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Embedded-atom-method interatomic potentials for hcp metals
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We develop here an empirical procedure for constructing embedded-atom-method (EAM) interatomic
potentials for hcp metals. This is based on fitting perfect-crystal lattice properties. The contribution of
the lattice inner degrees of freedom, due to the two atoms per lattice site, is included into the elastic
response of the crystal. It is found that the elastic constants of several hcp pure metals cannot be fitted

within the EAM. For example, no valid potential can be constructed for Cd, Zn, Be, and Y, which prop-
erly adjust the measured elastic constants. Neither could we find an appropriate fit for Zr.

I. INTRODUCTION

Many-body interatomic potentials either called
embedded-atom-method (EAM)' or empirical many-body
potential [Finnis and Sinclair (FS)] have been applied
successfully to the simulation of a variety of defects,
mainly in fcc- and bcc-related structures. Within that
approach, the total energy may be written as

where the contribution from the atom at site i' is

p;= g P(R;, ) . (3)

Although not generally done by other authors, in Eq.
(2) it is convenient to impose the many-body term F to
have null first derivative at the perfect lattice density.
This gauge, used hereafter, defines V(R) as an effective
pair-interaction potential. This pair potential should
predict a homogeneously stressed lattice under the ap-
propriate Cauchy pressure with the correct lattice param-
eter. Local many-body terms should therefore mainly
affect the relaxation pattern in the neighborhood of a de-
fect and they may be considered as higher-order terms in
a series expansion of the lattice energy.

Compared to the pair potentials, the above potentials
give a more realistic picture of static configurations and
dynamics of lattice defects, while the calculation remains
within reasonab1e computing times.

Contrary to the cubic structures, the hcp structure has
not been extensively studied using these kind of poten-
tials. Oh and Johnson developed in 1988 empirical
many-body interaction potentials for Mg, Ti, and Zr;
Willaime and Massobrio did so for Zr and Igarashi,

E, =
—,
' g V(R, )+F(p;),
j (&i)

j points to a neighbor atom located at the position R, .

with the origin at i, V(R) is a standard pair-interaction
term and F(p) is the so-called "embedding function. "

p
stands for the "local electronic density" and is given as a
superposition of pair functions:

Kanta, and Vitek (IKV) developed relatively more realis-
tic interatomic potentials for Zn, Mg, Be, Co, Zr, Ti, Ru,
and Hf. All those works neglect the contribution of the
lattice inner degrees of freedom to the elastic constants.
This is null for centrosymmetric lattices and IKV claim
this contribution is not important in their case. Howev-
er, it was already noticed that disregarding this internal
relaxation led to an important miscalculation of the C44
shear in Si. Therefore, it may be relevant to hcp crystals.

In Sec. II next, we deduce the elastic constants for an
hcp lattice in terms of the interatomic potential deriva-
tives. We find that not all sets of experimental elastic
constants can be fitted within the EAM. In Sec. III, a
scheme is developed for building the potentials and subse-
quently applied to several hcp metals. Finally, and in the
light of our previous work, we discuss briefly the possi-
bility of improving the EAM in order to fit the measured
elastic constants of any hcp metal.

II. ELASTIC CONSTANTS FOR hey CRYSTALS

In 1965 Czachor' deduced the elastic constants for
hcp crystals in terms of the components of the dynamical
matrix. Later, the expression for those constants was ob-
tained in the case of a pair interatomic potential with a
third-neighbors interaction range. " Both works rely on
the method of long waves, where the elastic constants
are obtained as a by-product of the dynamical matrix in
the long-wave length limit. More recently, Martin' '
has given a thorough analysis of the method of uniform
deformation applied to general monoatomic lattices; this
author writes the energy density as an expansion in atom-
ic clusters of arbitrary order. We use here an extension
of the method of uniform deformation applied to the hcp
lattice, as it was done before for the cubic metals, assum-
ing an interaction of the EAM type. This allows full use
of symmetry properties, resulting in a relatively simple
algebraic manipulation. In brief, a uniform strain is ap-
plied to the crystal and the energy change is evaluated.
The latter quantity is given as a quadratic form (positive-
ly defined) of the strain components. To calculate the
coefficients of the energy expansion, which are directly
related to the elastic constants, a convenient tensor basis
is employed.
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If a virtual displacement dR; of the j neighbor of site i
is imposed, the EAM energy of Eq. (2) can be expanded
to second order as

lattice symmetry. On the other side, the stress-free re-
quirement gives the two equations known as Huang con-
ditions:

dE, =—,
' g V'(R;J )dR +—'. g V"(R; )(d. RJ ) + —,'Fo'(5p;)

