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Phase transitions in layered superconductors
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A system of superconducting layers with 3osephson coupling J between them is studied. When the
in-layer penetration depth A,, is larger than the spacing d between layers, as in Cu02-based supercon-

ductors, there is a single three dim-ensional transition temperature T, Th.e ratio T,/r, where

r =pt|/4tr A.„ is found to vary from ——,
' to —1, being near —,

'
when J/T, is exponentially small.

When l,, +d a two dim-ensionai (2D) behavior is possible; in particular, bulk superconductors separat-
ed by 2D junctions exhibit a 2D transition, below the bulk transition, in which the junctions become
ordered. This 2D behavior is due to the gauge coupling and is absent in an XY model where X,,

Phase transitions in layered superconductors are of con-
siderable interest since most of the high-temperature su-
perconductors have a layered structure. In particular, the
separation between conducting CuOz layers can be con-
trolled by preparing YBazCu307/PrBazCu307 superlat-
tices. ' T, is found to drop from -90 to -20 K, indi-
cating that T, of YBa2Cu307 is far above that of an iso-
lated layer. Data on multilayers of Bi2SrzCaCu20s with
semiconducting BizSrzCu06 have also shown a decrease of
T, from 59 to -30 K. These experiments focus our at-
tention on the crossover from a two-dimensional (2D)
phase transition of an isolated layer to a 3D transition of
coupled layers.

The model for layered superconductors ' involves a
Ginzburg-Landau continuum model for each layer and a
Josephson coupling J between neighboring layers. This
model defines two types of topological excitations: (i) vor-
tices, which are point singularities in each plane, and (ii)
fluxons, which are lines parallel to the layers across which
the relative phase of neighboring layers changes by 2n.

The system with J=O has been studied by several au-
thors. ' It was found that although the planes are cou-
pled via the 3D magnetic field, the vortex-vortex interac-
tion is logarithmic in distance, similar to the case of an
isolated layer. It is expected then that a Kosterlitz-
Thouless (KT)-type phase transition'' ' will occur at a
temperature T, , although an explicit renormalization-
group (RG) study has not been given so far.

When J&0 fluctuations of fluxon loops compete with
the vortex transition. Assuming that vortices are absent,
the system has a phase transition at Tf, at T & Tf fluctua-
tions of fluxon loops destroy the correlation between layers
allowing for an independent 2D behavior of each layer,

I

awhile for T & Tf the layers are correlated resulting in a
3D long-range order. The neglect of vortices is consistent
for isolated or widely separated junctions, ' e.g. , junctions
on twin boundaries in YBa2Cu307, or if Tf & T, , (Ref. 15)
so that vortices are not excited thermally.

A discrete-Gaussian version for the free energy of lay-
ered superconductors has recently been studied by
Korshunov. ' He found that T,, & Tf for all model pa-
rameters, thus eliminating the possibility of a KT transi-
tion. The 3D transition T, was then claimed to be near T,,

with ln(T, —T,, )-T,/J. A closely related model is that
of an anisotropic layered LY system, ' where it was ar-
gued that T, —T,, —In (J/T„).

In the present work I follow the brief outline in Ref. ) 8
and study the phase transition in three steps: (i) Solution
of the J=0 system by second-order RG, showing that a
KT-type transition occurs at a temperature T, (ii) Solu-
tion of the J~O system, assuming no vortices, by RG and
showing a KT-type transition at Tf & T, (iii) Finding
the 3D transition temperature T„by comparing the vortex
and fluxon correlation lengths. It is also shown here that
when the layer spacing d becomes larger than the effective
penetration depth X„a finite-size transition at T,, & Tf is
possible. In particular, a 2D junction separating bulk su-

perconductors can be thermally disordered this feature
is absent in a corresponding XYmodel, for which X,,

The conventional effective free energy F for layered su-

perconductors ' is derived by assuming a constant
amplitude for the order parameter (i.e., T is not too close
to the mean-field transition temperature) and a weak
cosine-type Josephson coupling between neighboring lay-
ers. (ln fact, higher powers of the cosine can be shown to
be irrelevant near the fluxon transition Tf )Hence, .

2

F= d'rdz (VXA) + g Vv„(r) —A(r, z) 6(z —nd)
I

l z l 0

8m~ p gg 2x

J r nd

2 g d rcos ta„(r) —p„-~(r) —(2tr/po)„A, (r, z')dz' E,g (sr), — (I)
(o n" f,N

~here p„(r) is the superconducting phase on the nth layer, r is the position vector in the layer, A(r, z) is the vector poten-

tial, Po =bc/2e is the flux quantum, E, is the loss of condensation energy in a volume (odo, and s„=+' I at the vortex sites

while s„=0otherwise. The length scales are k, =A, /do with k the London penetration depth parallel to the layers, do the

thickness of each layer, d (& do) the separation between layers, and (o the in-plane correlation length; typically
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k, = 10 —10 A»d = 10 A for the Cu02 systems. The four terms of (I) describe the 3D magnetic energy, the 2D su-
percurrents, the Josephson coupling, and the vortex core energies, respectively.

