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Ultrasonic attenuation of a superconductor with a spiral spin-density wave
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We have calculated the longitudinal ultrasonic attenuation of a simple clean superconducting metal
with a spiral spin-density wave (SSDW). The superconducting gap h(k) vanishes along a circle on the
Fermi surface. The ultrasonic attenuation coefficient aq for wave vector q parallel to the SSDW axis is
not directly related to the superconducting density of states, its temperature dependence cannot be fitted

by a power law and depends on the ratio between Fermi and sound velocities. For q perpendicular to
the SSDW axis, aq(T) is linear in T for low enough temperature T, as for the polar phase of p-wave su-

perconductors.

I. INTRODUCTION

Several years ago there was a considerable research
effort devoted to the longitudinal ultrasonic attenuation
of heavy-fermion superconductors. The temperature
dependence of aq in UPt&, ' UBe, z, and (U,Th)Bejz
(Ref. 4) differs from the exponential behavior predicted
by the usual BCS theory. Instead, T (Refs. I and 3) and
T (Ref. 2) temperature dependences have been reported.
It has been argued that a T behavior corresponds to a
clean triplet superconductor in a polarlike state. ' How-
ever, taking into account the crystal symmetry, Volovik
and Gorkov showed that triplet states with 5k vanishing
along a line on the Fermi surface are ruled out. In addi-
tion, the experiments are done in the hydrodynamic limit.
Several theories valid in this limit have been proposed. '

The experiments' also show a peak in a (T) slightly
below the superconducting critical temperature T, .
There are also several explanations for this peak, ' ' in-
cluding a Landau-Khalatnikov relaxational model of the
order parameter and a change in the coherence factor
due to time-reversal (for singlet) or inversion (for triplet
pairing) symmetry breaking. For high-T, systems, a (T)
is qualitatively similar, with a peak below T, and a
nonexponential temperature dependence. ' ' "

Overhauser and Daemen solved analytically the super-
conducting gap equation for a spiral or linear spin-
density wave. ' They also calculated the specific heat and
obtained a result that agrees qualitatively with the experi-
mentally observed in UPt3. ' For the spiral spin-density
wave (SSDW), b, j, vanishes along a line on the Fermi sur-
face. Thus, although the electronic structure of heavy-
fermion systems is much more complicated than that of a
simple metal with a SSDW, it seems that the study of the
simpler system might shed light on the physics of some
properties of heavy-fermion and eventually high-T, sys-
tems. We have calculated the ultrasonic attenuation of a
superconductor with a SSDW. The system is described

in Sec. II. In Sec. III we calculate the longitudinal ul-
trasonic attenuation for wave vectors parallel and perpen-
dicular to the SSDW axis. Section IV contains a discus-
sion.

II. THE SYSTEM

Following Ref. 12, the effective one-particle Harniltoni-
an can be written in the form

H =Ho+H;„, ,

Hp=+EICj ~cj ~ Gg CI +qgCI t +H. C.
k, cr k

Hjgj VQCgtC g$C g )Cg t
k, k'

(2)

(3)

c k creates an electron in a plane-wave state with
momentum k and spin o. c.k=4 k /2m. H;„, is the re-
duced BCS interaction, ' and the wave vector of the
SSDW is given by

Q=2kFz, kF =(2m EF ) /A (4)

r„=[( Ejq+—Ej, ) l4+G ]'~

sgn8j t =sgn(EI, +q Ej ),8 j, g
= 81,t

The energies of these eigenstates are

Ek+ Ck+Q
Ekg =Ek

2
—sgn(E„, q

—E„)r„. (7)

where cF is the Fermi energy. The operators that create
an electron in a one-particle eigenstate of Ho with
predominantly spin e can be written in the form

ak =cos8k ck +sin8k ck+ Q

and

~k+Q ~k
cos( 28k t ) =

27
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Vgg = V cos(28gt )cos(28k, t )

In the mean-field approximation, H can be written as

HMF= QEI, ai, ak —+bi(akta qt+H. c. )
k, cT k

+gb, „(a„„a'k, ),
k

where the superconducting gap is

(10)

k

HM„ is diagonalized using the following Bogoliubov
transformation:

Ykt k k$ Vk —k$

y k)
= Vkak)+uka

where u k+ Vk = 1 and

(12)

The Fermi surface for states an't ~0) has a hole of radius
(2mG)' /fi centered at the wave vector (0,0, —okF)
and with its perimeter lying in the plane k, = —o.kz. The
density of states obtained using Eq. (7) is shown in Fig. 1.
In comparison with the unperturbed case for the same
chemical potential, part of the spectral weight is dis-
placed from slightly above to slightly below the Fermi en-
ergy stabilizing the SSDW.

