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Free-carrier transport in superlattices: Smooth transition
between the quasi-two-dimensional and uniform three-dimensional limits
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Presented here is a comprehensive, single-particle formalism for free-carrier transport in semi-
conductor superlattices with cylindrically symmetric energy dispersion. The spatial nonuniformity
of the carrier population is accounted for by employing a scattering potential that is weighted by
the wave-function distribution function. In the limit of large barrier-to-well thickness ratios, one
regains the quasi-two-dimensional (2D) expressions derived previously. In the opposite limit of thin
barriers and hence a nearly uniform wave-function distribution, transport in the superlattice be-
comes analogous to that in a 3D semiconductor with an anisotropic effective mass. Anisotropic
relaxation times are obtained for acoustic-phonon, nonpolar-optical-phonon, polar-optical-phonon,
and ionized-impurity scattering. Arbitrary energy dispersion relations are assumed, so that complex,
numerically derived band structures may be straightforwardly incorporated. For the example of a
HgTe-CdTe superlattice with weak hole dispersion but relatively strong electron dispersion in the
growth direction, superlattice mobilities obtained using the present formalism are compared in detail
with results for the quasi-2D and isotropic 3D limits.

I. INTRODUCTION

The past 15 years have seen the appearance of nu-
merous theoretical treatments of free-carrier transport
in semiconductor heterostructures. ~ Nearly all of these
have been based on the properties of a quasi-two-
dimensional (2D) electron gas. That is, they are appro-
priate for carriers at heterojunctions, in single quantum
wells, or in multiple quantum wells (as long as the barri-
ers are thick enough that interwell tunneling, scattering,
and screening are negligible). On the other hand, the case
of superlattices, for which interwell effects are significant
and the transport is three dimensional, has received sur-
prisingly little attention.

In the present study, we derive a general single-
particle formulation of free-carrier transport in semicon-
ductors with modulated wave-function distribution func-
tions p(z) oc g'(z)g(z), where E is the growth axis. With
it, we can smoothly bridge the two limits that have been
treated extensively in previous work: quasi-2D, which
is obtained in the multiple quantum well limit, and 3D,
which is obtained in the limit of vanishing modulation
along the z axis. Superlattices occupy the intermedi-
ate region between these two limits, since in general
they have both a modulated distribution function and an
anisotropic three-dimensional energy dispersion (hence
an anisotropic relaxation time). The approach adopted
below is based on the intuitively obvious observation that
the scattering potential in a nonuniform structure must
be weighted by the spatial overlap of the potential with
the carrier distribution function. While this consider-
ation is well known from quasi-2D treatments of ion-
ized impurity scattering, it has not to our knowledge
been recognized that the same procedure leads straight-
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forwardly to a general method for obtaining transition
rates due to both impurity and phonon scattering in the
more general superlattice regime. In the multiple quan-
tum well limit, our expressions reproduce the form fac-
tors derived previously for quasi-2D transport. s In the
opposite limit of nearly uniform p(z), transport in the
superlattice becomes analogous to that in a 3D semicon-
ductor with an anisotropic effective mass.

The present theory can treat arbitrary superlattice
band structures, which are incorporated in the form of
cylindrically symmetric dispersion relations E(kz, k, ) for
the various subbands [k~ = (ks + k2)~~s and k, are the
in-plane and growth direction wave vectors]. Once the
generalized transition rates for free-carrier scattering in
the superlattice have been determined, least-squares fits
for the anisotropic momentum relaxation times r(k~, k, )
which best solve the linear Boltzmann equation will be
obtained. From the relaxation time for an electric field
along either the x or z axis, [7 (k~, k, ) g 7;(k~, k, )], ei-
ther the in-plane or the growth-direction mobility can
then be calculated. However, the generalized transition
rates are equally applicable to treatments of superlattice
transport at high electric fields.

To our knowledge, no previous investigator has explic-
itly considered in-plane transport for superlattices as a
distinct case from the quasi-2D and uniform 3D limits.
Artaki and Hess incorporated the anisotropic superlat tice
dispersion relations into a treatment of energy relaxation
processes in GaAs-Gaq Al As, but they then employed
isotropic bulk 3D expressions for the scattering rates.
Other workers have considered transport along the z
axis of a superlattice. Palmier and Chomette included
the anisotropy of the dispersion in a study of growth-
direction mobilities, but in order to simplify solution of
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the Boltzmann equation they made the drastic approxi-
mation of assuming an isotropic relaxation time. Warren
and Butcher corrected this deficiency by using an itera-
tive method to solve for w(kz, k, ). However, their cal-
culations were effectively carried out in the anisotropic
bulk limit, i.e., with anisotropic 3D dispersion relations
but with a uniform carrier population. None of these
workers have discussed the need for taking into account
the nonuniformity of the wave-function distribution func-
tion in a superlattice.