J J

(4a)

gN R V~(((v)=0,

g N„R„V'ri(v) =0,

(7a)

(7b)

where

dR, =(r,"~dR,")+1/(2R;, )(5—r,,r;, ~dR;, dR; )

(4b)

and

where v stands for the vth shell about the origin and N„
for the number of atoms belonging to this shell. The
decomposition of a vector in parallel and perpendicular
components to the axis c was used, namely,

r=r~~+r~

5p, =g p'(R J )dRJ =g p', g dRJ .
v jE'v

(4c) with

r;J is a unit vector pointing from atom i to j, the symbols

f ' and f" stand, respectively, for first and second deriva-
tives of the function f, whereas ( AB) is the dyadic ten-
sor:

( AB)~p= A Bp .

( A~B) is shorthand for the scalar product

(A~B)= y ~., a.,
Qp Py ~ ~ ~

and 5 is the Kronecker tensor of rank 2.
In (4c) the sum over j was decomposed as a sum over

the atomic shells that surround the reference site; this
simplifies the algebra because each shell retains the lattice
symmetry.

%'hen a uniform strain is applied to an hcp crystal, the
lack of inversion symmetry with respect to the atomic po-
sitions imposes forces between the two Bravais lattices of
the hcp structure. These forces are relaxed in order to
minimize the elastic energy. This (virtual} elastic energy
not only depends on the square of the strain components,
but also on the relative displacement of the two lattices
("internal strains"). Therefore, under a homogeneous
strain e the atomic positions change by

q2(V, s) = [(~&~
—e»)s, 2s, e»]P/4—,

q3(s) =siigii/4+sigj /4,
where

P =g' —,'N (V,"—V„'/R )R„rz(v)cos(3a„), (10)

g„=g'N, [V"+ ( )( V'„/R, —V'„')],

r~~=r3 and r = 1/r, +r2

where subindexes 1,2,3 refer to the coordinate axes of
Fig. 1. The quadratic terms in the energy expansion, Eq.
(6},allow us to deduce the expressions for the elastic con-
stants. On one side, q &

(e ) does not depend on the relative
displacement between sublattices and it is, therefore, the
quadratic contribution to the energy for a simple hexago-
nal lattice which agrees with the expressions deduced in
Refs. 4 and 6, where inner degrees of freedom were not
considered. On the other, q2(V, s) contains the coupling
terms, cross-products between displacements and strains.
Finally, q3(s) is a function only of the relative displace-
ment.

In the coordinate system sketched in Fig. 1 we find
after some little algebraic manipulations:

VRoJ~ if jCXo ~

VR, +s, if j(Z:X

(Sa)

(5b) g, =g'N [V'/R„+ ,'rf(v)(V'„' ——V„'/R„)] . (12)

where jCXo stands for the atomic positions of the same
sublattice than the reference origin 0, jKXo for the other
sublattice, and s is the displacement between the two of
them. The reasoning would be identical if the equicenter
between the two lattices were considered:

'V.Ro. —s/2, if jCXo,
7-R +s/2, if j(Z:X

The sums of (10), (11), and (12) extend over the atomic
shells that do not belong to the same sublattice than the

Replacing (5) into (4a) leads to

dE =L(e,s)+q, (e)+q2(e, s)+q3(s),

where L (V, s) is a term linear in Pand s, while the terms q
are quadratic in their arguments. Therefore, for a stress-
free and force-free lattice, L(e, s) must be zero. The
force-free requirement is satisfied as a consequence of the

FIG. 1. Sketch of the (0001) stacking in the hcp structure
showing the reference coordinate axes used.
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aE/asia =0-ski =0,
BE/Bs, =P(& E2p)+2s Q

=0—si = P—/2Qi(e» &2—2»
BE/Bs2 = —2Pe, 2+2szQi =0 s2 =P/Q1e, z .

