasiparticles in superconductors is presented. Special attention is given to the role of symmetry.
The Raman spectrum for a superconductor is calculated using the exact-eigenstate formalism to
account for impurity scattering in each symmetry channel L. We find that the Raman spectrum
is strongly affected by impurity scattering in channels L g 0, and symmetry-dependent line shapes
can be obtained for anisotropic impurity scattering. For strong impurity scattering the peak of the
Raman spectra does not coincide with the energy gap. Also, the bound states and phonon spectral
function in the L g 0 channel are investigated. Implications for the Raman spectra of the cuprates
are discussed.

I. INTRODUCTION

The interest in Raman scat tering in superconduc-
tors has grown tremendously with the results obtained
from the experiments on both A-15's and high-T,
compounds. ' While for many years various theoreti-
cal predictions for Raman scattering in superconductors
predated the first experimental results, the experimen-
tal situation has now changed. Yet while there now ex-
ists a wealth of experimental data on more than a few

systems, the theoretical work has been confined to the
case of clean superconductors. Quite a detailed theory
now exists for Raman scattering in clean BCS super-
conductors, where the effects of Coulomb interactions, s

energy gap anisotropy, and final-state residual phonon-
mediated electron-electron interactions have all been ac-
counted for. These theories all point out the importance
of large anisotropy of the effective Raman tensor as a re-
quirement for large Raman cross sections. In the case of
either a purely isotropic normal metal or a superconduc-
tor, at low temperatures one would only expect to see
an electronic Raman signal for energy transfers near the
plasmon frequency. The reason is that the isotropic den-
sity fluctuations produced by the incident light are cou-
pled to iong-range Coulomb forces and are thus screened
by the collective plasma excitations. Therefore for low
frequencies the Raman signal vanishes in the limit where
the momentum transferred to the material approaches
zero. This has been known for bot;h normal metals
and superconductors for some time. However, inci-
dent light with energy large enough to break a Cooper
pair will in general produce excitations with difterent
quantum numbers t. , which can correspond to angular
momenta in spherically symmetric metals or crystal har-
monics in the more general case, in materials with non-
parabolic conduction energy bands. While the excita-
tions with L = 0 correspond to the screened isotropic
density fluctuations, excitations with quantum numbers
I g 0 produce fluctuations in diff'erent regions of the
Fermi surface that are antisymmetric in charge and thus

produce no net charge fluctuations on a long-distance
scale. Consequently, these excitations are not screened

by Coulomb forces and can lead to a nonvanishing Ra-
man signal in the zero-q limit.

The effects of nonmagnetic impurities on Raman scat-
tering in normal metals for L j 0 has also been well

investigated. It has been shown that the interaction of
electrons with impurities or phonons can further lead
to an enhanced Raman signal. In the case of semicon-
ductors, fluctuations from valley to valley mediated by
either impurities or phonon-scattering processes do not
couple to Coulomb forces and play a dominant role in Ra-
man scattering. The Raman spectra was found to have
a Lorentzian form with widths that grow with increas-
ing impurity concentrations. For metals, Ipatova et al.
showed that large Raman cross sections can be obtained
for materials with nonparabolic conduction bands, while
Zawadowski and Cardonas demonstrated how impurities
strongly affect the width of the Lorentzian Raman cross
section. Further, if the impurity scattering is anisotropic
different line shapes can be obtained for different polar-
ization orientations.

It is reasonable to believe that similar effects might be
found in superconductors with significant concentrations
of impurities. Since most of the A-15's and the high-T,
compounds which can be examined by light scattering
have high normal state resistivities, it is plausible to be-
lieve that disorder may play a relevant role in these ma-
terials. Therefore it would be advantageous to have a
theory of Raman scattering that incorporates the effects
of disorder in a systematic fashion.

Light scattering experiments offer a unique opportu-
nity to obtain symmetry-dependent material informa-
tion. By altering the polarizations of both the incident
and scattered light, one can selectively examine certain
quantities that are dependent on a particular symme-
try of the point group of the crystal. The experimental
data have shown a rich and somewhat puzzling polariza-
tion dependence. Namely, the scattering intensity and
line width both vary as the polarization directions are

45 12 96' 1992 The American Physical Society



12 966 THOMAS PETER DEVEREAUX

changed. Therefore, a theory for Raman scattering in
superconductors must show how the polarization orien-
tations affect the scattering cross section.

This paper describes features of the Raman spectra
due to the effects of impurities and polarization orienta-
tions in superconductors. It will be assumed that the su-
perconductors are of the BCS s-wave-pairing-type. The
plan of the paper is as follows; Sec. II will be devoted
to formalism, Sec. III will concern the theoretical re-
sults for the Raman response functions in a disordered
superconductor and the corresponding bound states as
a function of impurity concentration and present com-
parisons of the theory with experimental data, Sec. IV
will present a calculation for the optical phonon spectral
function, and lastly Sec. V will discuss implications for
the Raman spectra of the cuprate superconductors.