The paper is organized as follows. In Sec. II, the
weighted potential is derived in terms of the actual po-
tential, and Fermi's golden rule is used to obtain gen-
eral transition rates for scattering in systems with mod-
ulated wave-function distribution functions p(z). Sec-
tion III then considers specific scattering potentials for
ionized impurities and for acoustic-, nonpolar-optical-,
and polar-optical-phonon modes. A Boltzmann equation
approach to calculating electron and hole mobilities in
structures with arbitrary dispersion relations is summa-
rized in Sec. IV, and an accurate method for obtaining
self-consistent solutions in the anisotropic regime is dis-
cussed. For the example of a HgTe-CdTe superlattice
with weak hole dispersion but relatively strong electron
dispersion in the growth direction, we perform in Sec.
V a detailed comparison of mobilities obtained in the
quasi-2D, superlattice, and isotropic 3D limits. The im-

portance of properly treating the superlattice mobility is
confirmed, since in many cases it is considerably different
from either of the two limiting approximations.

II. WEIGHTED POTENTIAL AND TRANSITION
RATES IN A SUPERLATTICE

Using Fermi's golden rule, the transition rate for scat-
tering from a state kq to a state kz due to mechanism I'

may be approximated

Wr (q) b@— d t'pNr (ro)lV (q, rp)l, (2.1)
h 0

where q = k2 —k» b~ = b(E2 —E& + bur), +bur is the
energy transfer for inelastic processes, 0 is the volume
« the system, Nr(rp) is the density of scattering centers
(which may be a nonuniform function of position rp),

and V (q, ro) is the "weighted" scattering potential (see
below). This expression may be used in either 2D or 3D,
except that the units of some of the terms depend on
dimensionality.

In a uniform 3D system, the weighted potential V and
the actual potential V are equivalent:

VsD(q, ro) = e'~ "V(r —rp)d r ~ V(q), (2.2)

which is independent of ro. In a superlattice with cylin-
drical symmetry, however, it makes a difference whether
the origin of a central potential V(r —rp) lies in a well or
a barrier. That is, the actual potential must be weighted
by its overlap with the carrier wave-function distribution
function: V(r, rp) = p(r)V(r —rp). The Fourier trans-
form required for Eq. (2.1) is then

V(qp, z, zo) =—
2

dq,'e-" t'-"&V(q, q') (2.4)

and the distribution function is uniform in the plane and
has been normalized to have unit, probability over the
entire sample:

L/2

L/2
p(z)dz = 1. (2 5)

For a many-period superlattice, one is generally con-
cerned about the spatial variation of the potential relative
to the periodicity of the wells and barriers, but not with
the absolute position zo within the structure. It is there-
fore convenient to place zo in the central period of the
superlattice and write z = md+ s, where rn is the period
index and s varies between —d/2 and d/2. The relation
between the effective potential and the actual potential
may then be written

Vsr. (q~, q, , zp) = fl e'~ "V(r —rp)p(r)d r

L, /2 e'"V(q~, z, zp) p(z)dz, (2.3)
L, /2

where L is the total thickness of the superlattice (as-
sumed to be much greater than the single-period thick-
ness d), V(q&, z, zp) is the actual potential, Fourier trans-
formed only in the plane:

d
&sL(q q zo)= 2' g(s)ds i qs Z —i q' (md+S —ZO) refdq, e V(qp) q~ j (2.6)

where A/'gr )) 1 is the total number of superlattice pe-
riods and g(s) is the distribution function for a single
period, normalized to unity:

I

mation). In terms of the weighted potential, the scatter-
ing rate is then

f
4/2

g(s)ds = 1,
—8/2

(2.7)
L/2

W (q~, q, ) = b~ dzpN(zp)-
d L/2

i.e. , g(s) = (L/d)p(z —md) (Sec. V below gives an ex-
plicit expression for g in the infinite-square-well approxi-

& l&sL(qp, q. , zo) l'

(2.8)
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It is easily confirmed that in the uniform limit [g(s) ~
1/dj, one regains the actual potential: V(q~, q, , zp) ~
V(q~, q, ) multiplied by an irrelevant phase factor. The
scattering rate then has the familiar form

W"(q. q ) = „~~&IV(q~ q )I'. (2.9)

