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Stochastic models of two-dimensional fracture
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Two statistical models of (strictly two-dimensional) layer destruction are presented. The first is built
as a strict percolation model with an added “conservation law” (conservation of mass) as physical con-
straint. The second allows for damped or limited fracture. Two successive fracture crack thresholds are
considered. Percolation (i.e., fracture) probability and cluster distributions are studied by use of numeri-
cal simulations. Different fractal dimension, critical exponents for cluster distribution, and universality

laws characterize both models.

I. INTRODUCTION

The fracture surface of a piece of metal is rough and ir-
regular.! Fracture is dynamic in nature and results from
cooperative effects in which material bonds are broken.
Thus, the dynamical as well as the kinetic aspect of frac-
ture have to be understood. The first aspect is essentially
studied through solid-state physics ideas and techniques.’
The second aspect has received much impetus due to
simulation techniques on (fast) computers.>* Analytical
models are based on statistical-mechanics development,
in particular, along the lines of those developed for first-
order phase transitions.> Simulation models are, howev-
er, the best suited to economically give many interesting
results.

Two models are presented here. Several extensions can
be envisaged. The models differ from others by a realistic
physical constraint: we have imposed ‘“mass (or number)
conservation.”

To put this work into proper perspective, let us briefly
recall previous work on fractal and other simulation
models of fracture. A modern model is that of Takayasu®
who has developed an elastic model from his previous
work on electric breakdown.® He considered a random
distribution of microcracks and solved elastic equations
at each node—breaking bonds when the stress is greater
than a given threshold. He obtained a percolation-like
threshold.’

Lung® observed that the fracture surface (of planar
grains) is composed of microscopic dimples resulting
from holes forming ahead of the (main) crack. He
characterized the fracture ‘“‘surface” by a fractal dimen-
sion® ranging (for planar systems) from 1.26 to 2.23. The
minimum value (1.26) characterizes pure intergranular
brittle fracture—though different grain sizes are expect-
ed to lead to this same value.

Recently, Louis and Guinea* observed self-similar pat-
terns with fractal dimensions nearly independent of the
elastic constants, i.e., D =1.55-1.60 for a model of a
perfectly elastic solid containing a single crack propaga-
ting in a defect-free medium according to (static) elastici-
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ty, i.e., equilibrium equations.

The above models consider the solid to be a lattice
governed by specific constitutive equations, and thus per-
tain to a line of investigations admitting a deterministic
ingredient, even though stochasticity enters through the
inherent kinetic and irreversible crack pattern. It is
therefore natural to obtain for these crack patterns a
fractal dimension similar to that of the diffusion-limited
aggregation (DLA) model of Witten and Sander,!® for
which D =1.70.

Although in such simulation experiments it is concep-
tually difficult to see what basic difference exists between
diffusion-limited aggregation and diffusion-limited decay
(DLD), Banavar, Muthukumar, and Willemsen!' have ex-
amined the two-dimensional reverse process of DLA and
of the Eden model.!? In the DLD case, for a square lat-
tice, the fractal dimension of the cluster is D =2. In
another experiment called the random-walk decay
(RWD), a diffusing particle is infinitely potent and al-
lowed to annihilate as many particles of the original clus-
ter as it is possible before this cluster falls apart. (Period-
ic boundary conditions are used.) The fractal dimension
of the pervading cluster is found to be equal to 1.75.

Related to these models are the dielectric breakdown'?
and electrodeposition'* phenomena.

The models we introduce here are of the purely sto-
chastic class. They were specifically imagined to be of in-
terest for fracture and decay processes.

In some sense, only geometrical aspects are considered.
They can serve as paradigms for molecular beam destruc-
tion of thin films, but also for the reverse process, i.e.,
sputtering, as well as for the description of ion-ion explo-
sive reactions. However, besides the purely kinetic
growth (or fracture) models, there exists a class of ener-
getic models.!> Here we try to combine both aspects by
“perturbing” the purely kinetic process in requiring an
energetic constraint, i.e., mass (or number) conservation.
This serves to investigate a constraint effect on the
universality class of growth models through the calcula-
tion of the growth exponent. This mass conservation
condition exists in order to describe processes which
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occur and remain on a given energy shell. We force the
nucleon target to escape and to stick to the border, i.e.,
the external destroying beam is not energetically too
strong. In so doing we are only “perturbing” the kinetic
model.