II. RAMAN RESPONSE FUNCTIONS FOR
DISORDERED SUPERCQNDUCTORS

A. "EfFective" density correlation function

The Hamiltonian for electrons interacting with an ex-
ternal electromagnetic field is given by

H, = —) j(k) A( —k)
k
2 ) A (—k) r p(k + k') Ap( —k')

k, k'

to second order in the vector potential A of the optical
field. The current operator j (q) is given in terms of

creation and annihilation operators c (k), c (k) for an
electron with spin o as

j (q) = ) v (k) c (k + q/2) c (k —q/2),

where v„(k) =
&&

. The inverse effective mass tensor

r„p is related to the curvature of the band energy e(k)
via

p(q) = ) c, (k + q/2), c (k —q/2).
. D~e(k)

k kp

Applying Fermi's Golden Rule yields a differential Ra-
man cross section given in terms of an effective" density
correlation function S:

(4)

2
where ro — ',, is the Thompson radius, and q and ~
denote the momentum and energy transferred from the
light to the material. Fram here on we set h = 1. S is
related to the susceptibility by the fluctuation-dissipation
theorem, S(q, ~) = ——[I + n(u)j y "(q, a) where n(a) is
the Bose distribution. The susceptibility

~(q ) =& K(q) P(-q)j &~-l

is formed with an "effective" density operator given by

p(q) = ) p(k)c (k+ q)c, (k).

)-t (klv Ik )(k. lvplk)

e(k) —e(k„) + ~,

+ (kfvp/k, )(k„/v [k) I

e(k) —e.(k„) —(u, )

Here mo is the free-electron mass, v denotes the band
index of the electron excited out of the conduction band,
and ~;,~, denote incident, scattered light energies, re-
spectively. p(k) does not depend on q since q (( kF
In the limit of small external frequencies,

~
e(k) —e(k„) ~, Eq. (8) reduces to

D2e(k)
p p(k) = mo

k Okp

In the case of a metal with free energy bands the
Raman vertex is just the density vertex, p(k) = 1.
Coulomb forces couple to the isotropic density Quctua-
tions to screen them out completely for q = 0 as a con-
sequence of particle number conservation. However, the
effective mass tensor is not a conserved quantity in gen-
eral and for nonparabolic bands will have oA'-diagonal
terms which do not couple to Coulomb forces. ~o ~2

The remaining terms in the Hamiltonian, H = H, „,+
H', are

a' = ao+ 0;„„

Hp ——) e(k)c, (k)c, (k) + ) Vk™k~c (k)c (k'),
k, o k, k', e

Hint = ) Vki gc&(k )c&(—k )ct(—k)cT(k)i
k, k'

where V™~and V'"' are the impurity and effective
phonon-mediated electron-electron interactions, respec-
tively, and the interaction only acts in the Cooper chan-
nel. Additional terms of the Hamiltonian correspond to
electron-electron interaction in the electron-hole (zero-
sound) channel, which have been considered for clean su-
perconductors in Ref. 5, and Coulomb interactions. Since
Coulomb forces only couple to isotropic charge fluctua-
tions we only need to consider them in the L = 0 channel.
We shall for the time being neglect the zero-sound chan-
nel as well, and return ta it in Sec. III.

The strength of the scattering is given by the bare Raman
vertex, p(k). For light with incident (scattered) polariza-
tion vectors e'(e'), p(k) can be written in terms of the
Raman tensor as

y(k) = ) e'p p(k)e'p,
a,P

with
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B. Raman response functions for disordered
superconductors

We see from Eq. (4) that obtaining the Raman cross
section in a superconductor amounts to calculating an
effective density correlation function in a superconduc-
tor. In this section we will evaluate g(q, ~) in a gauge-
invariant manner for dirty superconductors.

Reference 13 used the exact eigenstate formalism to
construct a gauge-invariant theory for general correla-
tion functions for BCS superconductors with arbitrary
amounts of disorder, and explicitly showed the calcula-
tion for the density response and the longitudinal and
transverse current responses. The idea is to first intro-

duce new fictitious eigenfunctions 4„(x) and eigenener-
gies E„,Anderson's "exact eigenstate" basis set, that
diagonalizes the noninteracting part of the Hamiltonian,
Ho. The disorder renormalizations are then expressed
in terms of correlation functions for noninteracting elec-
trons. We will closely follow the formalism of Ref. 13
to calculate the "effecti ve" density response of Eq (.5).
Therefore we will be quite brief.