Therefore, Eq. (6) can be rewritten as

dE=q, (e)—
—,'(P /4Q1)[(e„—@22) /2+2', 2] .

(13a)

(13b)

(13c)

(14)

By lattice symmetry arguments and proper mathemati-
cal handling, it can be seen that the second term of Eq.
(14) contributes only to the (c» —c,2) eigenvalue of the
Voigt matrix.

Finally, the following equations for the five indepen-
dent elastic constants of an hcp crystal are obtained:

Fo g(r~~) g (ri) =20(c13 c44)

g N, r
~~

(v)@„=2Qc33 4 (c» c44) + (

(lsa)

(15b)

g N, r, (v)g,

= 4Q(c11+c12)—4Q(c13 c44) g (ri) g (r~t)

(15c)

g N ri(v)r1(v)$, =4Qc44, (15d)

( I/fl)(P /4Qi)

2(3 12 cll ) 2(c13 c44)X (rl)

(15e)

reference atom (the sum in this case is indicated with g')
and n is the angle between rz and the positive sense of
axis 1 (see Fig. 1). (Note that axis 1 belongs to a vertical
mirror plane. ) With L (V, s) =0, the minimum of Eq. (6)
with respect to the displacements gives

TABLE I. Experimental values for the two members of Eq.
(17a) C;, in eV/A, values taken from Ref. 23.

Be
Y
Hf
T1
Zl
Sc
Tl
Mg
Co
Zn
Cd

(3C&2 —C» )/2

—0.67
0.012
0.11
0.26
0.14
0.09
0.22
0.047
0.55

—0.20
—0.028

( CI3 —
C44 )

—0.97
—0.05

0.037
0.11
0.18
0.01
0.13
0.025
0.12
0.06
0.106

c/a

1.568
1.572
1.581
1.588
1.593
1.594
1.598
1.624
1.623
1.856
1.886

—,'(3c,2
—c» ) )c» —

c44 . (17a)

Table I summarizes the experimental values of the two
members of Eq. (17a) for several hcp metals. It can be
seen that no EAM interatomic potential can be fitted to
the elastic constants of Zn and Cd, whereas Zr is a doubt-
ful case depending mainly on the number of neighboring
shells included within the range of 1l). Our fitting scheme
developed in Sec. III is unable to give a potential for Zr.
This explains the observations of IKV regarding the
somewhat unphysical behavior observed in their poten-
tials for Zn and Zr, and the impossibility to fit a potential
for Cd.

On another hand, Eq. (15a) shows that the sign of F"
at the equilibrium density (Fo ) is determined, within the
EAM, by (c» —c44). A. negative Fo implies that the
many-body part of the energy would tend to destabilize
the lattice structure. This same argument is developed by
Daw' and from a more fundamental side the need of a
positive Fo is clearly explained by Carlsson. ' Therefore,
in addition to (17a) an EAM potential can be fitted to the
elastic constants, provided

where 0 is the atomic volume and

g(r1 ) =g N, R P'„ri(v),

C13 C~ &0

which is not the case for Be and Y, see Table I.

III. INTERATOMIC POTENTIAL FITTING

(17b)

g(r~~) =gN„R„P',r

P,=R „V'„' —R V', .

As Q1 is the coefficient of si in the quadratic positively
defined expression, Eq. (6) [and therefore Eq. (9)], the
left-hand side of Eq. (15e) happens to be positive, imply-
ing a restriction on the potential fit. Also, if (t is a mono-
tonous decreasing function' the sign of the right-hand
side of Eq. (15e) is nearly independent of the particular
functional form of P. For geometrical reasons

(16)

In this section we develop a procedure to obtain an
EAM interatomic potential for the hcp metals. This is
built to match the lattice parameters a and c, the cohesive
energy, the vacancy formation energy, and the elastic
constants, Eqs. (15). The potentials are developed only
for metals where those constants satisfy the condition of
Eqs. (17a) and (17b). The independent fitting of a and c is
obtained by fulfilling the two equations (7) (Huang condi-
tions). From Eq. (2) the cohesive energy of the crystal at
equilibrium is