In terms of the ai, and ai, , assuming ho«G [see Eq.
(16)], the relevant part of H;„, takes the form

Hint ~ Vkk'a kt —k$ —k'$ k't'

k, k'

with

given by

~.=[(E., -~)'+~,']'"
Using Eqs. (12)—(14), one has

(14)

where, for each temperature T, Ao is given by the equa-
tion

1 —2f(Ai, )l=~cos (29&)
k k

(17)

A, i,(b,o) is obtained replacing Eqs. (16), (6), and (7), in Eq.
(14). For weak coupling the dependence of the supercon-
ducting critical temperature on 6 is given in Ref. 12.

From Eqs. (16) and (6), one can see that hz is indepen-
dent of k„and k and vanishes for k, = —kz. On the
Fermi surface, 6k depends only on the angle 8 between k
and the z direction. This dependence is illustrated in Fig.
2. bk vanishes on a line defined by t9=I9, .

The density of states of the superconducting system
can be obtained using cylindrical coordinates in recipro-
cal space with axis k, and changing the variable normal
to k, by A,k. The result can be written in the form

(a z&an't ) =(al, ta k& ) = [1—2f(A&)], (15)
2 k

where f(E) is the Fermi function. Replacing this in the
second member of Eq. (11), one obtains an integral equa-
tion for 6k. The fact that the dependence of Vkk on k
and k' appears in a factorized form makes it possible to
reduce this problem to an ordinary equation in one vari-
able. ' ' One gets

hz=cos(28&t )bo,

1 ~k~ P
u ——1+k (13)

k

p, (E)

p„(0)

I
' I

p is the chemical potential. A,k is the energy of the quasi-
particles described by the operators yk& and y k& and is

X [g((A, —hk)' +p, F),t)—
+ 0( —(A, —hk)' +p I'i, t )], (18—)

where 0 is the volume of the system, 8(x) is the step

a(e)-

—1.5 -1 0 E/CF 15

FIG. 1. Density of states as a function of the energy for a
normal system with a spiral spin-density wave (solid line) com-
pared with that of a free-electron gas (dashed line) with the
same Fermi wave vector kF and mass m. The energies are mea-
sured from the chemical potential and E.z =(AkF ) /2m. The pa-
rameter is G =0.4E.F.

Tt:/4

FIG. 2. Superconducting gap as a function of the angle be-
tween k on the Fermi surface and k, [9-=are cos (k, /kF )]. Pa-
rameters are G =0.8E.F and k~ T, = 10 EF.
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T((T, has a T dependence. ' However, as we show in
the next section, the temperature dependence of the ul-
trasonic attenuation cannot be inferred from the energy
dependence of the density of states.

I I I I

0.97 III. LONGITUDINAL
ULTRASONIC ATTENUATION

FIG. 3. Density of states as a function of the energy in the
superconducting phase normalized to that in the normal phase
at the Fermi level. Parameters as in Fig. 2.

H~qph =Cg+coqck+q ck~(bq bq )—, (21)

In this section we calculate the linear response of the
system to a compressibility wave of wave vector q~O.
The interaction of electronic plane-wave states with the
sound wave has the form'

function, and I'k& is the part of Ek& that depends on k,
only:

Fkt =Ekt (A k +A ky )/2m

The result of the numerical evaluation of Eq. (18) is
represented in Fig. 3. The main differences with the stan-
dard result for an isotropic superconducting gap is that
p(A, ) is different from either zero or infinity for all values
of A, . In particular, p()1, ) turns out to be linear in A, for
A, ~O. In this limit Eq. (18) can be evaluated analytically:
For A, «b, p, b,k &k implies that k, is near —kF [see Eqs.
(16) and (6)). For k, —+ —kF, from Eq. (6),
cos28k~2erx /G, where x = 1+k, /kF. Thus, for
)1, « b,p, using Eq. (16), we obtain, calling
xp =GA. /2b psF,

2+~kF ~p 2 +kpG
p(~) —= dX

p
Asf ~

h p [1—(x /xp) ]'i 8n.sFb, p

(20)

The linear dependence of the density of states with ener-

gy for low energy seems to be a general feature of super-
conductors with a gap vanishing along a line on the Fer-
rni surface. ' As a consequence, the specific heat for

I

H,',k
=Cg&~, [(&k

—I'k )()'k+, tr) I ,+r kil' -k -I)-,
k, a

2uk ~k( Vk+q, tl —kt 7 —k —q, IVkt )]

X(b bt q) .— (22)