The graphical representation of the solutions for the
susceptibility and the renormalized vertex are shown in
Figs. 1 and 2 of Ref. 13. We first transform to the ex-
act eigenstate basis set and perform an average over the
random positions of the impurities according to the pro-
cedure outlined in detail in Ref. 13. The corresponding
integral equations can be written as

y(q, iQ) = T) —dade') Fk ~(q; ~, e')try(k, q)G(e, i~ —iO)I'(p, —q; iO)G(e', i~),
k,p

I'(p q ~Q) = y(p q) —T) ) .f dade'Fj,
, ~ (q re')7sG(e ~~ —iQ)I'(p', q iQ)r~V'"'(p p'),

it@ k', p'

where tr denotes the trace, and the Raman vertex p(p, q) is given by Eq. (7). The integral equations are identical
to Eqs. (2.11)—(2.13) of Ref. 13 except a generalized interaction V'"'(p, p') has been used in place of the constant
model potential, —V. Here, F is a correlation function for noninteracting electrons. It is defined in terms of the exact
eigenstate wave functions as

i(k q-/2) x-~+i(k+q/2) xi+i(p q/2) x-a i(p+q-/2) xq

x ) & iI)„'(xi)@„(xs)@'(x4)@ (xz)b(e —E„)b(e' —E ) &,„,
fA)A

(12)

where the brackets & . & „denote performing the im-
purity average. It has been discussed extensively in Refs.
13 and 15 that to a very good approximation Fk p de-
pends only on the difference c —c' of its energy arguments
and can be written in terms of the absorptive part of the
phase-space density I&ubo function C)k z(q; & —e'):

(» p ) = ) . I L,L'~I. (p)&I. (p ) (14)

of a complete set of orthonormal functions defined on the
Fermi surface:

Fk z(q; c, e') (1jz)4k (q; c —c'). (13) V(» q) = ) vr. &L(k)
L

As a correlation function for noninteracting electrons, 4'"
can be calculated by a variety of techniques. It contains
all the disorder information in the system. Equations
(10) and (11) are completely general ones that form a
closed system of integral equations for the correlation
function y. As discussed in Ref. 13, the above system of
equations ensures gauge invariance if the matrix Green's
function 0 is calculated in the generalized Hartree-Fock
scheme which constitutes the standard theory of super-
conductivity. In this paper we choose to use the BCS
model with an isotropic energy gap.

Proceeding to solve to the integral equation we
first expand the effective electron-electron interaction
V'" (p, p') and the bare Raman vertex y(k, q) in terms

where we have used the fact that the Raman vertex is not
strongly dependent on wave vector q. The terms in the
expansion take into account the anisotropy of V'"' and
y by a classification in terms of quantum numbers L. In
the general case, the functions Pl. (k) can be chosen to
be Fermi surface harmonics, and each index L can be
identified with an irreducible representation of the point
group of the crystal, but several L's belong to the same
irreducible representation. In general, V'"' can have off-
diagonal as well as diagonal terms in the L basis, and thus
the integral equations in general couple different chan-
nels L and L' which transform to the same irreducible
representation. For simplicity we will assume that the
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interaction is rotationally invariant. Thus we can use
spherical harmonics for the functions $1.(k), where I
is a shorthand notation for I. = (I,, m) in the three-
dimensional case or azimuthal quantum numbers m for
the two-dimensional case. Then UL, L,

——bl. I, VL, is diag-
onal in the spherical harmonics basis. The general case
was discussed for clean superconductors in Ref. 4. Fur-
ther, since we will be working in the BCS model, the first
term in the expansion, VL, —o, will be the largest negative
term in the series. The remaining terms can be of either
sign.

The effect of a nonzero VL, ~o has been considered re-
garding the existence of collective modes in both clean
and disordered superconductors. It was found that for
an attractive coupling, VL, & 0, an electron pair bound
state with angular momentum L is formed which is or-
thogonal to the Cooper pairs, while for a repulsive inter-
action, an electron-hole exciton is formed. The resulting
bound state has a lower energy than 2A and thus would
show up as a precursor excitation before the Cooper edge
continuum. It has also been shown that the bound states
are not damped by disorder, but their binding energies
are strongly affected and the bound state is pushed closer
to the gap with increasing disorder. There so far has been
no conclusive experimental evidence for a strongly bound
state, but even a bound state with small binding energy
can dramatically alter the shape of the Raman spectrum,
making it difFicult to distinguish between gap anisotropy
and collective mode effects.

In order to proceed further, we make the assumption
that the renormalized vertex is independent of q and thus
I'I, I. ——bl. I.II'I, does not mix quasiparticles in different
channels. The integral equation then decouples into sep-
arate integral equations for each channel. The above in-
tegral equations can be solved by expanding the vertex
I'L, in a quaternion basis and comparing coeKcients.
The result is that the susceptibility in channel L can be
expressed in terms of three response functions in a su-
perconductor:

gL, (q, iA) = 2CI. (q, iQ)/[I+ VI, Cr. (q, iQ)j,

CL, (q, iA) = B+,I, + VI.AI, /(I —VL, B r. ). -
Here the response functions in channel L are

—1 f(E') —f(E)a„(iO'i =
4EE' iO+ E —E'

+ (iA —iQ).
1 1 —f(E') —f(E)

(21)

Here, E~ = c~ + A~, f denotes the Fermi function, and
(iQ ~ —iQ) denotes the addition of terms which differ
from the ones written only by the sign of iO. O'L I is
the "effective" Raman density Kubo function for nonin-
teracting electrons formed with the Raman vertex:

»,p

(22)

- —1

C''I'.
, L, (q, ~) = &L, &F

+ 7L
(23)

where NF is the density of states per spin at the Fermi
level. 7& can be written as