E,= —
—,
' gN„V +Fo

Therefore, the EAM model imposes the following re-
striction on the elastic constants of an hcp structure:

In addition, for extending the validity of the potential
outside the near equilibrium configurations, the expres-
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TABLE II. Data fitted by the potentials. (a) The basal lattice parameter a and c/a ratio are from
Ref. 24. Cohesive energies E, from Ref. 25. The vacancy formation energy Ef is —,

' E, for Hf and Co,
whereas for Mg it is from Ref. 27 and for Ti from Ref. 26. (b) Elastic constants C,-,. in eV/A' from Ref.
23.

(a)

Hf
T1

Mg
Co

3.194
2.951
3.209
2.507

1.581
1.588
1.624
1.623

(ev)

6.44
4.85

1.51
4.39

EU

(eV)

2.15
1.55

0.80
1.46

Hf
Tl
Mg
Co

1.1866
1.0992
0.3962
1.9944

C

1.2759
1.1891
0.4148
2.3321

0.3745
0.3171
0.1150
0.5144

Cia

0.4650
0.5424
0.1619
1.0368

0.4089
0.4263
0.1355
0.6373

sion of Rose et al. ' is used. Those authors propose a
universal dependence of the cohesive energy on the lat-
tice parameter:

suits:

Ef = —
—,
' g N„V, + ,'Fo' g N „—p,. (20)

E (a ) = E,(1—+a )e

with

a =3t'(Q(B ) )/E, ]'~ (a/ao —1)

and

(B ) =
—,'(2c)) +2c)2+4c(3+c33),

(19)
For fitting the potential, first a functional form for the

electronic potential P(r) must be assumed. Afterward,
Eqs. (7), (15), (18), (19), and (20) constitute a set of nine
equations with I'o Fo and the pair-potential parameters
as unknowns.

As an electronic potential we choose a Thomas-Fermi
screening function

where a is the basal lattice parameter and ao the equilib-
rium parameter. (B ) is the average (Voigt) bulk
modulus, and its definition is consistent with the elastic
response to uniform dilations implied by Eqs. (15).

Finally, the vacancy formation energy can be fitted.
VA'thout allowing for lattice relaxation, this energy re-

P(r)=e ~"~'/(r/a) with P=5 (21)

as we already did in a previous work, smoothly matched
to zero at r /a =2.1.

For the pair interaction we choose a seven-piece cubic
polynomial, continuous at the matching nodes together

TABLE III. Potential parameters R; in units of a, A;, Fo, and Fo' in eV.

Rl
R2
R3
R4
R5
R6
R7
Al
A2
A3
A4

A5

A7

Fo'

Hf

2.1

1.8
1.7
1.65
1.4
1.02
1.0
0.540 962 53

—4.934 796 2
—9.759 854 4

18.344 396 3
—3.728 852 8
197.905 8192

—199.888 792
—4.296
20.430

2.1

1.8
1.7
1.65

1.05
1.0
0.426 267 08

—2.460 91326
—7.168 303 10

10.631 178 6
—0.807 124 1

50.249 469 0
—42.260 581 6
—3.316
52.286

Mg

1.8
1.75
1.73
1.72
1.4
1.05
1.0

—5.126 962 16
15.965 471 7

—31.000 515 6
21.084 575 0

—0.312 737 49
23.329 048 4

—24.147 421 8
—0.714

14.132

Co

2.1

1.8
1.7
1.5
1.3
F 1
1.0
0.263 789 17

—0.707 060 79
—1.801 508 45

2.698 423 62
—0.350 486 95
32.524 020 0

—4.109211 22
—2.941
40.271
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with the first and second derivatives

7

V(r)= g Ak(Rk r—) H(Rk r—),
k=1

(22)

where H (x) is the Heaviside function

0, ifx~0,
H(x)= '1 f 0

0.6

0.4—

0.2—
0
0)

0.0—

0
-0.2-

-04—

-0.6
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

rla

0.4

0.3—

0.2

(b) .

