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We propose a steady-state photogalvanic effect in semiconductor superlattices lacking reflection sym-

metry. The effect arises when the average generation and recombination events are spatially displaced
from one another. In the steady state, this requires an internal current of majority carriers and a voltage
driving that current. The resultant polarization of the superlattice is a tangible effect, provided the
minority-carrier lifetime is sufficiently short, and it can be used to control the gate of a field-effect
transistor. The described effect is likely to generate useful applications, especially for fiber-optic com-
munications.

I. INTRODUCTiON

Ec

EF
Ev

FIG. 1. Sawtooth in equilibrium and under illumination
(after Ref. 1).

Several years ago, Capasso et al. ' described a transient
electrical polarization phenomenon in sawtooth superlat-
tices. They used a p-type-doped graded-gap Al~ „Ga,As
sawtooth structure, cf. Fig. 1. In such structures the
valence band is flat, tied to the equilibrium Fermi level,
while the conduction band appears graded. Sudden il-
lumination of the structure by high-energy photons gives
rise to a substantial voltage across the superlattice, which
then rapidly decays, so that the effect is essentially tran-
sient. No steady-state polarization has been observed un-

der dc illumination.
In the present paper we reanalyze the behavior of

asymmetric superlattices under illumination and show
that certain structure parameters can be modified so that
a steady-state polarization will be induced by light. This
effect will persist so long as the structure is illuminated
and, as the light is turned off, it will disappear. We shall
show that both the rise and the fall of the light-induced
steady-state polarization are determined by extremely
fast processes, so that the structure can be operated as a
detector with a picosecond response. A unique property
of this type of detector is that it can be operated with a

capacitive load, permitting a natural integration with a
field-effect transistor (FET).

The transient effect arises when the electron transit
time ~d across one superlattice period d is shorter than
the Maxwell relaxation time ~M of the p-type-doped ma-

terial. An abrupt light pulse generates electron-hole pairs
and sets electrons in motion that temporarily upsets the
local balance of charge. Because of the sawtooth asyrn-

metry, the polarization from each period adds up like in a
pyroelectric, developing a voltage across the superlattice.
The rise time of the transient polarization effect is of or-
der 7M'

The transient effect is practically independent of the
minority-carrier lifetime ~„because the recombination of
an electron with a hole does not change the charge distri-
bution and leaves the photovoltage unaffected. In con-
trast, for the steady-state effect discussed in the present
work the minority lifetime is the most important parame-
ter. The absence of a steady-state polarization in the ex-

periments' will be explained by the fact that ~, was

insuSciently short.
Like the transient effect, the electrical polarization un-

der dc illumination arises owing to the lack of a reflection

symmetry in the superlattice. In a steady state, the gen-
eration of electron-hole pairs is (approximately) uniform

over the entire structure, while the recombination occurs
predominantly at the narrow-band end of the superlattice
period, where the minority-carrier concentration is

highest. A steady-state supply of the majority carriers
must be provided by a gradient of their quasi-Fermi level,

FF h, which drags the necessary amount of holes toward

the narrow-band-gap region of the superlattice. In the
absence of an external current, the electron and hole

fluxes are equal at every point. Because of the sawtooth

asymmetry, the electron current is almost everywhere

directed along the conduction-band gradient and this en-

sures a unidirectional nature of the hole flow. Hence a
nonvanishing hole quasi-Fermi-level difference e V, is

generated in each period. These differences add up to a

finite voltage V between the top and the bottom layers of
the superlattice.

The described effect may be compared to the well-

known photodiffusion (Dember) effect, in which the
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NGd Nd

I h(po+«, )
(2)

If we assume a relatively low value of the hole mobility,

p&
—100 cm /V sec, parameters of the experiment, '

0
d =500 A and N = 10, and a lifetime limited by the radia-
tive recombination in a low-doped GaAs, ~, -v„10
sec, then the maximum voltage predicted by Eq. (2) is

V,„—10 V, which is too low to have been noticed.
However, ~, does not have to be that long. Free-

carrier lifetimes as low as 1 psec have been demonstrated
in radiation-damaged photoconductors. Moreover,
the lifetime need not be uniform. One can envisage a pos-
sibility of "lifetime engineered" structures with r, (x)
designed so as to enhance the steady-state polarization
effect. It can also be done "with the mirrors, " providing
for a stimulated recombination in a portion of the super-
lattice period. With a sufficiently short recombination
time, the polarization voltage attains respectable values
that may be used in applications. We can expect that for
a practical use, the voltage generated per period should
be of order 10 mV or higher, resulting in the overall volt-
age V of a few tenths of a volt. As will be shown below,

generation of electron-hole pairs occurs in a small part of
the sample, adjacent to an illuminated surface, while
their recombination spreads over a larger distance corre-
sponding to the ambipolar diffusion length. The Dember
effect is relatively slow, being controlled by the minority
carrier storage. In contrast, the present effect is much
faster: both the rise time, after the incident radiation is
turned on, and its fall time, after the radiation is turned
off, are described by the Maxwell relaxation time 7~
which can be in the subpicosecond range. The Dember
field is proportional to the difference of the diffusion
coefficients of electrons (D, ) and holes (Dh ), whereas the
polarization field discussed in the present work is insensi-
tive to this difference and does not vanish when D, =DI, .