The energy attenuation coefficient a of the sound wave
can be calculated from the difference between the proba-
bilities of phonon absorption and emission. ' The contri-
bution of the terms in Eq. (22), in which two y quasiparti-
cles are created or destroyed simultaneously, is much
smaller than the rest because these processes are ruled
out by the condition of conservation of energy if
Rcoq (26k. This condition is satisfied over most of the
Fermi surface except very near T, for realistic frequen-
cies and superconducting transition temperatures.
Neglecting these terms, the attenuation is

where C is a constant, co is the frequency of the sound
wave, and b annihilates a longitudinal phonon of wave
vector q. ' When Eq. (21) is written in tertns of the
eigenstates of Hp using Eqs. (5) and (6), it retains the
same form replacing the operators ck by a k in the limit
q~0. Using Eqs. (12), Hqzh can be written in terms of
the operators that diagonalize HMF. The result for q~O
1s

a = co C g fdpdk k dk,
4 v, k

Bf(Ak)
5((Vkk, k) q

—OA'W ),
k

(23)

a, = f g, XdX,
8 (A)

(24)

where the density g (A. ) for q=(0, 0,q ) is given by

Qco C kF (g2 g2)1/2
g, i(z)= ' 'y f dk,

X5 —crA'U,
Z

(25)

where f(s) is the Fermi function, v, the sound velocity,
y= arctan(k /k„), and k =(k„+k )'i . Changing the
variable of integration kp to Ark we can write

I

while for q normal to the z direction we obtain

QkFC co
g1()1,) =

2& CF

X dk,f 1
i [g2v2k2(g) g2 2k2g2/E2]1/2

(26)

Comparing Eqs. (18) with (25) or (26), one realizes that
the density that enters the attenuation gq(A, ) is quite
different from the density of states p(A, ). We discuss first
the case of q parallel to the SSDW axis. p(A, ) and gii(A, )
are displayed in Figs. 3 and 4, respectively. It is clear
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FIG. 4. Density that defines the longitudinal ultrasonic at-
tenuation parallel to the SSDW axis [see Eq. (24)] as a function
of the energy normalized to that in the normal phase at the er-
mi energy. So i ine = an

' = . m-1'd 1' T=O and dashed line T=0.99T, . Param-
k =10 K 6=0.8c, , T, =1 K, kF=1.5&10eters are c.F/ g ~ F c

cm, and vF=4X10 cm/s.

FIG. 6. Same as in Fig. 4 for attenuation normamal to the
SSDW axis. Solid line 6=0.8cF and dashed line 6=0.08

K T=O, T, = 1 K,Other parameters are EF /k& = K,

weakly dependent on temperature. The usual BCS temperature
dependence was assumed for 5&( T).

that one cannot infer in general the temperature depen-
dence of aq from the energy dependence of p(A, ), as was

d in Ref. 1. In our particular case, we found
fact that the ar-essential singularities in g~~(A. ) due to the fact a e

ument of the 5 function in Eq. (25) vanishes together
with its derivative with respect to k, for cef r certain values of
k. Thus, actually, u~~ diverges and we cannot assume that
Hq

h is small (as we have done) for a perfectly clean sys-
tem. However, for a real system the quasiparticles have a
finite iifetime an ei'f '

d th 5 function of conservation of ener-
should be replaced by a Lorentzian function.gys ou e

To simulate the effect of a finite lifetime, we ..ave
~ ~ ~

have trun-
cated the function g~~(A, ), replacing all values larger t an
a certain cutoff value by the latter. We found that the re-
sults are rather insensitive to this cutoff if it is chosen less

This value go~~(A, ) is practically independent of tempera-
ture for T(T, .

The function g~~(A, ) vanishes for I, less than a certain

critical value k, for finite co, because it is not possi le to
satis y e u

' f the 5 function of conservation of energy see Eq.
sound and Fer-(25)j. A, decreases for decreasing ratio of sound an

mi ve ocities. or ex1
't' . F r example if this ratio is decrease

times compared with the value of Fig. 4 (increasing 10
times ~F an eepingd k

'
the other values of the parameters),

k, decreases to 8 5 X 10 K at T =0. It is interesting to
note that this behavior is similar for a polar triplet super-
conductor. n isI th' case we obtain, assuming
b,o((A'v, kF, that A., =b,ov, /(2v~).