Note that in the multiple-quantum-well (MQW) limit,
where the superlattice period d is much longer than both
the range of the potential and the localized region where
the distribution function is concentrated, the superlattice
and quasi-2D weighted potentials are equivalent apart
from a multiplicative constant:

An analogous weighted potential has been employed
previously to treat ionized impurity scattering in quasi-
2D systems. In that limit, k, is not a good quantum
number and the effective potential depends only on the
wave-vector transfer in the plane:

L/2

Vpn (qp, zp) = V (q~, z, zp )p(z') dz
—L/2

L/2 OO

p(z) dz dq,
' e

2' L/2 —OO

x V(q~, q', ) (2.10)

from which

L/2
W (qz) = 6@ dzpN(zp)~V&&(qz, zp)~ . (2.11)

h

III. SCATTERING MECHANISMS

In the previous section, the Born approximation was

used to estimate the transition rate W(q) for scattering
by an arbitrary potential V(q), in either a quasi-2D, a
uniform 3D, or a nonuniform 3D (superlattice) system.
In this section we explicitly consider the effects of di-

mensionality and uniformity on the scattering rates ob-
tained for four common scattering mechanisms: ionized
impurities (II), acoustic phonons (AC), nonpolar optical
phonons (NPO), and polar optical phonons (PO).

A. Ionized impurities

Ionized impurity scattering in quasi-2D electron sys-
tems has been discussed by Stern and Howard. For the
case of inversion-layer electrons in silicon, they solved
Poisson's equation to obtain the screened Coulomb po-
tential, explicitly accounting for the nonuniform spatial
distribution of the electron wave functions. In generaliz-
ing to a superlattice, we must first estimate the density
of induced screening electrons as a function of position.
In the Thomas-Fermi approximation:

&oga2
n;„~(p, z, zp) = g(z —md)

27C8

8/2
x g(si)V(p, z = md+ si, zp)dsi,

—8/2

(3 1)

and

VMQw(qp qz zp) ~ dV2D(qp zp) (2.12)
where ap is the static dielectric constant, m is the index
of the superlattice period containing z, V(r, zp) is the
actual potential, and q, 2 is the 2D screening wave vector:

W q (q, q, ) dW (q ). (2.13)

On the other hand, if the superlattice period is decreased
to the point where interwell interactions become signifi-
cant, the superlattice and quasi-2D potentials differ qual-
itatively.

2sez Bn,
Kp DEF

(3 2)

Poisson's equation for cylindrical symmetry may then be
written

B~V(q~, z, zp) ~
4xez—q V(q&, z, zp) = b(z —zp) + 2q, zg(z —md) g(si) V(qz, z = md + si, zp)dsi,

—d/2
(3.3)

where the first term on the right corresponds to the im-
purity charge and the second represents the induced elec-
tron charge.

Potentials derived from Eq. (3.3) are anisotropic be-
cause the spatial distribution of the screening charge is
highly nonuniform, taking the form of sheets of charge
concentrated in the quantum wells. At high carrier con-
centrations where the 3D screening length q, s (see be-
low) is much smaller than the superlattice period d, one
expects the quasi-2D result for a single well to be a rel-
atively good approximation. However, at low and inter-
mediate concentrations where q, 3 & d, it is essential to

include both interwell screening and scattering by impu-
rities in remote periods.

A detailed analysis of ionized impurity scattering in
multiwell systems will be discussed in a separate work.
For the sample calculations discussed in Sec. V, we
use a simplified approach which is found to be surpris-
ingly accurate when q, 3 ) d. Namely, the familiar
isotropic 3D screened Coulomb potential has been em-
ployed. For lightly-to-moderately doped HgTe-CdTe su-
perlattices (n ( 3 x 10is cm s), this approximation leads
to less than 5' error when the resulting mobility is com-
pared to the more exact calculation using the anisotropic
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potential. We thus use

4xe2

Kp(q, s+ q + q, )

where the 3D screening wave vector is given by

4xe On
V53 =

Kp OEF )

(3.4)

(3.5)

in Ref. 10). When quasi-2D, isotropic 3D, and superlat-
tice mobilities are compared in Sec. V, all three calcu-
lations will employ the same isotropic screened Coulomb
potential. For simplicity, those calculations will assume
that the impurities are uniformly distributed throughout
the wells and barriers.