0.1OI
0.0—

~ -01—

The seven coefficients of Eq. (22) constitute the remain-
ing unknowns of the set of equations mentioned above.
The positions of the matching nodes (and particularly the
cut-off distance) can be properly selected to obtain a
stable hcp structure against other crystal lattices and
reasonable values for the stacking fault energies. The sys-
tem of equations is well stated and easily solved, despite
the nonlinearity implied in (15e). It may be viewed as
finding the intersection points of a straight line in N-
dimensions, determined by all the equations but (15e),

and a quadratic surface defined by (15e).
To obtain the embedding function F(p) consistent with

the deduced values of Fo and Fo', Eqs. (2) and (19) are
used, i.e., a numerical fit of F(p) to Eq. (19) and the
above expressions for the density and pair part of the in-
teraction is done. '

The method outlined above is applied to the metals

Mg, Co, Ti, and Hf. The experimental data used is sum-
marized in Table II, and the parameters defining the
effective pair potential of Eq. (22) are given in Table III.
The latter function is also plotted in Fig. 2.

IV. DISCUSSION AND CONCLUSIONS

We have obtained many-body EAM interatomic poten-
tials for Hf, Ti, Mg, and Co. Those potentials fit the lat-
tice parameters in equilibrium, cohesive energy (including
its dependence with pressure), vacancy formation energy,
and elastic constants.

In addition, we showed in Sec. III that the EAM does
not allow us to obtain an appropriate fitting to the elastic
constants of Be, Y, Zn, and Cd and, for reasons there dis-
cussed, we have not been able to do so for Zr.

The EAM potentials deduced above should predict a
stable hcp lattice against other possible structures and
reasonable values for the energy of extended defects. We
have checked their stability against the fcc phase and cal-
culated the I2 stacking fault energy on the basal plane,
which must be positive. These quantities are reported in
Table IV. As it is expected, both quantities, i.e., the ener-

gy difference with the fcc phase and the stacking fault en-

ergy, are strongly correlated. Within the fitting pro-
cedure both energies were optimized by varying the knot
positions of the pair potential and at the same time trying
to obtain a "well-behaved" function. However, the
values for the stacking fault energy so obtained are at
best reasonable. The situation regarding this point is
controversial, there is no general agreement between ex-
perimentally reported values' ' and theoretically calcu-
lated ones. Nonetheless, the authors' feeling is that the
obtained values are probably too small, particularly for
Ti and Hf, as results from comparison with values report-
ed by Legrand. We also found that the many-body con-
tribution to the stacking fault energy is of minor impor-
tance. For example, in order to get a positive value the
effective pair potential must have an interaction range
beyond fourth neighbors of the hcp structure. This is the
same situation encountered with simple pair potentials.

Regarding previous work done in hcp metals, we be-
lieve that ours has some advantages. The work of Oh

-0.2—

-0.3

TABLE IV. Calculated properties: AE is the energy
difference with a metastable fcc phase; y is the I2 stacking fault

energy.
-0.4

0.6 1.2 1.4 1.8 AE (eV/atom) y (mJ/m )

rla

FIG. 2. Effective pair potentials for Ti and Hf (a), and Co

and Mg (b).

Hf
Tl
Mg
Co

0.039
0.023
0.0083
0.007

154
104
30
41
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and Johnson only adjusts two average elastic constants
and adopts fully empirical expressions for the potential
shape. Willaime and Massobrio try a more physically
solid approach to the potential analytic expressions based
on tight-binding approximations. This allows them to in-
clude the phase transformation in Zr. However, these
authors do not attempt a proper fitting to the elastic con-
stants in either phase (bcc and hcp). Finally, IKV do a
more careful empirical fit of their potential. We shall
concentrate hereafter in comparing our results with those
of IKV.

It is interesting to compare our system of equations to
fit EAM potentials to hcp metals with the one used by
IKV. Apart from our gauging that makes of the pair
part an effective potential, the main difference appears to
be (1) that IKV do not adjust any pressure dependence of
the cohesive energy and (2) the different fitting of the
elastic constants.