- —1 —1 —2 2
rr. —

rL, =o —rI. + Dq, (24)

where D is the diffusion constant related to the resistivity
p by an Einstein relation, D = 2e SFp. The impurity
scattering rate is related to the expansion of the impurity
potential

For free electrons, the phase-space Kubo function 4»
can be expressed in terms of the Lindhard function. The
Raman density Kubo function in the normal state has
been well investigated, since it connects to the Raman
susceptibility via the relation ~C" = y".' The effect of
impurities has also been well studied. Fal'kovsky~~ in-
vestigated the normal state Raman susceptibility in the
presence of impurities, but only the L = 0 channel was
investigated in detail. Zawadowski and Cardona investi-
gated the I-channel-dependent susceptibility in the zero-

s limit with the assumption that the impurity potential is
only weakly momentum dependent. We generalize their
result to finite q by evaluating the Kubo function dia-
grammatically in the ladder approximation as in Ref. 9.
We obtain

By L, (q, iA) = — dc de'4'r' I (q, ~ —c')b, y, l(iQ), (19)
jr

with the spectral functions

EE' —b, ~+ee' f(E') —f(E)
4EE' iO+ E —E'

EE' + A~ —we' 1 —f(E') —f(E)
4EE' iO —E —E'

+(iA ~ —iQ), (20)

AL, (q, iQ) = i A dc dc'O'I,
L, (q, c ——c')a, , (iQ), (18)

jr

via I/rL, ——2irN~I'I. , where we assume that the impu-
rity potential is rotationally invariant. Additionally we

assumed only a weakly k dependent impurity potential
so that r& o will be larger than the scattering rate in

any other channel. Light scattering in the L channel is
given by particle-hole excitations. Thus the width of ex-
citations in the I channel, 7&, is due to scattering pro-
cesses which take the excitations out of the L channel.
Therefore vertex corrections of elastic scattering within
the L channel reduce the scattering to another channel
and subsequently reduce the total scattering rate.

For q = 0, we recover the form of 4L L from Ref. 9,
while for the L = 0 channel the impurity scattering rate
drops out due to particle number conservation in that
channel and we recover the form from Ref. 22. There is
no conservation rule in the I. g 0 channels, which leads
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to the violation of f-sum rules in that channel, i2 and
thus the Kubo function does not go to zero for zero wave
numbers. This is why the Raman spectrum in a normal
metal does not vanish for q ~ 0 in the L g 0 channel
while it does for the case of isotropic density fluctuations
(the L = 0 channel) where the excitations are screened
out by long-range Coulomb forces. Furthermore, the bare
diffusion pole that one has in the L = 0 channel is shifted
by the impurities and thus has a pole at q = 0 for fre-
quencies equal to the total impurity scattering rate in
channel L.

In the case of isotropic scattering, 7L, )& 7L, —0, the
position of the diffusion pole will be the same in differ-
ent channels while for anisotropic scattering the pole of
the Kubo function is channel dependent. This is why
in the normal state Raman cross section one would ex-
pect polarization dependent line shapes and intensities
only for the case of anisotropic impurity scattering. This
will have interesting implications for the superconducting
case.

Returning to the calculation for a superconductor, we

note that for isotropic density fluctuations (L = 0 chan-

nel), Eq. (23) for the I&ubo function reduces to the
density-density correlation function in the presence of
disorder. The response functions for L = 0 were cal-
culated in Ref. 13. It was found that a collective mode
exists, the Anderson-Bogoliubov mode, in disordered su-
perconductors as it does it clean superconductors. It was
found that impurities simply normalize the speed of the
sound mode. Inclusion of Coulomb interactions act as
the Higgs mechanism to push the mode up to the plas-
mon frequency. Further, no disorder generated collective
modes appear in the electromagnetic response.

Since the low-energy density fluctuations are screened
in the L = 0 channel, they will not contribute to the Ra-
man intensity. For L = 0, one only expects a large Ra-
man signal for frequencies near the plasmon frequencies

in superconductors. Thus for low frequencies the con-
tributions to the Raman spectra only occur due to non-
parabolic conduction band dispersion. This was shown
by Abrikosov and Genkin, where the Raman vertex in
the L = 0 channel was replaced by fluctuations of the
Raman vertex away from sphericity but no channel de-
pendence entered into the response function equivalent to
B+ L, , Eq. (19). This is appropriate for clean supercon-
ductors with an isotropic energy gap and no final-state
interactions, i.e. , VL, go

——0. It is also appropriate for
the additional case of isotropic disordered superconduc-
tors with isotropic impurity scattering rates since 7L is
the same in each channel. However, anisotropy of either
the gap, the final-state interactions, and jor the impurity
scattering will lift the Raman spectra channel degener-
acy. Therefore in most cases one would in general expect
channel dependent Raman cross sections, and one must
use both L dependent Raman vertices and susceptibili-
ties in calculating the Raman cross section. This will be
shown explicitly in the next section.

III. CHANNEL DEPENDENT
SUSCEP TIBILITIES

In Ref. 13 the response functions in Eqs. (18) and (19)
were evaluated for T = 0 in the L = 0 channel analyti-
cally for small q, u, and were evaluated numerically for
larger values. We now generalize those results to all L
channels, and find analytic solutions for all q, ~.