B. Acoustic phonons

and in some regions one must sum over contributions by
both electrons and holes. The weighted potentials Vsz,
and V2D are then obtained from Eqs. (2.6) and (2.10), and
the transition rates from Eqs. (2.8) and (2.11). Note that
we have separated the effects of wave-function nonunifor-
mity and 2D vs 3D dispersion from those of the dimen-
sionality of the screening system (which will be discussed

Whereas ionized impurity scattering involves a station-
ary scattering center which may occupy either a well or
a barrier, the potential for phonon scattering is nonlocal-
ized (ignoring phonon confinement effects). The density
of scattering centers in Eq. (2.8) is therefore independent
of position. Using Eq. (2.6) and performing the integra-
tion over dzo, we obtain

W „(q~, q, ) = b(E2 ——Ei + ~ph)—d

A'~/2 g/2
X ) g(Si)dSi

-A' /2

d/2

g(s2)ds2
GT/2

dq!e*" '" """'&ph(qs q')IV(qp ql)I' (3 6)

where N now appears under the dq', integral because for
phonon scattering, the matrix element should be consid-
ered [Nph(q)] / V(q) (if V is the potential due to a single
phonon). "

For the case of acoustic mode scattering in the elastic
limit (humph ~ 0), one has

&(q) Iv(q) I' =—h kBT:-2

5

(3.7)

d/2

g (si)dsi
Z/2

(3.8)

where the familiar result for a uniform 3D system [g(s) ~
d-'] is

where " is the acoustic deformation potential, p is the
mass density, and v5 is the longitudinal sound velocity.
Substitution into Eq. (3.6) then yields

C. Nonpolar optical phonons

As in the case of acoustic modes, the matrix element
for nonpolar optical phonons is independent of q in lowest
order. Dimensionality effects on the transition rates are
therefore exactly analogous, and Eqs. (3.8) and (3.10)
still hold if AC is replaced by NPO. It is necessary only
to specify the uniform 3D result:

2

~NPO(qP q )=). ( "+2+2)
Pd~p

xb(E2 —Ei 6 h~, p), (3.11)

1

ex~.,/~~T 1
(3.12)

Nonpolar optical scattering in the quasi-2D limit has
been discussed previously by Ridley.

where D is the optical deformation potential, ~ p is the
optical-phonon frequency, the sum is over phonon emis-
sion and absorption processes, and

Vi'Ac(qp q. ) =, ~(E2 —Ei)
5

(3.9)

which is independent of q.
It is easily shown that one regains Eq. (2.13) in the

multiple quantum well limit [g(kd/2) ~ 0]. The quasi-
2D result,

D. Polar optical phonons

For polar-optical-phonon scattering, one obtains, using
the Frohch Hamiltonian,

L/2

WAc(qz, q, ) = I4&c p (zi)dzi
)

(3.10)
2' Acdope 1 1

XIVI2 =) (W., +-,'+-,')
K~ Kp

agrees with that obtained previously by Price, who in-

corporated form factors to account for momentum trans-
fer in the z direction.

(3.13)

where z~ is the high-frequency dielectric constant, we

have neglected screening, and %op from Eq. (3.12) is in-
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dependent of q. Inserting Eq. (3.13) into Eq. (3.6), we

obtain

Wpo(qp q ) = WPo(qp q. )Gsi.(qp, q. ), (3.14)

where the uniform 3D transition rate for polar optical
phonons is

7l 8 4)
WPo(qp q ) =).(&a+ 2+ a)( 2

L&p+ &

(1 I'i——
~
b(Eg —Ei + h(uoP),

zo)
(3.15)

and the correction factor is

(q,
' + q.')d

Gsi.(q, q ) =
2gp c

sinh(qpd)

osh(qpd) —cos(q, d)
d/2

g(si)dsi
-d/2

d/2

d/ 2- g(s )ds

x cos[q, (sq —s, )].
(3.16)

It can be verified that in the uniform limit Gsr, ~ 1.
Similarly, Eq. (2.13) holds for a multiple quantum well,
where

IV. SOLUTION OF THE BOLTZMANN
EQUATION FOR 2D, ISOTROPIC 3D, AND

ANISOTROPIC 3D SYSTEMS

Having obtained generalized expressions for the transi-
tion rates in a superlattice, we now discuss the calculation
of free-carrier mobilities using the Boltzmann equation.
We will work within the single-particle picture, ignore
collision broadening, and will employ the relaxation-time
approximation. For a small external electric field and
zero magnetic field, the Boltzmann equation in three di-

mensions may be written

vy. F= dk28 ' q vy F r ky

—(vz F)r(k2)], (4.1)

where v = W~E(k)/th is the velocity of state k, F is the
electric field, WsD s~(q) is the uniform 3D or superlattice
transition rate for scattering from ki to k2, and r(k) is
the momentum relaxation time.