1. F, MODEL

Consider a finite two-dimensional array of particles on
a (hereafter square) lattice of size L. This array is either
seen as the “target” or the “film” or the “nucleus.” Each
element of the target can be called a nucleon. The target
is supposed to be placed in front of a “gun’ shooting at
random on the target. When a site particle is hit, it sup-
posedly escapes along a straight line toward one of the
four borders of the target [Fig. 1(a)]. This direction is
chosen randomly (out of four possibilities). The escaping
nucleon is then forced to stick to the first available (i.e.,
empty) lattice site outside the “‘target.” Another shot is
then taken at the target, and is successful if there is a
“hit” on an occupied site. The hit nucleon is then re-
moved toward one of the borders, a.s.0. It can occur that
the shot is unsuccessful because the nucleon has already
been removed. Both types of events are counted for future
statistical analysis.

After many hits, it occurs that the original “sheet” (or
“nucleus”) is made of clusters. After a (to be determined)
number of hits p.,, the target falls apart because an
(“empty”) “fracture crack” extends from one of the origi-
nal borders toward the opposite one. This first fracture
crack extends, i.e., from “north” to “south” or from
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FIG. 1. A hit “nucleon” is removed toward the border in the
+x or ty direction and is trapped at the closest vacant site to its
original site but outside the target border: (a) F; model, i.e., for
constant target size, (b) F, model, i.e., when a nucleon can be
hit several times, i.e., the target size grows with the number and
type of hits.
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“east” to ‘““west,” but there is no distinction to make be-
tween the “polar crack” or the “equatorial crack.” (A
diagonal-like crack is not considered: indeed, the smallest
diagonal crack would occur when one of the corner nu-
cleons would be hit. This is trivial and statistically ir-
relevant.) Statistics of the (empty) cluster crack, its
“mass” M, its fractal dimension, and those of the remain-
ing clusters is made then, together with the measurement
of the radius of gyration R of the cluster assembly, with
Ri=Lw,2 , (1
G N ; i
where r; is the position of the elementary nuclei with
respect to the center of gravity of the cluster, and N is the
number of particles of the target (N=L32). It is, of
course, faster to calculate A(R?) with respect to the ini-
tial gyration radius of the defect-free target.

The random walk dimension Dy of the fracture
crack!! has also been calculated. Such a dimension mea-
sures the relationship between the number of steps Ny, of
a random walker and its rms displacement R, ie., b

N,=(R,)™ . 2)

However, fracture processes may continue after the
first crack has reached opposite sides. The second per-
colation threshold p.,, i.e., for the crack extending in the
“perpendicular direction,” has also been considered, and
the “mass” of the new total crack and clusters has also
been estimated. It is obvious that such cracks intersect
each other in this geometry. Results averaged over
several simulation runs are given in Table I. Five runs
were made for each lattice size with, respectively,
L,=10, 20, 40, and 60. The same five initial seeds were
used for the random number generator. The choice of
the target nucleus coordinates and of the escape direction
was always made in the same order.

The fractal dimension of the crack increases from 1.65
to 1.89 (after analysis from a logM-logL, plot). The
“mass” of the crack (i.e., the number of empty sites be-
longing to the crack) grows from 33.7% of the original
mass to 52.9% (see Table I). Notice that the relation'’
between the number of nearest neighbors z, the (Euclide-
an) dimension (d), and p_,, i.e.,

TABLE 1. Averaged results for the first (1) and second (2)
crack percolation threshold: p., and p,,, percolation threshold;
M., and M_,, the relative number of sites belonging to be crack;
Dy and Dy,, fractal dimension; D, and D,,, random walk di-
mension.