The resulting longitudinal sound attenuation as a func-
tion of temperature for q~~z is shown in Fig. 5 for two
different effective masses. For lower va ues o qes of the uo-
tient between sound and Fermi velocities, e athe attenuation
for low temperatures grows in comparison win with that near
T, . As shown in Fig. 5, the decrease of o.'q T) for de-
creasing emt mperature is not so fast as for t e usual case of

'
her thean isotropic sic BCS superconductor. However, neither e

overall temperature behavior nor that for ow can
fitted by a power law.

n„(T)

ctii(Tc)
ct g(T)—

ctt(Tc)

4

0 0.5 T I Tc
0 0.5 T/Tc 1

FIG. 5. Longitudinal ultrasonic attenuatiotion as a function of
temperature for wave vector para ellel to the SSDW axis. Solid
line c,F /k& = 10' K and dashed line eF /k& =7000 K. Other pa-

Fi . 4. For comparison the results for an isotro-rameters as in Fig. . or c
pic gap o - a(d t-dashed line) and function ( T/T, ) (dotte ine are
also shown.

FIG. 7. Longitudinal ultrasonic attenuat oation for wave vector
normal to the SSDW axis as a function of temperature for

k =10' K. Other parameters as in Fig. 6.
The results for an isotropic gap (dot-dashed line) an
(dotted line) are also shown for comparison.
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Now we consider the case qlz. gt(A, ) is shown in Fig.
6. Comparing this with Fig. 3, we see that, although
gt(A, ) and the density of states p(A, ) are different, both
functions are linear in the energy I, for A, «ho(T). We
obtain the same result for a polar triplet superconductor. '

gz(X) [and also g~~(A, )] depends on temperature through
the temperature dependence of b,o( T). For simplicity we
have taken for ho(T) the usual temperature dependence
of an isotropic BCS gap. This is a good approximation. '

We obtain that with high accuracy g~ depends on A. and
T through the quotient A. /b, o(T) only. For G~O, gt(A, )

is proportional to the step function 8(k —ho( T)). Insert-
ing this in Eq. (24), one obtains the standard result for an
isotropic gap, a =2f (ho( T) ) for G ~0.

The attenuation for qlz is shown in Fig. 7. As a conse-
quence of the low-A, behavior of gt(A, ), at(T) is linear in

T for T~O [see Eq. (24)]. This should also be the case
of a triplet polar superconductor (in spite of what is said
in Ref. 1). For small or moderate values of G, the tem-
perature behavior near T, is not quite different from the
standard BCS result.

IV. DISCUSSION

We have calculated the longitudinal ultrasonic attenua-
tion of a superconductor with a line of zeros of the super-
conducting gap. This property might be shared with
several heavy-fermion superconductors. Recent muon-
spin-relaxation experiments suggest that the gap in UPt3
has in fact polar lines of nodes and also axial point
nodes. ' There is also evidence from Raman measure-
ments that the superconducting gap in high-T, systems is
anisotropic, compatible with p- or d-wave superconduc-
tivity, ' although this in contradiction with measure-
ments of the penetration depth, lower critical field, and
spin susceptibility, which suggest a constant superfluid
density at T «T, . ' Recently, the possibility of an iso-

tropic gap changing sign at cz has been proposed. '

The low-temperature T dependence of the specific
heat' is shared with other superconductors with a gap
vanishing along a line on the Fermi surface, as a conse-
quence of the linear low-energy dependence of the density
of states. ' Instead, we find that the ultrasonic attenuation
cannot be directly related to the density of states and de-
pends on the detailed wave-vector dependence of the su-
perconducting gap near the line of zeros. For T~O the
temperature dependence of aq is exponential (linear) for q
parallel (normal) to the SSDW axis. We find the same be-
haviors for T~O in a polar triplet superconductor, in
agreement with the results obtained by Rodriguez for a~
in the hydrodynamic limit, but contrary to the T
dependence reported in Ref. 1. The overall T dependence
has a certain similarity to the T dependence measured in
UPt3 by Miiller et al. '

Our results do not show the peak below T, in the ul-
trasonic attenuation found in several heavy-fermion'
and high-T, systems. ' '" This peak can be explained if
the symmetry of our system is broken in such a way that
no operation containing time reversal leaves the system
invariant. ' This is the case of anyon superconductivi-
ty or excitonic polarons, for example. For our system,
although as stressed in Ref. 12 the states described by a&~
and a && are not time-reversal partners, they are con-
nected by time reversal followed by a translation of mag-
nitude sr/Q in the z direction. This is a symmetry opera-
tion of the system in both normal and superconducting
phases, since no symmetry [except the usual global U(1)
symmetry related with the charge] is broken at the super-
conducting phase transition.

Note added in proof. After submission of our paper we
learned about the work of Coppersmith and Klemm.
They obtained that for clean systems as T~O, at(T)-T
for a polarlike state (in agreement with our results) and
a~( T)- T for an axial-like state.
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