For elastic scattering processes in an isotropic 3D sys-
tem, r(k) depends only on the magnitude of k. Since
conservation of energy then implies r(kq) = r(ki), the
relaxation times may be taken outside the integral and
solution of the Boltzmann equation is trivial. For the
isotropic 3D limit, one immediately obtains

and

Wpo(qp q. ) = Wpo(qp q. = O)[qpG»(qp)1 (3.17)
k,' . ( W'D(q) 5

rsD (ki) =
~

d8sin8(1 —cos8)
~4~2hVg O 6g )'

L/2

G»(qp): z p(zi )dzi
-L/2

L/2

p(zq)dzqe
L/2

(3.18)

Again, the quasi-2D result agrees with that derived pre-
viously by Price.

(4.2)

where qz = 2kiz(1 —cos8).
However, in a system with cylindrical rather than

spherical symmetry, r depends on both kp and k, . If
we take F to be in the plane and consider only intrasub-
band transitions, Eq. (4.1) is then

~/d 2~/dk„k„dk„dp W'"(q„q. )[i/pir(k», 4i) —i/pz ( p2, .2) 7]
(27r) /s 0 O

(4.3)

where d is again the superlattice period, a is the lat-
tice constant, p is the angle in the plane between ky
and kid q = 2k i(1 —cosy), q, = k, 2

—k, i, and um-

klapp processes have been neglected. In general, a closed-
form solution of this equation is not possible. Various
approaches have been discussed in connection with elec-
tron transport in the anisotropic conduction-band min-
ima of germanium and silicon, since those systems
have the same cylindrical symmetry. The most general
is probably that of paso and Kasuya, who solved Eq.
(4.3) iteratively (see also Ref. 8). Unfortunately, we find
that the iterative method is less useful in connection with
the present problem whenever the dispersion is not well
behaved. In particular, it does not converge well when kp

vs E at a given k, is double-valued and the final states
for elastic transitions occupy more than one region of the
Brillouin zone. Such double-valued behavior frequently
occurs in superlattice valence bands (e.g. , see Fig. 1 be-
low).

In order to be able to treat hole transport in superlat-
tices with arbitrary dispersion relations, we have there-
fore employed an alternative approach. The relaxation
time for a given energy and given occurrence of that en-

ergy j (when the dispersion is multivalued) is modeled by
a power series in k, . The coeKcients in the power series
are adjusted to give the best solution to the Boltzmann
equation. We first perform the kp integral in Eq. (4.3)
by employing the energy-conservation b function:
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( —k' (k, k, , k, ))
BE2j)9kp2

(4.4)

where 8~2(k~i, k, i, k, 2) is the jth value of k~2 which satis-
fies energy conservation (when the dispersion is multival-
ued, it crosses the energy Ei a total of 1 different times).
The Boltzmann equation thus reduces to the form

2

(2z )sh

x/d J
dk, 2 ) k'2 dp~,. 7.(kpi, k, i) —7.(k 2, k, 2) cos p

t'~'"(q. q )
E (Vp2

(4.5)

As long as only elastic scattering is considered, the solu-
tion to this integral equation at a given energy E is de-
coupled from the solutions at all other energies, and by
specifying E we can reduce by one the number of inde-
pendent variables. Thus we seek a function i&(k, ), where
it is not necessary to specify k~ since it is understood to
be the jth value which yields the correct energy for the
given k, . Note that Eq. (4.5) may then be considered a
set of N coupled equations, obtained by evaluating Eq.
(4.5) at N of discrete values of k, i.

To solve these equations, we expand the relaxation
time as a power series in k, :

M

7~(k, )= ) a~ k, . (4.6)

The problem is therefore reduced to one of obtaining the
J(M + 1) coeflicients a&~ which give the smallest least-
squares errors in the N coupled equations. In regions
where the dispersion is well behaved and J = 1 (usually
appropriate for electrons and sometimes for holes), we
find that M = 3 is generally adequate to assure 1% ac-
curacy (as determined from the error and from the rapid
convergence of relaxation times obtained for successively
larger values of M). While the error is somewhat greater
(as much as 30%) in regions where J = 2 or 3, the effect
on the net mobility tends to be relatively small because
those regions generally do not give dominant contribu-
tions to the total conductivity. The primary disadvan-
tage of the method described is that it does not eas-
ily accommodate a generalization to inelastic scattering
processes. However, even mobilities for optical-phonon
scattering can usually be estimated with reasonable ac-
curacy by considering only scattering-out and ignoring
scattering-in processes [the term in Eq. (4.5) proportional
to cosy], since the latter tend to be smaller because of
symmetry considerations. In the previous 2D and 3D
literature, this procedure is much more common than the
more dificult general solution of the inelastic Boltzmann
equation by iterative or variational methods.