Fl F2
)23 0.584 0.783
P2 0.652 0.898
M, 0.337 0.310
M, 0.529 0.66
Dy, 1.65 1.31
Dy, 1.89 1.80
D,, 2.20
D,, 2.52
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zp.,=d/(d—1), (3)

is not well verified (p,;=0.584). This measures either the
“accuracy” of our results with respect to the exact result
of classical percolation without constraint which gives
p.=0.60, or shows that the constraint has moved the
model to another (though related) universality class.

II. F, MODEL

In the second model (F,), an (at first) apparently mild
restriction on F; is removed. In contrast to the F| mod-
el, where the target is always of the same (initial) size, the
target size is allowed to vary with “time” and grows with
the number of hits. In F,, a hit nucleon when placed just
outside the border remains part of the target [Fig. 1(b)].
The target is thus supposed to become a rectangle of vari-
able size for which the long and short widths depend on
the number of particles which have been removed in the
“east-west” or “north-south” direction. It may happen
that the rectangle widths do not change during several
hits because the escaping nucleon is removed in the oppo-
site direction along which it has escaped. Similarly, the
rectangle longest width can turn with time. In so doing,
the size of the target might also grow anisotropically, and
the fracture might be quite different.

This model has been imagined in order to maintain
mass conversation and to simulate cooperative slowing
down in fracture crack propagation. In particular, F,
can simulate the case of heavy-ion reactions in which
“energy waves” may propagate in the composite nucleus.
In this work, nucleons are, of course, indistinguishable.

In the F, model, the crack (percolation) threshold is
thus much more difficult to reach. This is due to the
“bouncing effect,” but also to the existence of many
(small) clusters which may appear outside the initial tar-
get region and which push further and further away the
borders of the target. Nevertheless, a percolation crack
threshold [Fig. 2(a)] has been found in each case (five runs
were made for the same lattice sizes as F). It is found
that p,,=0.783. The “‘empty mass” of the crack is small-
er in such a case (M,;=31% of the initial mass My=N)
than in the F, case. The fractal dimension obtained from
a logM-logL, plot is D =1.31, which is much smaller
than in the F| case (Table I).

A “‘perpendicular” crack is also expected to develop, as
in the F; case. However, the border of the target (or of
the original “nucleus”) becomes very diffuse when the
number of hits grows. Aggregation effects between “‘es-
caped clusters” can sometimes be observed. They may
become reconnected to the initial target. Hence, it has
been necessary to define the ‘first-second percolation
crack threshold extending between the original borders”
[Fig. 2(b)]. The largest size of investigated lattices does
not permit one to conclude whether an unambiguous
second percolation crack threshold exists. It may also
happen that the above value of p_, is, in fact, only a lower
bound. The ‘“empty” mass of such a second crack is
0.66M,.

Important observations which do not seem to be
infirmed by further investigations are the inequalities
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(Fy) (F,)
Aal >A4d
and
(F) (F,)
Ad;Z <:A4;2

The fractal dimension of the second crack (as defined
above) is 1.80. Notice that the fractal dimensions are sys-
tematically smaller for the F, model than for the F; mod-
el (Table I).

Cluster statistics has also been examined at the first
crack percolation threshold (Table II). As in DLA,!®
clusters containing a percentage s of nucleons (with
respect to the initial value N) obey a different law depend-
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FIG. 2. Typical configuration at the (a) first and (b) second
crack threshold for the F, model showing (X) cluster fragmen-
tation and the crack (O).
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TABLE II. Parameter value of the data cluster size distribu-
tion [Eq. (5)] in the F; and F, model.

Fl FZ
T 1.17 1.25
o (1.0 (1.0)
5. 0.03 0.01

ing on their size distribution. Many small clusters are
formed, and below a critical size s, obey the relation

ny(pe)=s~7 (s<s.), (4a)
while very few large and sparsely distributed clusters ex-
ist but obey the law

ny(p.)=exp(s/s )° (s>s.) . (4b)

Such a three-parameter (o, 7,s,) distribution cannot be
obtained unambiguously from the data. It is thus usual
to assume o=1. In so doing, the 7 (=1.2) and s,
(==0.02) values are of the correct order of magnitude
(Table II) to describe the distribution of (mass) events
found in (Au-Au or Mn-Mn) heavy-nuclei collisions, 718
but not for sol-gel polydispersity examples (r=2.5 in
mean-field theory'®?® and 2.2 for classical percolation.’