Let us discuss why the steady-state effect has not been
seen experimentally. It is clear that under dc conditions
the polarization voltage is proportional to the radiation
intensity and inversely proportional to the hole conduc-
tivity. Simple calculation, presented in the next section,
gives

V=NV NGd 4 d

2pppo 2p~po

where 4 is the photon ffux (cm sec '), N the number
of superlattice periods, G =a+ the generation rate, a the
absorption coefficient (assumed uniform), pi, the hole mo-

bility, and po the uniform hole concentration provided by
doping. The last form in the right-hand side of (1) is ob-
tained by assuming that the superlattice is thick enough
(aNd —1) to absorb most of the incident radiation. It
may appear that a sufficiently high illumination intensity
can always bring V into a measurable range, at least in
low-doped samples. However, increasing the generation
rate G beyond po/r„does not lead to a higher photovol-
tage. Indeed, for G~, &pa, the hole conductivity itself
becomes proportional Gr„and the photovoltage (1) will
saturate,

these are certainly achievable numbers and it is, there-
fore, reasonable to consider useful devices based on this
principle.

This paper is organized as follows. In Sec. II we derive
Eq. (1) for the sawtooth superlattice (and similar equa-
tions for other asymmetric structures) from a rigorous
transport model, based on the drift-diffusion equation.
Examples considered include not only band-gap-
engineered superlattices but also structures with nonuni-
form ~, . In Sec. III, we consider the situations when a
steady-state-polarized superlattice is shunted by a resistor
or shares its charge with an external capacitor. Transient
processes are also discussed and an equivalent circuit
model is presented. Even though the results obtained are
quite simple, they are worth discussing because the be-
havior of a nonequilibrium pyroelectric under load is not
intuitively obvious. Section IV deals with an idealized in-
tegrated structure in which the photopolarized superlat-
tice is electrically connected between the source and the
gate of a FET. This analysis permits us to establish the
limits of performance of such systems and demonstrates
the existence of a tradeoff between their efficiency and
speed of response.

II. EVALUATION OF THE STEADY-STATE
PHOTOPOLARIZATION

In this section the steady-state polarization will be
evaluated for several possible device structures (Fig. 2)
under open-circuit conditions. The situation under load,
capacitive or resistive, will be considered in Sec. III. In
an open circuit, the total current vanishes in the steady
state,

J=J,+J„=o, (3)

where J, and Jz are the densities of the electron and the
hole currents, respectively.

Carrier transport will be described by the drift-
diffusion equations,

J,=n p, VEc+eD, Vn

J& =ppI, VEv eDI, Vp,

(4a)

(4b)

where n is the electron density and p„D, are, respective-
ly, the electron mobility and diffusivity. The correspond-
ing quantities for holes are p, pj„and DI, . The energy Ec
designates the bottom of the conduction band and Ev the
top of the valence band. Carrier concentrations are
governed by the continuity equations

—V J+G —R= =0,1 an
e at

1 BD——V.J +6—R = =0.
e h at

(Sa)

(Sb)

We shall take G =aN uniform over the superlattice
period (ad =const «1), which is a reasonable assump-
tion if the photon energy exceeds the fundamental thresh-
old at the wide-gap end. The recombination term R will
be assumed in the form
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We shall assume d =10 cm and 6 ~0.25 eV, so that at
room temperature, 0-0.1. It is the basic small parame-
ter in the problem.

Using the fact that &1+&2=1/M' we can bring the ex-
pression for the electron current into a compact form

ylx G~e=C, (yzd)e ' +Cz(y, x)e ' +
0

J,(x )d

eD,

The coefficients C& and C2 are determined from the
boundary conditions at x =0 and x =d. In a structure
with wide-gap barriers separating the graded-gap regions
[Fig. 2(b)], the appropriate boundary conditions are

Ec

W

Ey

L EF e

EF, h

J,(0)=J,(d )=0,
whence we find

GDe e 'Y1 ~1e Ga e 0 d yld

t9d y1d yzd 0 r, D,

(12)

FIG. 2. Various asymmetric superlattices subject to a
steady-state photopolarization: (a) conducting sawtooth, (b)
sawtooth with barrier separators, (c) sawtooth with nonuniform
~„and (d) castellated superlat tice. C2=

Od " ',D,

(13a)

(13b)

n (x)
(6)

where ~, is the electron lifetime in the p-type material.
We shall first consider the case of a spatially uniform ~, .

A. Sawtooth superlattices: uniform lifetime

For a uniform r, Ar, (x ), Eqs. (4a), (5a), and (6) reduce
to a simple differential equation with constant coefficients

8 n eF Bn n G
kTBx Dw, D,

where eF:~VEc . In the derivation of this equation it
has been assumed that F is constant, i.e., we have neglect-
ed the effect of the space-charge p=eV VEc. As will be
shown at the end of Sec. IV [cf. Eq. (34)], this charge is
indeed small, p«epo, even at the highest illumination
intensities, G-po/r, . The general solution of Eq. (7) is
of the form

t

n (x ) =Gr exp'kT +, (14)kT d pF '

xJ,(x)=eGd exp — 1 ———eGx .