Once the relaxation time 7 (kz, k, ) has been determined
from either Eq. (4.2) (3D) or Eq. (4.5) (SL), the mobility
can be obtained from the relation p = o jne, where
n is the carrier concentration:

~/d 2x/a
o' =

2 dk, i kpidkpi fp(1 —fp)2x2k~T

x v, r(kpi, k, i), (4 8)

kp1
&2D (kP1) =

2vr2hVp1

(' py2D
t)p I ) (1 —cos y).

Again, p = o, jn, e, where the sheet density and sheet
conductivity are given by

2x/a

kpi dkpi fp(k~i) (4.10)

and

where fp(kz, k, ) = 1j(1+elE("&"'1 E~l)'"~
) is the equi-

librium Fermi distribution function and EF is the Fermi
energy.

Although the preceding discussion has specifically con-
sidered the case of in-plane transport, the expressions can
easily be modified to yield growth-direction mobilities
(keeping in mind that the Boltzmann equation approach
is inappropriate in the limit where k, is not a good quan-
tum number because the momentum relaxation time is
much shorter than the time for tunneling between ad-
jacent wells). This may be accomplished by replacing
vp1 by v, 1 and v 2 by v, 2 everywhere they appear in

Eqs. (4.5) and (4.8), and solving by the same method. It
should be emphasized that nowhere in Eqs. (4.5)—(4.8) is
it necessary to define an efFective mass, which is an essen-
tial feature whenever the superlattice bands are highly
nonparabolic. The expressions given are fully general
with respect to the input of arbitrary, numerically de-
rived E(kz, k, ).

We now briefly consider the analogous expressions for
a quasi-2D free-carrier system. The Boltzmann equation
[Eq. (4.1)] is unchanged except that the transition rate
is replaced by the 2D form, W (q~), and it is under-
stood that the integral dk2 is over two dimensions rather
than three. As in the isotropic 3D case, the problem is
simplified because the relaxation time depends only on
k~. Using the energy-conservation b function to integrate
dk~2, both x terms can be removed from the integral and
one obtains

vr /d
n = — dk, 1Ã2

2~/a
kpidkl, i fp(kpi, k, i) (4.7) 2

2vrk@T

2m /a
kpidkpi fp(l —fp)vp, i (k), i). (4.11)

and o. is the total conductivity: Note that in the multiple quantum well limit, one
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has n ~ n, /d and o ~ a, /d. With Eq. (2.12) and
(2.13), these relations imply 7Iviqw ~ 72D and p
p . The present formalism therefore provides a smooth
bridge between the quasi-2D and the uniform 3D limits.

V. QUANTITATIVE COMPARISON OF
QUASI-2D, ISOTROPIC 3D, AND SL

MOB ILITIES

In this section, we illustrate the effects of reduced di-
mensionality by quantitatively comparing in-plane mo-
bilities obtained using the quasi-2D, isotropic 3D, and
superlattice formalisms. As a test system, we consider
the HgTe-CdTe superlattice whose lowest-order electron
and hole subbands~ are shown in Fig. 1. In this example,
the electrons have significant dispersion in both kz and
k„but the mass is clearly quite anisotropic (m~ )) m„').
For the holes, m„' is essentially infinite near the band
extremum (the growth-direction dispersion for k~ = 0
is shown in the right panel of the figure), although a
modest dispersion in k, appears when k~ is increased
somewhat (not shown in the figure). Hence hole mobili-
ties calculated for the superlat tice should be comparable
but not strictly equal to those obtained in the quasi-2D
limit. Note also that whereas the conduction-band dis-
persion in the plane is qualitatively similar to that in
the bulk, the valence band is exceptionally nonparabolic.
While m&I' is just slightly larger than rn~ at the top of
the band, it becomes infinite and then negative (elec-
tronlike) at only slightly lower energies. Thus k~(E) is
multivalued (J = 3) for energies between —38 and —45
meV, and there are three difkrent k regions for which
energy can be conserved in an elastic scattering process
(see the discussion in Sec. IV). The Fermi level was eval-
uated numerically, using band structures for a number
of T between 4.2 and 300 IC and assuming a net accep-

2, (ss&
g(s) ~ l@(s)l' = dw &dw)

'

0, lsl ) dw.
(5.1)

In general, the more exact functional forms obtained
from numerical band-structure calculations depend on
the penetration of the wave functions into the barriers,
etc. However, the net mobility is not extremely sensitive
to the details of g(s) as long as the width of the distri-
bution is accurately estimated and the wave function is
confined primarily to the wells (which is the case for the
example being considered, since the barriers are high and
relatively thick).