It is convenient to first calculate the absorptive parts
of the functions A&, B+ L. Since the imaginary parts

I

of the spectra have delta functions representing energy
conservat;ion, one of the energy integrals can be read-
ily performed. Analytically continuing to the real axis
(iA ~ 0 + i0) and taking the imaginary part of Eqs.
(18)—(21) and performing one energy integration, we ob-
tain for T =0,

(25)

~,~(~ ) = -( — )~/ ~~, ~, ~(„),
([+(~ @)+ + ]@+,L + VE2 +2+(Q +)2 +2@

,L)—
where

(26)

[q QE2 Q2 g(Q P)2 Q2] + @~~ [q QE2 Q2 + g(Q E)2 Q2] (27)
The procedure for obtaining the corresponding real parts via a Kramers-Kronig transform is explicitly laid out in Ref.
13. Using Eq. (23) for the Kubo function, it is shown in the Appendix that the integrals can be performed analytically
and can be expressed in terms of complete elliptical integrals:

440
B+L(q, Q) =yr e(B —2b, )

('(0 —2A)~ 7L + A~ + 4b, A 8b,s02

4&& ~ '+ 0'+ 2AQ (0'+ ')' —4b, '0' (28)
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(q")=7'n+2~e(" ' )n +,-;'+2~nl~n +.-,— 2~n"(" )- (-) l, (29)

'" = 'n+» (" )n +--''+2~n n --' — sn"( ' )+ (30)

where

(n —2d )' y n'7.1 '(l —„, , )

(n —2A)~ + 71 (l —,, )

0 —2A

0+ 26

We have plotted B+ I (q, n) for different impurity scat-
tering rates in Fig. 1. We see that the impurity scattering
rate cuts off the square root singularity that one obtains
in the clean BCS limit without final-state interactions.
At the threshold, 0 = 2A, the response functions have
the following form:

Bq 1.(q, n = 2A) = B"
L, (q, n = 2A)

Here 0 is the theta function and F, E, and II are complete
elliptical integrals of the first, second, and third kinds,
respectively. For all values of f&, the three spectra are
discontinuous at the threshold 2A, which is the required
energy to break a Cooper pair. For large frequencies
compared to the gap, 0 )& 24, 8+ & approaches the
normal state susceptibility, while B"

L and A& approach
z/2 and 0, respectively.

The existence of collective modes and the effects of
disorder in L g 0 channels have been thoroughly investi-
gated by Maki and Tsuneto, and Fulde and Strassler.
They found that the collective mode exists for arbitrary
strength of the coupling VL, and is undamped even in
the presence of disorder. Similarly, interaction in the
electron-hole channel also produces a bound state. How-
ever, disorder drastically affects the position of the col-
lective mode, and pushes the mode closer to the gap
edge for increasing disorder. We have verified these
results by using the above functions in the expression
for the renormalized polarizability, CL, (q, n), and obtain
plots similar to Fig. 2 from the calculation by Maki and
Tsuneto. ' We find that except for sufIiciently strong cou-
pling, VL ) 0.5VL 0, the collective mode has a small
binding energy and is thus indistinguishable from the gap
edge. This is in agreement with the lack of experimen-
tal verification of a collective mode. However, we do
note that even if the collective mode is very close to the
gap edge, its presence strongly affects the line shapes of
the susceptibility, making it difIicult to distinguish be-
tween the effects of collective modes and possible gap
anisotropies to produce a broadened gap edge. While at
present one cannot exclude the possibility of collective
modes in disordered superconductors, one can draw the
conclusion that the mode has a very small binding en-
ergy. Beyond collective effects, it can be shown that the
vertex corrections only modify the frequency dependence
of the susceptibility in a narrow range of frequencies very
close to the gap edge, and thus the "pair approxima;
tion, " i.e. , the susceptibility without vertex correction",
is completely adequate for our purposes. Therefore, for
the remainder of the paper we choose to ignore all vertex
corrections and thus focus only on the response function
B+ L.

A", (q, n = 2a) = pc xF
L
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FIG. 1. Normalized response function B+ r of Eq. (28)
for different impurity scattering rates. The values of 26(T =
0)/fz' used are given in the upper right of the figure. The
maximum of the peak position moves away from the gap edge
for increasing scat tering ra, tes.

The spectrum becomes Hatter and the peak maximum
moves out to higher frequencies for increasing impurity
rates. Note that the spectra are qualitatively different
from those of clean superconductors with isotropic energy
gapa and no final-state interactions. 4 s First, in the case
for q = 0, the peak of the spectrum always coincides with
the gap edge for clean superconductors. However, impu-
rities affect the height and position of the peak even for
q = 0 in the channels L g 0. Thus while for clean super-
conductors the identification of the peak maximum as the
energy gap is appropriate, such an analysis would over-
estimate the value of the energy gap in superconductors
with impurities. Second, in clean superconductors the
channel dependence of the spectra enters only through
the channel dependence of the Raman vertex. Since this
is just an overall prefactor, only the magnitude of the
spectrum would be channel dependent. However, in the
dirty limit the channel dependence also enters through
the impurity scattering rate, and thus the line shape of
the spectrum is altered as well. These features are the
same as in the normal metal case. While these effects
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FIG. 2. Comparison of theory with experimental data on
Y3Si from Ref. 4 for —Azg (upper line) and Ars + Bs symme-
tries (bottom line), respectively. Parameters used are defined
in the text.

are small for weak impurity scattering, they become quite
appreciable for 2471. 1.