Writing the hole current (4b) in the form Jz =pp&VEF z
and using Eq. (3), we have

The boundary condition of vanishing electron current is
not strictly valid for simple sawtooth structures [Fig.
2(a)] without barrier separators. A small thermionic flux
of electrons is Rowing in the direction opposite to the
electron drift. However, from the analysis of the
thermionic and diffusion theories of barrier transport, we
know that neglect of this current will introduce an error
6n in the electron concentration at the top of the barrier
that scales with 8 as -e ' . Such an error can be
neglected.

Expanding the exact expressions (8) and (11) in powers
of 8 and neglecting terms of order 8, we find2

n(x)=C1e ' +C2e ' +G~, ,

where

REF ~ d J,(x )dx
V, = V(0)—V(d)= ' = —f (16)

2g 2g g
d = + (1+40 d /~, D, )' =—1+

Integrating Eq. (16), assuming a constant p =pc, and
dropping the term of order e ', we obtain

(9a)
Gd

1

dopa
2kT

(17)

d= — (1+48 d Ir, D, )' (9b) which agrees with (1) to the lowest order in H. It is clear
that the result (17) is valid only if the density of photo-
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generated carriers is less than po. For G=po/~„ the
second term in (14) is still small because, typically,
d «p, F~, . The first term varies exponentially and, for
G=po/r„ it remains small over a fraction g of the
period, determined by the inequality

ge( —g)/ (18)

In our exemplary case of 0=0. 1, this inequality is
satisfied for /&0. 77, i.e., the integration of Eq. (16) with
p=po is valid in more than half of the period. It is
reasonable, therefore, to take 6=~, 'po as a watershed
value at which the photovoltage V, saturates, i.e.,

dVmax

2p)7e

in accordance with Eq. (2).

(19)

B. Sawtooth superlattices: nonuniform lifetime

The lifetime of minority electrons is determined by the
doping concentration and other factors, such as the pres-
ence of neutral impurities and crystal defects, as well as,
under certain conditions, by stimulated radiative recom-
bination. In certain applications it may be advantageous
to use a nonuniform ~,(x). We shall consider here the
simplest (and practically most reasonable) case of a piece-
wise nonunformity [Fig. 2(c)]

if 0&x &d —5

~, if d&x&d —5, (20)

with vz«~, . Even for a small 5, we shall require
r2 «(5/d )r„so that the recombination in the r, region
can be neglected.

Equations (4a), (Sa), and (6) then reduce to a
differential equation of the form

a'n eF an+ G =0 forx&d —5
(jx2 kT Bx D,

(21)

with boundary conditions set at x=O by J, =O and at
x=d by

d
Gr2d= I n(x)dx=n(d)5 .

d —5
(22)

(eF/AT)(x —0)Xe

Solving Eq. (21), we obtain the carrier concentration in
the form

Gd x PeFr2 5(1+9)n(x pF d 5 pFr2

Gd (d —5)Vi= 7

2pop
(25)

is similar to (1), but V, '" in this case is not limited by the
value of V, at G =po/r, . Indeed, as seen from (23), the
highest concentration n in the region x ~ d —5 is given by
Gr2(d/5), which is much lower than Gr, . Thus, under
our assumption that r2 «(5/d )r„ the maximum polar-
ization voltage is

d5 dVmax
1

2pj &2 2p
(26)

C. "Castellated" superlattices

n" n/k, , +G—/D, =0, x &0,

n" n/k2+G/—D2=0, x )0,
(27)

where A,;
=D, r, (i =1,2),—and the origin (x =0) is placed

at the band discontinuity. The concentration n (x ) is no
longer continuous at x =0, but the electron current den-
sity J,(x) and the quasi-Fermi level Ez, (x) will be as-
sumed continuous. (The former of these assumptions
means that we neglect surface recombination at x =0, the
latter expresses our neglect of carrier heating or cooling
on crossing the interface, which would violate a thermal
equilibrium between adjacent points. )

The general solution of Eq. (27) can be written in the
form

In certain heterostructure materials, graded-gap
sawtooth superlattices are difficult to achieve within the
confines of lattice-matched heteroepitaxy. As we shall
show now, the built-in sawtooth field is not a necessary
requirement for the steady-state polarization effect. Con-
sider the superlattice, illustrated in Fig. 2(d). Conduction
band profiles of such shape will be referred to as "castel-
lated. " We shall assume that under illumination the con-
duction band is Hat, as shown in the figure. This assump-
tion implies a small built-in field in equilibrium. If such a
field does not exist, then there must be a reverse field un-
der illumination. We can safely neglect this field in the
dynamics of the minority carriers if the total polarization
voltage V, per period is sufficiently small: AEzz & kT, a
limit we do not aspire to reach in castellated superlat-
tices.