For both electrons and holes, Figs. 2 5 illustrate
p /p and p "/p, i.e. , ratios of the superlattice mo-
bilities to the quasi-2D and isotropic 3D values. '-'- The
various curves show dependences on temperature for each
of the four mechanisms discussed in Sec. III. Phonon pa-
rameters have been taken from values which previously
gave good agreement between theory and experiment for
electron and hole mobilities in bulk HgTe.

tor concentration: N~ —Nri = 3 x 10' cm (these
parameters correspond to a superlattice studied experi-
mentally in Ref. 20). Our primary concern here is with
contrasting the various dimensionality limits, although a
separate work will discuss a more detailed HgTe-CdTe
mobility calculations for comparison with experimental
results. The present formalism is ideally suited for this
because it can easily accommodate the numerical input
of complicated band structures [dispersion relations for
semimetallic HgTe-CdTe (Ref. 21) are even more complex
than those shown in Fig. 1 for a nonzero gap].

We will approximate the wave-function distribution
functions using the lowest-subband result for an infinite
square well of width d~'.
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FIG. 1. Calculated band structure (Ref. 19) for a [100]
Hg Te-Hgp. ygCdp. sz Te-CdTe superlattice with well and barrier
thicknesses div = 58 A and ds = 52 A. For elastic processes
with an initial energy of —41 meV, the arrows indicate three
diR'creat final states for which energy can be conserved.

FIG. 2. Ratio of superlattice to 2D electron mobility. The
solid curve is for the net mobility, while the dashed curves are
for the various individual mechanisms: ionized impurity (II),
acoustic-phonon (AC), nonpolar-optical-phonon (NPO), and
polar-optical-phonon (PO).
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FIG. 3. Ratio of superlattice to isotropic 3D electron mo-

bility. The solid curve is for the net mobility, while the dashed
curves are for the various individual mechanisms.

FIG. 5. Ratio of superlattice to isotropic 3D hole mobility.
The solid curve is for the net mobility, while the dashed curves
are for the various individual scattering mechanisms.
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FIG. 4. Ratio of superlattice to 2D hole mobility. The
solid curve is for the net mobility, while the dashed curves
are for the various individual mechanisms.

We begin by discussing acoustic-phonon scattering,
since the transition rate is simplest for that mechanism
and the effects of dimensionality are most easily un-
derstood. As has been noted by a number of previ-
ous authors: ' p (( p at low temperatures,
due primarily to the large qualitative effect of 2D con-
finement on the density of final states for scattering.
Whereas this density goes as k&/vq oc E~~ in 3D [see
Eq. (4.2)], it is independent of energy [oc k~q v~q/de, from
Eqs. (3.10) and (4.9)] in 2D because of the "flattening-
out" of the dispersion in the third dimension, Thus for
nondegenerate statistics: p2D/iusD o: dgiT'~~. The su-
perlattice mobility generally falls somewhere in between,
since for &n/' & rn„' & oo, the density of final states is

intermediate between those for the 2D and 3D limits.

However, apart from effects related to the densities of
states, the nonuniformity of the distribution function in
a superlattice leads to a further decrease of the mobil-

ity. Substitution of g(s) from Eq. (5.1) into Eq. (3.8)
yields WAC

—(3d/2d~)WAsDo. That is, even if the 3D
and SL dispersion relations are taken to be identical,
the superlattice scattering rate is larger and the mobility
smaller by a factor of 3d/2div (in practice, the factor will

be somewhat greater due to the larger growth-direction
mass in the superlattice). Figures 2 and 3 confirm that
p„~ for acoustic-phonon scattering is intermediate be-
tween the 2D and 3D results, and that evaluating the
mobility in either of those limits would lead to error by
nearly an order of magnitude at T = 4 K. On the other
hand, the hole mobility in the superlattice is well approx-
imated by iu2D (and quite poorly approximated by pz )
since the valence-band dispersion in Fig. 1 is nearly two
dimensional.