To demonstrate the effect of impurity-dependent line

shapes, we have convoluted Eq. (28) with a Gaussian of
fixed width to mimic the effects of broadening due to ei-
ther gap anisotropy, inelastic scattering, or instrumental
resolution. The overall magnitude of the scattering is
governed by the Raman tensor, which is in principle ob-
tainable from band-structure calculations but is yet un-
known for even a simple metal such as aluminum. Using
the energy gap and impurity scattering rate as fit param-
eters and a fixed Gaussian width I' = 0.10 x 2A, we have
fit the convoluted spectrum to the Raman data on VsSi
(Ref. 4) for difFerent polarization geometries which select
difFerent contributions from Aiz, T2rl, and E~ symmetries.
Since Ref. 4 did not normalize their data to the normal
metal, the Raman vertex was simply used as a fit param-
eter Fo.r the Og point group, the channels with L = 0, 4
and higher angular momenta contribute to Ais symme-
try, while the channels with L = 2 contribute to both E~
and Tzz symmetries. The fits are shown in Figs. 2 and 3.
We have fixed the gap at 2b, = 41 cm i for each sym-
metry orientation. The fits show very good agreement
using impurity scattering rates 7& /26 = 0.1, (0.2) for
3/4E&, (Aiz + Es, and Ais + 1/4E~ + Tqz) symmetries,
respectively.

The fits presented in Ref. 4 were obtained by assuming
that the line shape was governed by a Gaussian distribu-
tion of energy gaps with widths ranging from 10 15%
of the gap. Additionally, the fit required an energy gap of
Ez symmetry which was roughly 7%o lower than the other
symmetry gaps. Impurity scattering was not taken into
account. Our fits do not require gap anisotropy. The dif-

ferent peak positions can be attributed to impurity scat-
tering which is anisotropic and thus different for differ-

ent L channels. Similarly, while a distribution of energy

gaps could account for the magnitude of line broaden-

ing, it seems more likely that impurity enhanced inelastic
quasiparticle scattering processes due to Coulomb and/or
electron-phonon interactions is responsible for line broad-
ening. A recent theory-' predicts an inelastic scattering
rate for the degree of disorder in this material that is
comparable with the broadening parameter used in our
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FIG. 3. Comparison of theory with experimental data on

V3Si from Ref. 4 for A19 + 4 B& + Tzg symmetry. Parameters
used are defined in the text.

fits. Thus our fits indicate that the gap for this material
could be spherically symmetric or have a much smaller

percentage of the gap that deviates from 41 cm

IV. PHONON SPECTRAL FUNCTION

where ~o is the optical phonon frequency and E', E" are
the real and imaginary parts of the q = 0 phonon self-

energy, respectively. The interaction of optical phonons
and electrons is assumed to be of the simple form:

He-ph ——g g„c„+~.ci,~(~~,, + ~-q, p),v t

k,q, p

(32)

where gk is the matrix element for scattering an elec-

tron from k ~ k + q, and bq &, bt, are the phonon
field operators for branch y. In this place the scattering
occurs via a phonon instead of a photon, and one can
thus proceed along the lines considered for photon scat-
tering with the substitution of the Raman vertex pk by
the electron-phonon coupling vertex gk. The full vertex
renormalization and self-energy equations are thus de-

scribed by Eqs. (18) and (19) with the replacement of gi,
expanded in terms of spherical harmonics.

It was shown by Lit tlewood and karma that
Coulomb interactions supress interaction effects in the

The influence of superconductivity on phonon frequen-

cies has received much interest. Zeyher and Zwicknagl~4

have considered t;he case of strongly coupled supercon-
ductors in the presence of nonmagnetic impurity scatter-
ing, and were able to account for the phonon frequency
shifts and changing line widths in YBa2Cus07 (Ref. 25)
as a function of temperature. It, was found that the pres-
ence of impurity scattering was essential to the theoreti-
cal agreement.

For completeness, we now consider a calculation of
the optical phonon spectral function in disordered BCS
superconductors. The spectral function for an optical
phonon is given by

ImD(q = 0, ~) = 4~02"(~)
[~' —~O2 —2~oE'(ur)j'+ 4~O2Z"~'
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FIG. 4. Phonon spectral function for an optical phonon
of energy (a) 1.05 x2&& (b) 0.95 x26, respectively. Lower,
middle, and upper lines are for r~ /2A = 0.1, 0.5, and 1.0,
respectively, for both figures.

I = Q channel in the same way as the Raman scattering
is supressed in that channel. Therefore, the renormal-
ization of the phonon spectral function only comes from
anisotropic couplings in the L g 0 channels.