For the sake of generality, we shall assume that the
wide-gap portion d

&
of the period is characterized by the

electron diffusivity D, and lifetime ~„and that the corre-
sponding parameters in the narrow-gap part are D2 and
z2, respectively. The continuity equation for the minori-
ty current in this case reduces to

To calculate the current in this case, there is no need to
use Eqs. (4a) and (23). In the region where the recom-
bination is neglected, the electron current density obvi-
ously equals

n (x ) =Gw; +P;sinh(x /A, ; ) +Q;cosh(x /A, ; ),
J,(x )= (eD, /A, , )[P cosh(x /A, )+Q;sinh(x /A, , )],

(28)

J,(x )= —eGx forx ~d —5, (24)

as, of course, also follows from (23). The resulting polar-
ization voltage,

where we take i =1 for x ~0 and i =2 for x ~0. The
coefficients P; and Q; are found from the following four
equations:
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(D, /A. , )P, = (Dz /A z )Pz,

6/kT
Grz+ Q,

P, /Q, =tanh(d, /k, ),
Pz/Qz = —tanh(dz/Az),

(30a)

(30b)

(30c)

(30d)

III. PHOTOPOLARIZED STRUCTURE
UNDER LOAD; EQUIVALENT CIRCUIT MODEL

In this section we consider the transient and the
steady-state response of asymmetric superlattices both in
an open circuit configuration and under load. This dis-
cussion will lead us to an equivalent circuit model of the
device, adequate for intended applications.

= —Gd 2

P;=(A,;/D, )P= —Gdz"(/r, /D, , i=1,2,

Q;=P;coth(d;IA, ;)=(—1)'Gr;(dzld;), i =1,2,

whence the current density is given by

(3 la)

(31b)

(31c)

which follow from the current continuity (30a), the
quasi-Fermi level continuity (30b), and the boundary con-
dition of vanishing current between different periods
[(30c) and (30d)]. The result is

G&, —Gaze " (D, Az/Dzk, , )

coth(d
&

/A, , ) +coth(d z IAz )e ~" (D
& Az/Dz A,

&
)

A. Transient response in an open circuit

Consider the intrinsic response time of the photopolar-
ization effect. What happens when one of the structures
discussed in Sec. II is illuminated by a "rectangular"
light pulse, G( t ) = Gu (t ) —Gu ( t t~ ), w—here u ( t ) is the
unit step function and t the pulse duration. As we know
from the experiment, ' the leading edge of the pulse will
be accompanied by a transient polarization, whose peak
magnitude is independent of the minority lifetime ~, .
The transient voltage grows for the time of order &M

determined by the Maxwell dielectric relaxation of the p-
type-doped material,

J,(x) =P [cosh(x /A, , ) —(
—1 )'coth( d; /A, , )sinh(x /k; ) ]

~M =&«V~po (3&)

Ddz[1——( —1)'(x/A, ; )], i =1,2 . (32)

( eporMIp-
+e

(34)

This inequality shows that in the limit ~M &&~„assumed
throughout this work, we are entirely justified in neglect-

ing the space charge p.

The approximate expressions in the right-hand side of
these equations are obtained under the further assump-
tions of a large band discontinuity, exp(b, /kT) »r, /rz,
and a large diffusion length, A, ; »d; (i =1,2). The form-

er of these additional assumptions determines the direc-
tion of the electron current: had we assumed
exp(b/kT) «r&/rz, the value of the parameter P would

be P=+Gd& and the electron flux would be directed
from the narrow-gap into the wider-gap region. This
would not be an unreasonable design: one can even take
5=0 and obtain the required asymmetry of the superlat-
tice in virtue of only ~~ ))~2. Our result shows that the
lifetime engineering in the present context is just as
powerful as the band-gap engineering.

Integrating Eq. (32), we find

Gdd2
V)= (33)

2pppp,

which is not very different from the sawtooth case.
Finally, let us return to the space charge p, neglected

throughout this section, and justify this neglect that had
allowed us to let the field F=const in Eqs. (7) and (21).
The space charge p is the source of the electrostatic field
in the photopolarized state. It represents a local disbal-
ance of electrons, holes, and acceptors, e (p —po )
—en =p(x ). An estimate for the peak magnitude of this
charge can be obtained from Poisson's equation, viz. ,

e V& /d = ~p~d /2, whence we find, using Eq. (17),

By the time t=~M, the transient voltage begins to de-

cline. For pI, =100 cm /Vsec and po=6X10' cm

this time is ~M =1 psec. If the duration of the pulse is

sufficiently long, tp))7M then a steady state will be

reached, described by the polarization voltage (2).
It may appear that the rise time of the transient polar-

ization corresponds to an electron transit ~d across one
superlat tice period d. This is not so. For a short
d 1000 A, we can estimate ~d, assuming a ballistic flight

r =(md /6)' & 10 ' sec, (36)

dV
dt

NeGd
26'

(37)

At this rate, a polarization voltage of magnitude given by
Eq. (1) will be reached in time t =r~, when the motion of
holes can no longer be neglected. The magnitude of the
transient polarization is clearly limited by

d V NGd
trans dt M (38)

which is similar in form to Eq. (1). The difference is that
the voltage (37) is not subordinated to Eq. (2), so that

V,„,'„", retains the same value even as ~,~ ~ ~ Therefore,
if G )po/7 then the evolution of the polarization will

show transient peaks. However, we shall assume
G &po/~„since as discussed above, higher values of G

do not lead to a higher steady-state polarization. In this

where 6=0.25 eV is the total conduction-band energy
drop across one period, and the effective mass of elec-
trons in GaAs is assumed in the estimate. Suppose,
therefore, that v.

d «v.M. In this case, the polarization of
the structure will be initially controlled by the amount of
generated electrons and will grow at the rate proportional
to G,
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case, the transient voltage can be expected to show no
peaks. Figure 3(a) qualitatively illustrates both limits of
the transient behavior of the photovoltage.