It is useful to rewrite Eq. (I) in terms of the natural variables s„(r) and 8„(r), where

f nd
y„(r) =ps„(r')a(r —r')+p„(r), 8„(r)=y„(r) —y„-~(r) —(2n/pp) A, (r,z')dz',

f

with a(r) =tan '(y/x), p„(r) is the nonsingular part of p„(r), and the sum on r is defined on a lattice of spacing gp. The
vector potential A(r, z) is a Gaussian variable and can be integrated out by first solving its equation of motion in terms of
s„(r) and 8„(r) and resubstituting in (I). [Note that A, in (I) is determined by a gauge condition. ] The gauge invariant
result is

F'= —,
' T g s„(r)G,, (r —r', n n')s—„(r')+E,gs, (r)+ —,

' TQGf '(q, k) ~8(q, k) (
n, r;n', r' n, r q, k

—(J/gp) g„d rcos, 8„(r)+g [s„(r')—s„-~(r')]a(r —r'), , (3)
n f

dr = —2y y r(r/8T) [I —u(()ld(g,
where

sinh(d/g)b(()g
2), [1 —b'(g)]'" '

b (()=2k, /[2X, cosh(d/() +(sinh (d/()];

(sb)

y depends on the procedure for smoothing the cutoff' '

(a cutoff represented by a mass insertion yields y=8n).
To first order in yp [Eq. (5a)] the fixed point is deter-

mined by u(~) =(I+4k, /d) '~ so that the phase tran-
sition temPerature is

T,, =(r/8) [I —(I+4K.,/d) '~ ]+O(y ) . (6)

where q, k are the Fourier transform variables of r, n, re-
spectively, and

G,, (q, k) =md(r/T) [[I+f(q, k)]q ] ', (4a)

Gf(q, k) =4m(T/r )(d /X, ) [ I+ (4)j,,/d)

x sin (kd/2)]/q, (4b)

with f(q, k) =sinh(qd)/[2k, q[cosh(qd) —cos(kd)]I and
r =Pp/(4n I,, ). Equation (3) is the effective free energy
written in terms of the natural excitations of the system—vortex singular points s„(r) and the phase 8„(r) which
defines fluxons; the latter are topological line excitations
such that 8„(r) varies by 2n across a line in between one
pa i r (n, n —I ) of planes.

Consider now the J=0 system. The energy of a vortex
of length l (i.e., l singularities on the planes n=0,
I, . . . , l —I at r=0) for )j,,»d and l«(A, ,/d)'! is E(l)
=(r/4)lln(R/gp), where R is the in-plane size. The
lowest-energy excitation corresponds to 1=1; following
the KT (Ref. 11) argument by adding the entropy—TlnR indicates an instability at T,, =r/8 above which
I =1 vortices are thermally excited.

The proper description of this transition is via RG equa-
tions. "' A duality transformation to a sine-Gordon sys-
tem with a field g„(r) and integrating its in-plane momen-
tum from I/g to I/g —d(1/() renormalizes (i) the fugaci-
ty yp=2exp( —E„/T) =y(gp) to y(() and (ii) the cou-
pling r for the on-plane terms (n =n') of Vg„(r)Vg„(r) to
r(&) via

dy y[2 —(r/4T) [I —u(g)]]dg/g, (sa)

I

To second order in yp, the fixed point depends on u(().
However, for typical cases of Cu-02 layers with d S(p
«X„u (g) is fairly close to u(0) for all g & gp and Eq. (5)
yields the standard KT trajectories"' (dashed lines in

Fig. I); T,, is then T,, = (r/8)(l —yyp) for A,„»d.
Note that r = r(T) since the effective free energy (I)

involves a temperature dependent X. Defining T, as the
transition temperature of a corresponding isotropic 3D
system and assuming that the relevant temperatures are
not too close to T, , the mean field form X(T)
=ltp(1 —T/T„) '! can be used. Hence r (T) = rp(1—T/T„) where rp=ppdp/4 An& (typically rp= 10 K)
and from Eq. (6) T,, =T„[l+8T,. /rp] for d«k, .