Notice also that it is easy to obtain the critical ex-
ponent & defined by Hermann!? for the gyration radius

R,=N°4(p), (5)
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where A (p)=(p —p.Y. One finds §=0.5. This is a
consequence of the mass conservation condition.

IV. CONCLUSION

Two simple models which can be the source of many
further investigations have been investigated to describe
decay or fracture models. A specific mass “‘conservation
law” has been imposed. The notion of the “second per-
pendicular crack threshold” has been introduced. Data
on cluster fragmentation are consistent with observed
phenomena (e.g., heavy-ion reaction). It appears that
geometrical (or probabilistic) considerations are basically
more important than dynamic ones, and that cluster
statistics is not controlled by dynamics. Fractal dimen-
sion and cluster statistics results seem to indicate the ex-
istence of various universality classes different from per-
colation and/or invasion and usual kinetic growth mod-
els.

Investigations of  percolation models under
conservation-law constraints thus seem of interest for un-
derstanding other peculiar physical phenomena. Other
applications beside layer fracture might be related to
growth such as nucleation “mechanisms” at first-order
transitions.”!

Extensions of these models can be imagined, e.g., (i) the
escaping nucleon would not escape to the outside border
but could be trapped at the first available site, or (ii) the
hit nucleon would randomly push one of its neighbors
(and the others in some way of another up to the border)
in order to escape. Moreover, the gun might be placed in
the target plane, while three-dimensional cases, shells,
other lattices, and so on, can be considered.

*Electronic address: U2150MA @ BLIULG11.

TElectronic address: FD23@UNTVAX.

1B. B. Mandelbrot, D. E. Passoja, and A. J. Paullay, Nature 308,
721 (1984).

2D. R. Curran, L. Seaman, and D. A. Shockey, Phys. Rep. 147,
253 (1987).

3H. Takayasu, Prog. Theor. Phys. 74, 1343 (1985).

4E. Louis and F. Guinea, Europhys. Lett. 3, 871 (1987).

K. Binder, Rep. Prog. Phys. 50, 783 (1987).

6H. Takayasu, Phys. Rev. Lett. 54, 1099 (1985).

D. Stauffer, Phys. Rep. 54, 1 (1979).

8C. W. Lung, in Fractals in Physics, edited by L. Pietronero and
E. Tosatti (Elsevier-North-Holland, New York, 1986), p. 461.

9B. B. Mandelbrot, Fractals, Form, Chance and Dimension
(Freeman, San Francisco, 1977).

10T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400
(1981).

113, R. Banavar, M. Muthukumar, and J. F. Willemsen, J. Phys.

A 18, 61 (1985).

12M. Eden, in Proceedings of the 4th Berkeley Symposium on
Mathematics, Statistics and Probability, edited by J. Neyman
(University of California Press, Berkeley, 1961), Vol. IV.

131, Niemeyer, L. Pietronero, and H. J. Wiesmann, Phys. Rev.
Lett. 52, 1033 (1984).

14R. M. Brady and R. C. Ball, Nature 309, 225 (1984).

I15H. J. Hermann, Phys. Rep. 136, 154 (1986).

16M. Kolb, R. Botet, and R. Jullien, Phys. Rev. Lett. 51, 1123
(1983).

17C. J. Waddington and P. S. Freier, Phys. Rev. C 31, 888
(1985).

18H. Feldmeier, Rep. Prog. Phys. 50, 915 (1987).

19p. J. Flory, J. Am. Chem. Soc. 63, 3083 (1941).

20W. H. Stockmayer, J. Chem. Phys. 11, 45 (1943).

213, D. Gunton and M. Droz, Introduction to the Theory of
Metastable and Unstable States (Springer, Berlin, 1983).