On the trailing side of the pulse, the decay of the polar-
ization will also occur over a characteristic time of order
7 M or ~&, whichever is longer. Consider for concreteness
the sawtooth superlattice, Fig 2(a}. Transient processes
occur when the steady-state balance (3) of the currents J,
and J& is temporarily violated. After the light is shut off,
the minority concentration n is emptied (as electrons
travel downhill) over most of the period d and the elec-
tron current is eliminated. Only near the sawtooth bot-
tom will the rate be still controlled by a slower ~„but
this lagging residual recombination process can be ex-
pected to have only a minor effect on the photovoltage.
Rapid elimination of electrons from the sawtooth slopes
will have a consequence, similar to the transient effect on
the leading edge of the pulse. If ~z &&~~, then for a
period of time 5t (r„&5t «rM) the photopolarization
voltage will decay at the rate given by Eq. (37)—with an
opposite sign. For G &pa/~„ the transient voltage 5V,
may even be opposite in sign to the steady state V, . At
any time during the transient period, the surface density
of charge 5o(t) giving rise to 5V, (t) can be estimated

from Gauss's law, ~5o
~

=@5V, /d. The net current densi-

ty 5J, flowing during 6t, is that of a p-type conductor
driven by the field 5V, /d, i.e., 5J=5V, epzpo/d. This
current will discharge the polarization in time
5t =5o /5J=~M.

Neglecting the transient overshoots, the onset and the
dielectric relaxation of the photopolarization in each
period can be modeled by an equivalent circuit consisting
of a current source l(t), a capacitor Cz, and two resis-
tors, Rz and R „defined (for a device of area A ) by

dR~=
ep&po A

R~po
r G

(39)

so that RzCz=~~ equals the Maxwell relaxation time
(34). The current source produces

I= Ad ' J [ —J,(x)]dx = AeGd /2

when the light is on, and I=O otherwise. The transient
overshoot effect can be included by adding into the R,
branch of the circuit an inductance L,=~,R,. Our
equivalent circuit model of one superlattice period is il-
lustrated in Fig. 3(b). Plots illustrating the time evolution
of the photopolarization, shock excited by a rectangular
light pulse [Fig. 3(a)], have been actually computed for
this circuit, using the standard Laplace transform tech-
niques.

It should be emphasized that our circuit model does
not contradict the experimental observation' that the
duration of the transient effect is independent of ~, .
Indeed, under the condition G~, &&po, realized in the ex-
periment, the model predicts that the transient peak de-
cays with a characteristic time ~=po/G &&~,. On the
other hand, in the regime Gr, «po (a regime that has
not been investigated experimentally but is of interest to
us), the decay of the transient peak is characterized by
g=~, but the relative magnitude of the peak itself is of
the order G~, &&po and can be neglected.

-1.0 I

-10 0
I I I I I I I

10 20 30 40 50 60 70
time {units of ~M }

B. Device under load

~ Rd Cd

FIG. 3. Transient response of the photopolarization effect.
(a) Evolution of the photovoltage per superlattice period, excit-
ed by a rectangular light pulse of duration ~~ 507M in two lim-
its: G »po/~, and G &&po/~, . (b) Equivalent circuit model
employed in the calculation of (a).

Let us now discuss what happens when a photopolar-
ized structure is loaded by an impedance ZL . First, con-
sider the situation when the device is shorted by a resistor
RL. If the structure contains internal barriers, like in
Fig. 2(b), then (assuming an effectively infinite barrier
resistance Rb) only a transient current can flow. This
current will transfer a charge 5Q between the top and the
bottom cladding layers of the superlattice and ensure that
the overall voltage drop on RL will vanish in the steady
state. A small redistribution of charge of order 5Q will
occur in every period, resulting in an electric field in the
barrier separators that exactly cancels the photogenerat-
ed voltage V„as illustrated in Fig. 4(a}. The transferred
charge 5Q is evidently determined by the condition
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to V=6Q/CL, while the charge (
—5Q) will induce an

electric field across the internal barriers that partially
cancels the photogenerated voltage. It is easy to see that
this results in lowering the voltage from NV~ to

Ec

------ EF, h

XV C„"'
V= C'"+C

(42)

o.4 —( b)

Ev
Thus, under dc conditions, loading the device with inter-
nal barriers by a large capacitor, CL ))Cb", is equivalent
to a short.