It is interesting to consider the case of d & A,, which ap-
plies to isolated or well-separated 2D junctions, e.g. , junc-
tions on twin boundaries in YBazCu307. ' For g«A,„
u(g) « I and the scaling (5) acts as if T,, =r/8, while in

the final integration range (»d, u(g) = I —2k, /d and
scaling proceeds as appropriate for the thermodynamic
limit transition T,, =A,, r/4d+ r/8. Thus for k, r/4d5 T

y, J
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III i

II I
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FIG. 1. Scaling trajectories of vortex fugacity y (dashed
lines) and of Josephson coupling J (solid lines) for d«k, .
Regions II and IV are in between the straight lines yyo=+ )8(Tlr) —l f and yJo=+ I rlT —I f, respectively; regions
I, III, and V cover the other regions, as indicated. Circles mark
the initial values of y or J on the trajectories defining T,. and Tf,
and on the crossing trajectories (for which g,.p= (I) which deter-
mine T, .
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& r/8, y(() first decreases, as if the system were ordered,
but eventually y(g) increases when ( & A., to signal the ac-
tual disordered phase. It is possible, however, that the
latter increase is smaller than the former decrease due to a
finite size R. This defines a finite-size transition tempera-
ture T,', which can be much higher than T,, if d))A,„
T;, =(r/8) ln(2A. ,/&p)/In(R/&p)+O(yp), R»k, , (7a)

T,', =r/8+O(yp), R«A, (7b)

d ln J =2[1 —x]d in(,

dx = —2y J x ding,

where

j = —', y2 [1 +2d/3k, +d /6A, „]( I +d/2X„)

(Sa)

(Sb)

Equations (8) yield KT-type trajectories (solid lines in

Fig. I) and a phase transition at the temperature

For T & Tf, J is irrelevant (region V in Fig. I), i.e.,
thermally excited fluxon loops cause J to renormalize to
zero. For T & Tj (regions I-IV) J is relevant and long-
range order between layers is established (assuming of
course no vortices, s„=O). Note that not too close to Tf
(below region IV) the x (() renormalization can be
neglected and Eq. (8a) yields

J(g) =J.(g/g. ) (10)

Note that the existence of T,", is due to the gauge cou-
pling e; for the corresponding XY model (e 0 and
k„-e ~) the condition d&k, for Eqs. (7) cannot
apply. Consider two interesting limiting examples where
the effect of e~O is significant. First, the well-known case
of an isolated superconducting film, ' i.e., d ~. Unlike
the LY system, there is no strict phase transition in this
case (T,, -d 0) and just the finite-size transition (7)
survives. This is due to the screening of the vortex singu-
larity beyond the distance X,„a screening which is absent
in an LY model. The second example is the case of thick
layers, i.e., a system of bulk superconductors joined by 2D
junctions (both d and dp become large). Although the
starting model equation (I ) is not applicable when
dp»A. „ it is instructive to see the formal result of the
model in this limit, i.e., T,, 0 while T,', T, ; the latter
is the correct T„since the layer is now a bulk system.

I proceed next to study a second limit of Eq. (I), name-
ly J&0, but vortices are assumed to be absent, i.e. ,
s„(r)=0 in (3). This is a 2D sine-Gordon-type problem
which can be studied with the same RG procedure as
above. Since the q dependence of Gf(q, k) is just 1/q,
there are no correction terms like u(g) above; instead,
however, there is an essential k dependence which in order
J is renormalized. Define therefore a scaling function
g(k, () via Gf(q, k;() =Szg(k, ()d/q, with the initial
form Gf(q, k;(p) =Gf(q, k) given by Eq. (4b). To second
order in J, increasing the scale g from (p renormalizes
Jp=J/T to J(() and xp=(I+d/2A, )T/r to x(g)= (d/2tr) fdk g(k, () via the recursion relations

The correlation length gf is then identified by J((f)= l.
For d«A, , and yp, yJp«1, Eq. (9) is a factor of 8

larger than Eq. (6), or in terms of r p, T,, = Tf/(I
+7Tf/rp), so that T,, can be considerably smaller than
Tf, in fact, for all values of d/)I, , we have T, , & Tt T.he
scheme above is therefore inconsistent in regions II-IV
where both y and J are relevant variables. This confirms
Korshunov's result' —there is no 2D regime and the tran-
sition is intrisically 3D with T,, & T, & Tf.

Finite-size effects change the latter conclusion when
k, «d. The vortex system has a finite-size transition
given by Eq. (7) as well as a strict thermodynamic transi-
tion at T,, =pp/16m d+O(yp). On the other hand, the
fluxon system has just the strict transition at Ty=pp/
2tr d+O(J); thus Tt =ST, , but Tf«T, ", . Finite-size
effects in A.,«d systems can therefore provide a tempera-
ture range Tf & T & T,", in which 2D behavior is
effectively valid. In particular, 2D junctions between bulk
superconductors where T,", T,. have the range
Tg & T & T,. in which the junctions are thermally disor-
dered. [Tf formally vanishes as d ~; however, modify-
ing the model equation (I) for this case leads to a finite Tj
(Ref. 14).]