Ignoring vertex corrections due to final-state interac-
tions we have plotted the L g 0 phonon spectral function
in Fig. 4 for various impurity scattering rates using the
response function B+ L (q = 0, u) of Eq. (28) for the self-

energy Z"(u). The real parts were obtained numerically

by a Kramers-Kronig transform. We find the same con-
clusions reached in Ref. '24, namely, (1) that for phonon
frequencies below the gap, impurities smear out the satel-
lite peak above 2A, and the spectral weight of the satel-
lite decreases with increasing distance from the gap edge
and (2) for phonon frequencies above the gap, impurities
again smear out the precursor excitation which exists be-
low the gap and an asymmetric phonon peak is obtained
for phonon energies close to the gap. This can be seen in
Figs. 4(a) and 4(b).

While the satellite peak that appears below 2A has
been previously invoked to explain the Raman peaks be-
low the gap in NbSe2 (Ref. 26) and NbsSn, we find
that the peak should merge into the phonon peak for
increasing concentration of impurities. However a differ-
ent explanation in terms of coupling of superconducting
and modulating charge density energy gap modes has
been presented. The disappearance of the precursor
peak with increasing impurity concentrations has been
observed for NbSe2. In the high-T, compounds, so far
no anomalous spectral function features have been ob-
served (except for the asymmetric Fano resonances s)
even though there exists several phonons near the gap
that could produce structure. Our results are in agree-

ment with these experiments. It, seems likely that impu-
i lty scattering is strong enough in these compoullds to
smear out any anomalous features in the spectral func-
tion.

V. DISCUSSION AND IMPLICATIONS
FOR THE CUPRATES

We have obtained expressions for the Raman response
functions in superconductors including modifications due
to impurities. We have demonstrated that impurities
dramatically aA'ect the shape of the Raman spectrum,
and we have pointed out that the identification of the
gap with the position of the maximum of the Raman
spectra will overestimate the value of the energy gap.
Good agreement is found with the experimental data on
V3Si and the general behavior of the Raman spectra of
other A-15 compounds. We now turn t,he discussion to
the implications for the Raman spectra of the cuprates.

The unusually Hat Raman spectrum extending out to
approximately 1 eV in the cuprate superconductors has
signaled the development of various theories to explain
this anomalous normal stat, e behavior. The "marginal-
Fermi-liquid" hypothesis was borne from the Raman
spectra in the normal state, leading to a phenomeno-
logical form for the susceptibility g"(~, T) which is lin-
ear in both frequency and temperature. Recently it has
been shown that a form for the susceptibility suggested in
Ref. 29 can be derived from consideration of a nested or
partially nested Fermi surface, a feature that, many of
the high-T, compounds and some actinides share. Good
agreement was found with the normal st, ate data on
BiSrCaCu20s. The key to the theory was the pres-
ence of nonparabolic conduction bands, which allows for
large Raman intensities, and the frequency dependence
of the quasiparticle damping rate due to electron-electron
collisions on parts of the nested Fermi surface, which
was found to be linearly dependent on frequency. How-
ever, analysis was restricted to the normal state, since
at low temperatures and frequencies the theory breaks
down, and thus the superconducting state could not be
examined. 32 It is estimated that the frequency and tem-
perature scale for which normal Fermi-liquid behavior is
recovered is at least on the order of the superconduct-
ing gap and T, in the high-T, compounds. Therefore
although the normal state might be "marginal, " it may
be plausible that there is still a Fermi liquid in the su-
perconducting state and one may use Fermi-liquid-based
approaches to examine Raman scattering.

However, the Fermi-liquid-based theories have yet to
describe the Raman spectra in the superconducting state.
The experimental work of Ref. 33 on YBa2Cu307 mod-
eled their data with a BCS form of the Raman spec-
trum, which led to polarization dependent gaps. Further,
the temperature dependence of the gap obtained differed
greatly from a BCS T dependence, and it appeared as
though the gap saturated at T = T, for certain symme-
tries. Also the fits required gap anisotropies as large as
80% and distributions of gaps that range from 27 to 67%
of the mean-gap values. In view of the fact that most
of the polarization data are taken in-plane, it seems un-
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likely that the superconducting gap could have such a
large degree of anisotropy as the fits require if the pairing
is isotropic, i.e. , S wave. s Further, the high normal state
resistivities in the cuprates in general suggest that t,he im-
purity scattering length is of the order of the coherence
length. This is equivalent to the magnitude of the scat-
tering rate required to obtain the fits of Ref. 24. There-
fore it seems unlikely that any gap anisotropy would re-
main. However, the broadening which is observed is of
the correct order of magnitude to be described by the
disorder enhancement of quasiparticle inelastic scatter-
ing processes due to either Coulomb or electron-phonon
interactions depending on the strength of the electron-
phonon coupling. For T/T, = 0.3, one obtains a quasi-
particle scattering rate due to Coulomb interactions that
is roughly 30% that of the energy gap. ~s