0.2 .
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C. Equivalent circuit

The behavior of the photopolarized superlattice de-
scribed above for several limiting cases can be modeled
by an equivalent circuit, shown in Fig. 5. Elements of
this circuit, Cb, Rd, R„and Cb, are given by Eqs. (39)
and (40) and Rb is determined by the tunneling of ther-
mionic transport of holes through the barrier separators.
The model current source is assumed to deliver a current
I=I[6(t)], such that IRd= V, . In other words, this
current equals the average steady-state electron current
of the superlattice under illumination

FIG. 4. Photopolarized superlattice under load. (a) Structure
with barrier separators under a resistive load. (b) Electron and
hole current-density profiles in a shorted sawtooth superlattice.

NV, =(6Q/eA )Nb, where b is the thickness of a single
barrier. Thus, the photopolarized superlattice with inter-
nal barrier separators behaves as an element with a resis-
tance Rb" =NRI, and a capacitance C&"=Cb /X, ~here

eA
b b

(40)

In the absence of barrier separators (or for a finite Rb"),
an external dc current IL = V/RL flows through the load
in the direction opposite to the photogenerated hole
current. Therefore, in Eq. (16) we must replace Jh = —J,
by J& =JI, —V/RI, and the photovoltage per period will
decline to V, = V, —ILRd. On the other hand, it is obvi-
ous that V=NV, —Il Rb", whence we find

I(t)=—I [
—J,(x)]dx .

d

0
(43)

Rb Cb

The time dependence of I arises through the dependence
of J, (x ) on G(t ). In the instance of a sawtooth superlat-
tice, I(t)= AeG(t)d/2. The model circuit of Fig. 5 is
adequate for treating not only the steady state but also
the transient processes after a change of either the load or
the illumination intensity, provided we are considering
these processes on the time scale longer than ~M.

In practice, it will be convenient to lump similar ele-
ments from different periods together. The equivalent
circuit for the entire superlattice, consisting of N periods,
will have the same structure as a single period of the cir-
cuit in Fig. 5, but with the elements modified according

cVVi RLV=
I +Rbo +R

(41)

where R;„,=—XRd. Consider, for example, a shorted
sawtooth superlattice: RL =Rb"=0. In this case, we
find IL = V, /Rd and V= V, =0. Figure 4(b) displays the
distribution of currents J,(x ) and Jz(x ) in a single period
of a shorted photopolarized sawtooth superlattice, calcu-
lated from Eq. (15).

Similar analysis is easy to carry out for a capacitive
load CL. For a structure without barrier separators (or
any finite R~ ) under dc conditions, this situation is
equivalent to an open circuit. On the other hand, for a
photopolarized structure with insulating internal bar-
riers, Rb = oo, this situation leads to a partial transfer of
the polarization charge to the load capacitor. The
transferred charge, 6Q, will raise the voltage on the load

ZL

R Cb b

R, f

FIG. 5. Equivalent circuit of a loaded photopolarizable su-

perlat tice.
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(a) FET per photon incident on the superlattice

(45)

The steady-state voltage V on the gate of the FET is
given by

SOURCE

hv

DRAIN R;„,R' (G)
V =I(G)

R;„,+R'"(G) (46)

tot

b

tot

b

whence we find, using Eqs. (39), (43), and (44)

3V 5IR;„,5V—: 56 =
(I+Gr, /p )

For a sawtooth superlattice, assuming G~, /po((1, we
have

Cint

Gd
6V =6IR;„t=

2papo
(48)

S Let the transconductance g of the FET be related to the
superlattice conductance 1/R;„, by a factor M,

FIG. 6. Integration of a photopolarization detector with a
FET. (a) Schematic cross section. (b) Equivalent circuit.

to the following rule:

gmRInt ™
Since M,„,=g 5Vg, we obtain from (48)

g=Mad/2 .

(49)

(50)

Cd ~C;„„
Cb ~Cb

L tot

Rd ~RInt

Rb~Rb

R, R', ',

with no modification in the current source. The new ele-
ments are given by

C;„t=Cd /N,
C"'=Cb/N,

L tot R tot
e

R;„,=NRd,

b b~

R"'=NR .7

(44)

An example of the use for this circuit will be presented
below [Fig. 6(b)].

IV. INTEGRATION %'ITH A FIELD-EFFECT
TRANSISTOR

The polarizable superlattice detector is naturally suited
for an integration with an FET amplifier. Because the in-
put of an FET is capacitive, it draws no current from the
superlattice, except in transient. Therefore, both the con-
ducting superlattices and those with internal barrier
separators can be used. In the following, we shall assume
a conducting sawtooth superlattice, as in Fig. 2(a) or 2(c),
with the understanding that the results can be extended
to the case with internal barriers, using Eq. (42).

Consider the small-signal response of an integrated-
detector —FET pair, illustrated in Fig. 6, to a time-
varying illumination, 5G(t ) =a5&b(t ). It will be assumed
that the bandwidth of 5G is less than 1/zM so that the
equivalent circuit of Fig. 5 can be employed. Let us first
discuss the e%ciency of the integrated detector, defined as
the number of electrons Rowing through the drain of the

It is clear that the orientation of the polarization field can
be designed to point up or down, corresponding to two
possible orientations of an asymmetric superlattice.
Therefore, the sign of g is at the designer's disposal: For
the same type of conductivity in the FET, one can have
the current either increasing or decreasing with the il-
lumination.