Nonpolar-optical-phonon scattering is somewhat sim-

ilar to acoustic-mode scattering, in that the transition
rate has no explicit dependence on q and the corrections
due to wave-function nonuniformity [Eq. (3.8)] are iden-

tical. However, whereas the low-temperature acoustic-
phonon scattering rate is proportional to the density of
states near the zone center, which is much larger in 2D
than 3D (and intermediate in the SL), the NPO scatter-
ing rate depends on the density of states h~ p above the
bottom of the band. This means that; for the bands in

Fig. 1, both of which have a miniband width AE less
than hu &, one can scatter to final states spanning the
entire Brillouin zone in k, . Since the density of final

states in the superlattice is nearly equal to that in 2D
(even for electrons), both psL and ps" are quite close to
the corresponding quasi-2D results. However, it should
be emphasized that this is not inevitable, since in a su-

perlattice with AE ) hu» (i.e. , with thinner barriers),
the allowed final stat, es cover only a portion of the zone.
Under those conditions, one would obtain p„") p,„.In
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the isotropic 3D calculation, which takes the dispersion
along k, to be the same as that along kp, one clearly has a
much smaller density of final states. This is particularly
true of the electrons, for which p,„ is nearly an order
of magnitude larger than p„". The effect is somewhat
smaller for holes (p„D/psL 2) because of the strong
nonparabolicity of m„.

The effect of dimensionality on polar-optical-phonon
scattering is more complicated, due to the explicit I/(qz+
q, ) dependence in the transition rate [see Eq. (3.15)].
This factor favors a small rn', since one can then achieve
the same energy transfer with a smaller q, . The ratio
pzD/psD can thus be either greater than or less than
unity, depending on d~. Whereas the density-of-states
factor favors psD being larger, Eqs. (3.17) and (3.18)
show that Wp~o/Wpso decreases with increasing dt's (for
which q~~zq —z~~ tends to be larger). The effect is more
pronounced for holes than for electrons, since the ther-
mal average of q~ is greater. Thus in the present example,
y,„ /p„2 while p„ /psD 1. The mobility in the
superlattice lies between the two limits for both electrons
and holes, but for electrons this means that all three mo-
bilities are equal to within 20%.

Finally, ionized impurity scattering is somewhat anal-

ogous to polar-optical-phonon processes, in that the in-

teraction potential has an inverse dependence on q [see
Eq. (3.4)]. Due to competition between this factor and
the density-of-states considerations, p can again be ei-
ther greater than or less than p, with psL usually ly-

ing in between. As pointed out in Sec. III, the same
3D screened Coulomb scattering potential was used in
all three calculations, since that form is quite accurate
when the net doping level is light to moderate. However,
we emphasize that had the quasi-2D scattering poten-
tial for single-period structures ' been employed in ob-
taining p, , the apparent effects of dimensionality would
have been far greater, since interwell scattering and
screening dominate when q, 3 & d. A detailed discus-
sion of interwell effects on ionized impurity scattering will

be given in a separate work, which also considers the
heavy-doping regime where one must employ the gen-
eral solution to the anisotropic Poisson's equation rather
than the isotropic 3D potential.

VI. CONCLUSIONS

In the preceding sections, we have presented a compre-
hensive single-particle treatment of free-carrier transport

in superlattices. A key feature is the general incorpo-
ration of both the anisotropy of the dispersion relations
and the nonuniformity of the wave-function distribution
functions. While the superlattice "environment" may be
thought of as an intermediate regime bridging the quasi-
2D and uniform (but anisotropic) 3D limits, it is clear
that previous transport formalisms developed for those
limits are not applicable to the more general problem.

Scattering transition rates have been derived on the
basis of a weighted potential, which accounts for the over-
lap of the actual potential with the wave-function distri-
bution function. Specific expressions for scattering by
ionized impurities and acoustic-, nonpolar-optical-, and
polar-optical-phonon modes reduce to previously derived
quasi-2D forms in the multiple-quantum-well limit. Al-

though we have explicitly considered only intrasubband
processes, generalization to interband scattering would
be straightforward. Similarly, whereas the discussion has
focused on two-component superlattices with fiat, wells
and barriers, the derived expressions are su%ciently gen-
eral to account for more complicated multiperiod struc-
tures with arbitrary electron and hole wave-function dis-
tributions.

Solution of the Boltzmann equation for arbitrary
anisotropic dispersion relations and input scattering rates
has been discussed, along with expressions for obtain-
ing mobilities both in the plane of the superlattice and
in the growth direction. For the example of a finite-

gap HgTe-CdTe superlattice, in-plane mobilities from the
general calculation have been compared with results for
the quasi-2D and isotropic 3D limits. We frequently find
that the superlattice mobility cannot be accurately ap-
proximated by either of the two limiting values, although
it generally lies between them. It should finally be em-
phasized that while we have explicitly considered solution
of the anisotropic Boltzmann equation in the low-field
limit (Sec. IV), the transition rates derived in Secs. II
and III are equally applicable to high-field transport in
superlattices.
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