We have attempted to fit the data of Ref. 33. Convolut-
ing Eq. (28) with a Gaussian of fixed width I' = 0.3 x 2b, ,

we obtain excellent agreement with Fig. 2 of Ref. 33 for
the four polarization orientations selected. However, the
fits require polarization dependent gaps. While the gap
was set to be 193 cm ' for the O' J, 0'

i~, and 45'
~(

polar-
ization orientations, a value of 310 cm was needed for
the 45' J polarization orientation. The notation is that
used in Ref. 33. The impurity scattering rate, 7& /2A,
was chosen to be roughly equal to 1 for each of the four
orientations. While this is consistent with the magnitude
of the impurity scattering rate used in Ref. 24, it does not
seem to be in agreement with such a large degree of gap
anisotropy. This might be indicative of anisotropic elec-
tron pairing. "

Also, while good agreement is found for low frequen-
cies, at higher frequencies, the present theory deviates
substantially from experiment since the theoretical spec-
trum dies off as I/u while a flat spectrum is seen roughly
up to 1 eV. However, this can be remedied phenomeno-
logically by assuming a constant impurity scattering rate
at low frequencies, and for frequencies much larger than
the gap, an effective frequency dependent scattering rate
is used such that the susceptibility has the form suggested
in Refs. 30 and 29. This interpretation agrees with the
theory of Ref. 30, if one assumes that the lower frequency
cutofF occurs at roughly 4A.

Lastly, we close with a discussion of the temperature
dependence of the energy gap obtained in Ref. 33. The
large value for the impurity scattering rate required by
our fits has interesting implications for the temperature
dependence of the energy gap. One can see from Fig.
1 that the peak of the Raman spectra should be much
higher than the energy gap for 7I 2A. Similarly in
the normal state, a peak would be obtained at frequencies
near 7I . Therefore, one can expect that the maximum
of the Raman spectra would drop with decreasing tem-
perature and then saturate at frequencies roughly equal
to the impurity scattering rate as the line shape recov-

ers the Lorentzian normal state form. If one equated the
peak of the Raman spectra with the energy gap, then
it would appear as if the energy gap never vanishes as
one reaches T, . Therefore one would interpret a temper-
ature dependence of the energy gap which was substan-
tially difFerent from BCS. This has been seen in Ref. 33.
It is important to note that strong coupling effects also
produce a non-BCS temperature dependence of the gap.
However, the gap must go to zero at T„and therefore
strong coupling efFects cannot explain the behavior seen
in Ref. 33. This further points out the care that is needed
in interpreting the Raman data in superconductors. One
can conclude that more experimental data is needed to
examine the impurity concentration dependence of the
theory, and more theoretical work is needed to account
for the magnitude of the parameters required for the fits
presented.
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APPENDIX: EXACT SOLUTION OF
SPECTRAL RESPONSE FUNCTIONS

In this appendix we show the exact solutions of Eqs.
(25)—(27) for the spectrum of the response functions
AL, B+ L. We begin by first changing the integration
variable E =

z (z +0 —2b, ) and integrating over z. The
products under the square root can be factorized:

QEz —A~ Q(Q —E)~ —4~

with n defined to be

0 —2L
0+ 2d

Using Eq. (23) for the spectrum of the Raman I&ubo
function into the functions 4~ L of Eq. (27) and carrying
out some algebra, we then can rewrite Eqs. (25) and (26)
in the following form:

e(Q —24)(A+ 2A)Np-7~ ' ' bp+ bye~+ b4x~

2(Q —2b, )~(Q~ + rr ) p (z~ + ~i)g(1 —n~z~)(1 —z~)
(A1)
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O(Q —2A) (Q + 24)NF rl b' + b'z

2(Q —2b.)2(02+ r~') p (z'+~g)/(I —n * )(1 —z )
(A2)

O(Q —2b, )(206.)NF rl ao+ a2z

(0+ 2b)(O —2A)'(02+ r~ ') p (z'+ err)g(l —n z')(1 —z )
(AB)

with
- —2(- —2 ~ fI2 4~2)

(0 —26)2(02+ r~ )

can be expressed recursively in terms of complete ellipti-
cal integrals of the third kind, II:

Io ——II ——,e
The coefFicients are defined as

, 0'+ 4~'
bp ——8E n+ 2r~ I2 ——F(n) — Ip, —

b2 —— 2n (—r~ —0 —8A ), I~ = F(n) —E(n) — I2, —
bg

———2n'(0 —2A)',

, 0'+4m'
bp

—2nD + 2rL
)

where F and E are complete elliptical integrals of the
first and second kinds, respectively. To transform the
third elliptical integral in the circular case to positive
arguments we utilize the tranformation

b', = 2n2(r~ '+—0'),

ap —2r& + 0 —4A, a2 —(0 —2A) .

Ldll ) (1 + 4fr)(1 + 4)rn )+,F(n),l+ ~gn' (A4)

The above integrals of the form

dg
(z2 + ~r) /(I —n2z2)(1 —z')

1+ awith N = +&+' . After some straightforward but t,e-
dious algebra, we arrive at the form of the solutions for
the spectra given by Eqs. (28)—(30). This completes the
purpose of the Appendix.
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