Next, we consider the response time ~. From the
equivalent circuit we find

7=re(M+1)+.rM, (51)

M d g g

d eA
(52)

where A, d, and e are, respectively, the gate area and
the thickness and the permittivity of the gate dielectric.
The total active thickness of the superlattice Xd is obvi-
ously limited by the absorption length a '. Substituting
a ' for Nd in Eq. (52) and using (50), we have

d ~g Ag +M'9=
2dg e A

(53)

where ~ =—C /g is the small-signal gate delay and C
the gate capacitance of the FET. The tradeoff between
the efficiency and the speed of response, expressed by Eq.
(51), is quite obvious: for taking advantage of a high gain
M) 1 in Eq. (50), we pay the price of degrading the
R f Cg time constant.

Parameters that determine M are seen from the follow-
ing expression:
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As an example, suppose we are employing a state-of-the-
art FET with an intrinsic gate delay ~ = 5 ps and a su-
perlattice characterized by ad=0. 1 and ~M=1 psec,
both very reasonable numbers. The optimum number of
period is %=10. The integrated device will have an in-
trinsic response time v.=10 psec at g=5% and v. =200
psec at g = 100%. Optimization of the device toward ei-

ther the faster or the more eScient mode can be done on
the basis of Eq. (53).

As suggested by Eq. (47), a small-signal operation of
the device at low illumination levels does not require a
particularly short minority lifetime r, . Such a require-
ment will arise, however, from noise considerations that
go beyond the scope of the present work. Qualitatively,
the situation can be clarified by looking at a large-signal
"digital" operation of the integrated pair. Such an opera-
tion requires a large on-off ratio in the output current,
and therefore the swing 5Vg must be suScient1y large,
e.g. , 5V ))kT. Using Eq. (47), we see that this implies a
requirement

(E

jl

(a)

e

kg kT (54)

FIG. 7. Possible exotic schemes: (a) stimulated emission at
the long-wavelength part of the period, and (b) multiple double-
quantum-well superlattice.

Thus, at room temperature, taking d & 2000 A and

pz ~50 cm /Vsec, we need ~, &&10 ' sec. Such short
lifetimes should be achievable with the radiation damage
techniques or by a controlled low-temperature
molecular-beam epitaxy. Another interesting possibility
in this context will be discussed in the next section.

V. QUANTUM VARIATIONS

Elsewhere in this paper our consideration was restrict-
ed to essentially classical processes: the drift-diffusion
transport of carriers and their classical interaction with
light. In this section, we discuss two quantum variations
on our main theme, which is the photopolarization effect
in asymmetric superlattices. The first of these variations
involves stim ulated recombination.

As is well known, the radiative recombination rate can
be dramatically enhanced by the stimulated emission pro-
cess. Consider a photopolarizable superlattice placed in a
resonant cavity for the radiation of wavelength corre-
sponding to the narrow-gap end of the superlattice
period, Fig. 7(a). Such a cavity can be formed between
two cleaved facets, like in a conventional edge-emitting
laser, or between two planar quarter-wave dielectric mir-
ror stacks, like in optically pumped vertical-cavity
surface-emitting lasers. Subject to an optical pumping G
above the lasing threshold level, the electrical behavior of
this structure will be similar to that considered in Sec.
II B, with ~z given by the stimulated radiative lifetime 2,
which can be as short as 10 ' sec.

The photogenerated voltage in this case wi11 be quite
accurately described by Eq. (25), but the restriction (26)
will not be a practical limitation. Taking exemplary pa-
rameters d =2000 A, po = 10' cm, and p&

=50

cm /V sec, we find that for the generation rate 6 = 10
cm sec ' (corresponding to an incident power of 10
kW/cm and an absorption coefficient a=10 cm ') the
photovoltage is about 40 mV per superlattice period, well
below the limit set by (26). At the shortest r'„', a practical
limit will likely be set by the overall height of a sawtooth
slope or, for castellated superlattices, by the temperature
eymax & g+kT

Under a time-varying optical pumping, described by an
excitation function Go+5G(t), the structures of Fig. 7(a)
will produce a synchronous combination of the optical
and the electrical outputs, both faithfully tracking 5G(t)
up to the bandwidths in terahertz range. Such a device
may find applications in optical communication systems.
Moreover, the wavelength of the optical output itself may
be controllable to some extent by the intensity of the base
pumping level Go. This effect can be expected to occur
due to the Stark shift by the polarization field of the
ground electronic energy level in a sawtooth superlattice.

Our second quantum variation involves tunneling
transport. Consider a superlattice whose period consists
of two quantum wells, one narrow and the other wide, see
Fig. 7(b). The superlattice is doped p type. Under certain
conditions, it is possible to achieve a strong asymmetry
between the wells in either the absorption rate or the
recombination lifetime (or both of these quantities). An
example of such a situation has been considered in Refs.
10 and 11, where the interest is focused on the transient
luminescence and polarization oscillations upon an ul-

trashort generation pulse. Those transient effects, arising
from the Rabi oscillations of electrons between the two
wells, decay after a short phase-relaxation time, analo-
gous to the T2 of nuclear magnetic resonance. It has
been pointed out" that the steady state, arising after the
Rabi oscillations have relaxed, corresponds to a polarized
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superlattice, but from the perspective of the present work
that state is still "transient" —to be screened by the
motion of holes. Inasmuch as we are not interested here
in the transient oscillations (and hence a long T~ is not
required), we can substantially simplify the scheme for es-
tablishing the asymmetric absorption that gives rise to
the internal steady-state current and the polarization
voltage. For example, this can be done as follows.