The latter result is remarkable: a boundary such as a
junction can be thermally disordered while the bulk has
long-range order. This result is due to e~0—the finite
screening length A,, allows fluxon fluctuations in the junc-
tion while the bulk remains ordered. For the LY model,
A.,-e -' ~ and the junction orders as soon as the bulk
does.

I proceed now to determine T,. by comparing the corre-
lation length g, , and g . Interpreting g, , as the mean
density of vortices, '" ' vortices are absent in the cosine
term of (3) for ( & (,, and the scaling of the fluxon system
is valid up to min(g, „P). Now if gf &g,„ i.e. , J(g) = I

for g =gt & (,„ the system becomes isotropic and individu-
al vortex fluctuations are suppressed, i.e. , gf & g, , corre-
sponds to a 3D-ordered phase. On the other hand, if
g, , & gj, vortices on a scale g, , interfere in the cosine term
of (3) and prevent J(g) to fully renormalize. The system
remains anisotropic and disordered; hence the criterion for
T, is g, , =(f. Note th.at if renormalizations of gj by xp
[Eq. (10)] and of g, , by J (see below) are neglected, the
criterion becomes that of Ref 17, i.e., the interlayer cou-
pling in area g, , satisfies J(,, /gp ——T; this obviously misses
the effect of Tg- on the transition.

The fluxon scaling is valid for g & min(g, „(f) and Eq.
(10) can be used. In contrast, the vortex scaling equation
(5) is never correct for J&0 since nonlinearity due to vor-
tices is present in both their direct interaction [first term
of (3)] and in the cosine term of (3). This asymmetry is
related to the fact that Eq. (I) is not self-dual. To find (,,

I construct a variational free-energy density f((, )which,
includes in addition to the usual interaction and entropy
terms ' the free-energy gain from integrating the J
term ' up to (,.,

(T —r/8)I [(p/net, .]+E, —T ln2

b(T) g,',

—2~T„, x(g)J (g)g 'dg,
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where b(T) is small for T & r/4 and increases to -0.8 at
T=r. The vortex density is found by minimizing (11),
which together with J((,, = (f) = T and Eq. (10) yields
for T, in regime III

T„=r [E,'+ —, r 1n T„/J j/(E„'+ r I n T,/J 1 (12)

where

E,'= IE, —Tln2+trb(T) Tx((f)J ((f)1

is enhanced by J.
Very near T,, (region II) In(, .-(T T,, )—'i and T„

—T,, -ln (T,/J) as in Ref. 17. Equation (12) yields
the more generic behavior of T, in the wide regime III. In
particular, T, T,, for In(T/J) &8E,'/r, i.e., J is ex
ponentially small, while T„r= Tf for ln(T/J) & E„'/r,
i.e., J= T. (In fact T„/r & 1 in region IV is possible if
E„'/r is large). Equation (12) thus shows the crossover
from fluxon-dominated to vortex-dominated transitions;
unless J is exponentially small the transition is near Tf.
Note also that the possibility of variations of order 8 in

T,/r is due to the parameter E„which is absent in an XY
model.

The data on superlattices' are consistent with T,
= Tf for YBa~Cup07, dropping to T, = T,, when

PrBazCus07 layers of d = 200 A are added. The results
for the sharper transitionss of well-separated 3, 4, and 8
Cu-0 bilayers with T„=T, =92 K, and T,, of Eq. (6) fit
so=1200 K+ 30%, consistent with a direct estimate of

From Eq. (9), Tl =T„/(I+0.08(I —yJ)] which is

indeed very close to T, .
I have shown here that even if T, is near T,„e.g. , the

above d =200-A system, T„ is a 3D transition since
d &(k, . Thus the hallmark of 2D superconductivity —the
power-law current-voltage relation' —should not hold.
However, extremely weak magnetic fields parallel to the
layers can decouple the layers and lead to strict 2D
phases. ' Thus the YBa2Cus07/PrBa2Cuq07 or the
BizSr2CaCu20s/BizSr2Cu06 superlattices are ideal for
studying the interplay between 2D and 3D transitions.

To conclude, the present work has shown insight into
the nature of phase transitions in anisotropic systems with
competing topological excitations. The transition is 3D
when d+X, ; furthermore, based on the present analysis
and that of current-voltage relations, ' I propose that T,
in YBa2Cus07, Bi2Sr2CaCu20„, and TI2BazCaCu20s is
dominated by fluxon fluctuations and is near Tf. The role
of the gauge coupling e is significant only when d X,, ; in

particular, a 2D junction between bulk superconductors
has a regime below T, in which the junction has 2D corre-
lations, an impossible situation for an LY system.
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