To adjust a pressure dependence of the cohesive energy
may be very important for large density clusters; for ex-
ample, at the neighborhood of an interstitial atom.
Therefore, for the case of cubic structure metals it is
common practice' to fit the EAM potential to Rose
et al. ' expression as done by us above. However, a non-
fortunate selection of the fitting polynomial functions for
the pair part of the interactions may cause a change in
the curvature for distances below first neighbors. This is
the cause of the difference between the FS potential for
Nb and ours as compared in Ref. 9. Therefore, we have
either tried to avoid this change or tried its occurrence at
distances very near the origin in the hope those distances
would not be reached in the applications.

Regarding the equations for the elastic constants, IKV
instead of fitting the many-body part of the potential to
the Cauchy pressure term (c&3 —c44), Eq. (15a), as we do,
they adjust the value of c,2

—c66=(3c&2—c»)/2. Their
Eq. (7) for this elastic constant is obtained by combining
our Eqs. (15a) and (15e) if P is set to zero. This implies
that, as said above, IKV s potentials are not in equilibri-
um for the internal degrees of freedom of the lattice, i.e.,
do not satisfy Eq. (15e). The contribution of the inner
strains may be even larger than the many-body contribu-

0.2

0.1

I
0.0-

-0.1

-0.2
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

r/a

0.4

0.3

tion, as is clearly evidenced in Table V. In the first
column of Table V the experimental values of (c,2

—c66)
are reported (remember that this is the elastic constant
that the many-body term of IKV tries to fit}. The relative
importance of the inner degree of freedom, neglected by
IKV, is reflected in the values of P /4Q& of Eq. (15e).
This quantity, calculated by using IKV's potentials and
ours are, respectively, reported in the second and third
columns of Table V. It appears that the worst cases,
those where neglecting inner strains implies a large error,
are Hf, Ru, and Zr. For Ti and Mg the inner strains con-
tribution only amounts to, respectively, 10 and 20% of
the value of (3c,z —c»}/2, see Eq. (15e) and Table V.
Therefore in these cases, IKV's potentials should be simi-
lar to ours and some of the differences observed in Fig. 3
may be due to a difference in the fitting procedure.

Any discrepancy in fitting the elastic constants should
show in the slope at the origin of the phonon dispersion

Metal

Hf
T1

Mg
Co
Be'
Ru'
Zl
Zn'

( C]2 —C66 )0'
2.324
4.665
1.040
6.179

—5.482
—0.655'

3.360
—3.161

P2/4Q b

5.207
0.578
0.225
0.901
2.152
6.736
5.120
2.192

P~/4Q '

1.596
2.823
0.571
4.842

TABLE V. Inner strains contribution P /4Q~ for several hcp
metals in eV.

0.2

0.1
OI

0.0

-0.1

-0.4
0.6 0.8 1.0 1.2 1.4 1.8 2.0

'Experimental values.
Calculated from Ref. 6.

'This work.
Low temperature value.

'No EAM interatomic potential 6tting was attempted by us.

r/a

FICx. 3. Comparison between effective pair potentials for Mg
(a) and Ti (b). The curve without a label is from this work
whereas (r) is from Ref. 6.
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curves. Due to scaling reasons this point is difficult to
clarify from IKV's plots, however, inconsistencies are ap-
parent in some cases. For example, the slope shown in
their Fig. (6b) for the calculated transversal acoustic
[100] branches for Hf diff'ers from the experimental one.
The measured values of c44 and c«are 0.37 and 0.36
eV/A, respectively, and both branches should nearly
coincide at k =0, as experimentally evidenced. The fact
is that IKV's calculation of the phonon spectra is the
correct one for the interatomic potential adopted; while
their expression for fitting the elastic constants, does not
include the internal strains that necessarily appear in an
elastically distorted lattice held by the same potential.

Finally, in Ref. 9 we found that, for fitting some of the
properties of Cr, a bcc transition metal, the inclusion of
an angle-dependent term in the many-body part of the
cohesive energy was needed. Here we have seen that the

EAM is not suitable for several hcp metals. We are de-
veloping therefore an approach analogous to the one of
Ref. 9, in the hope this might solve the above drawback
of the EAM when applied to hcp transition metals.
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