Suppose the first excited energy level of electrons in the
wide well is degenerate with the ground level in the nar-
row well. Optical transitions in the wide well can be
suppressed if the linewidths fihco of the incident radiation
is narrower than the lifetime-limited width I of the
second energy level in the wide-gap well. We assume that
the level broadening I =—A/~, is caused by intersubband
scattering and is about 10 meV, a typical number.
Broadening of the ground level in the narrow well, on the
other hand, is mainly due to the finite lifetime ~, against
the escape from the well by tunneling into the wide well.
That broadening is assumed to be of the order of the exci-
tation linewidth, i.e., hen~, —1 and much smaller than the
collision broadening of the wide-well level, i.e., v., &)~, .

Under these conditions, the optical absorption in the
wide well is suppressed compared to that in the narrow
well by a factor hoor, =r, /r, « I, and hence illuminat-

ing the system with a monochromatic light, tuned to the
fundamental transition in the narrow well, will mainly
generate electron-hole pairs in that well. In the regime
~, «~„ the tunneling rate is practically independent of
the actua1 alignment of the two levels, so iong as the nar-
row level falls within the band I of the broad level. Even
if the recombination times in the two wells are equal, the
asymmetry in the absorption rate mill cause an eff'ect of
polarization. The magnitude of this effect depends on the
barrier resistance of the hole transport and can be tuned
in a wide range. To a reasonab1e approximation, this sit-
uation can be described by the equivalent circuit of Sec.
III and Eq. (39), where d should now be taken as the sep-
aration between the centroids of the electronic wave
functions in the two wells, and p& the mobility of holes
perpendicular to the superlattice.

The coupled-well scheme admits of many further varia-
tions, including the design of disparate recombination
times in the two wells, the use of stimulated recombina-
tion in a resonant cavity, etc. In the limit of extremely
short recombination time in the wide well, e.g., provided
by the stimulated emission in a resonant cavity, the pho-
tovoltage generated per period is limited by the width I
because further voltage would detune the tunneling reso-
nance. However, the number of periods can be quite
large and polarization voltages of order 1 V seem to be
within reach. The response time of the tunneling photo-
polarization is determined by ~, and can be well in the
subpicosecond range before violating the inequality

«7 .

VI. CONCLUSION

We have described a steady-state photogalvanic effect
in superlattices lacking reAection summetry. The effect
arises when the photogenerated minority carriers, prior
to their recombination with the majority carriers, are
transported by a built-in field within the superlattice
period, so that the median sites for the generation and
recombination are displaced from one another. In the
steady state, this requires an internal current of majority
carriers and a voltage driving that current. The resultant
polarization of the superlattice is a tangible effect, provid-
ed the minority carrier lifetime is sufficiently short, and it
can be used to control the gate of a field-effect transistor.

The described effect is likely to generate useful applica-
tions. One of its advantages lies in the intrinsic speed of
response, which is essentially limited by the dielectric re-
laxation time and controlled by the majority-carrier con-
ductivity. For an integrated system, consisting of the
proposed superlattice detector and a FET, the response
time can be made as short as 2~, where ~ is gate delay
of the FET. The fundamental tradeoff between the speed
and the efficiency of such an integrated system is dis-
cussed in Sec. IV. An interesting practical advantage of
the proposed scheme is that the FET output can be either
in phase or 180' out of phase with the light input, de-
pending on the orientation of the asymmetric superlat-
tice.

Another practical advantage of the proposed effect is
its expected tolerance to material imperfections. The key
design requirement for the efficient and fast operation is a
short minority lifetime, a property promoted by certain
crystal defects and impurities. It is, therefore, likely that
some of the structures described in the present work can
be implemented heteroepitaxially on lattice-mismatched
foreign semiconductor substrates. One can envisage
efficient and fast long-wavelength photodetectors, com-
bined with GaAs or Si front-end amplifiers and integrated
circuits on the same chip.

Finally, the effect lends itself to the implementation of
a scheme, discussed in Sec. V, where the short lifetime is
achieved not because of imperfections but owing to the
stimulated recombination in a laser cavity. In this case,
the device will generate the polarization voltage synchro-
nously with the optical output, both modulated by the in-
tensity of the optica1 pumping signal. The bandwidth of
this modulation can be in the terahertz range. We believe
the described effect will find important applications, espe-
cially for fiber-optic communications.

Note added in proof An experiment, . demonstrating
the steady-state photovoltaic effect in asymmetrical grad-
ed superlattices, has been performed. ' It shows an excel-
lent agreement with Eq. (2), including the dependence on
the minority-carrier lifetime. The observed photovoltaic
response time (2 nsec) has been limited by an oscilloscope
resolution.
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