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We explore the spatial structure of novel ground states which can arise in unconventional supercon-

ductors. If the coefficients in the Ginzburg-Landau functional are in the appropriate range, the free

energy, even in zero applied field, is minimized by a state with a spatially varying order parameter.

This variation leads to supercurrents, which generate substantial magnetic fields. The interactions be-

tween the vector potential and the order parameter are responsible for the net lowering of the free en-

ergy. We use a simulated annealing technique to find numerically the minima of the Ginzburg-

Landau functional.

I. INTRODUCTION

The variety of superconducting compounds discovered
in recent years has stimulated much interest in the theory
of unconventional superconductors. ' In particular,
there is strong evidence that the order parameter in

heavy-fermion materials, such as UPt3, is unconvention-
al. By unconventional, we mean that the energy gap
A(k) has less rotational symmetry than the normal-state
crystal. In a previous paper we discovered that the spa-
tia11y homogeneous, zero-applied-magnetic-field state of
such a superconductor can be unstable in the following

sense: The free energy can be lowered by a spatially vary-

ing distortion of the order parameter which generates su-

percurrents and a magnetic field. Thus the equilibrium

state of such an unconventional superconductor will be a
complicated affair, in which the system generates its own

magnetic field, and in which the spatial variations of
the order parameter and field are intricately coupled.
Translational and time-reversal symmetry are broken.

The stability analysis in Ref. 7 did not allow us to study

the fully developed new equilibrium state; we could (l)
show the uniform state was unstable when the coefficients
in the Ginzburg-Landau (GL) functional satisfied certain
conditions, and (2) determine the form of the unstable

mode. So in this paper we report the results of a numeri-

cal minimization of the GL functional; we chose the

coefficients in the GL functional to be in the unstable

range. To do the calculations we used the method of
simulated annealing which has recent1y been shown to be

useful in attacking GL problems in superconductivity. "

As in Ref. 7, we studied an order parameter transform-

ing according to the two-dimensional Ei~ representation
of the point group D6h. The order parameter is a complex
two-dimensional vector, g, transforming as a vector in the

xy plane. Note that the GL theory for the E~„represen-
tation is identical, so our considerations cover this case as

well. We consider a situation in which the order parame-
ter and magnetic field are functions of x and y but are in-

dependent of z. The magnetic field, h(r), has only a z

component, which we call h.

II. CALCULATIONAL METHOD

The GL free-energy density is given by ' '
f= —afqf'+P, fq/'+P, [q. qf'+K, D, q, D,*g,*

+K2D; ri; Dj*r(j~+K3D; rt&D~* ri;*+ h /S. tr .

Here, the gauge-invariant derivative is defined by Dj
=Bi —(2ie/hc)A, We d. efine a correlation length ( in

the following way:"

&
=«i 23/a) '". (2)

It is then convenient to define a dimensionless order pa-
rameter, length scale, vector potential, magnetic field, and
free energy in the following way:

t(, = (2p(2/a) 't'tl, ,

ri ri/

A, =(2eg/( c)A, ,

hj. =(2eg /hc)hj,

f= (2p/2/a') f .

(3)

(s)

In terms of these dimensionless variables we then have

F= J drf= J drf,
L,- L,. a L,L,,

(9)

subject to the appropriate boundary conditions. Here we

have normalized the free energies by the area, L,L,,

=L,LV(, so that we can directly compare the F's arising
from different runs with different areas.

To carry out this minimization we use the simulated an-

f= —
g) j~tl+I/2P((tl~ gj ) + I/2P2. (rtjrti[ +K)D;rijD(~ri~

+K2D; g;D~*gj +K3D(.gqDq g(*+K' h (8)

Here, we have P; =P;/Pi2, K =K;/Ki23, and tc =P~qh c /
1 6)re K ] 23.

The basic task is then to find the functions rt~ (r;) and.
Aj (r;) which minimize the following quantity:
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A(r+L„x)=A(r),

A(r+ L~y) =A(r) —BL~x,

rl(r+ L„x)= rl(r),

ri(r+L~y) =rl(r) exp( —2ieBL~x/hc) .

(io)

(12)

(i 3)

Hence, we are minimizing F at fixed B=(h) =Neo/L„Lr,
where the brackets indicate a spatial average and po is the
superconducting flux quantum. In all the results sho~n
here we choose P2 & 0, so that in the absence of the insta-
bility the order parameter would be of the form ri-(I, O),
up to a rotation and a phase factor. In this paper we
display results for the following set of coefficients: P~
=1.5, Pz= —0.5, K~ =0.5, K2=15.0, K3= —14.5, and
x =12.0. This set puts us in the unstable range, as can be
verified from Eqs. (14)-(18) of Ref. 7. Note that in the
unperturbed (1,0) state we have F = —0.5.

III. B 0 RESULTS

In this section we fix the boundary conditions so that
B=(h) =0. This means that the order parameter and
vector potential are simply forced to obey periodic bound-

nealing technique developed by Doria, Gubernatis, and
Rainer (DGR). We discretize (9), and replace the
derivatives by gauge-invariant differences in a manner
analogous to DGR. We then carry out the simulated an-
nealing procedure exactly as described in DGR; this pro-
cedure is discussed in great detail in Corana et al. ' We
continually update our step sizes so that a reasonable
number of random moves are accepted.

The boundary conditions are set to insure that the total
magnetic flux in the system is equal to a given number of
flux quanta:

A =A/g =rr(8P tr /[/j2)) ' (i4)

For our parameters this yields

A =J48z = 21.8 . (i 5)

From Figure 1 we can see that the actual wavelength is
about 25; this is in reasonably good agreement with the
above estimate, since nonlinear effects which stabilize the
pattern are not included in the calculation of A. In addi-
tion, the wavelength in the data may deviate from its ideal
value in order to fit in the finite-sized box.

We note that ~rl~rlj( attains values as low as 0.0015,
while the minimum value of pj's~* is about 0.893; at these
places the order parameter is very nearly in the (I,i) state,
even though the coefficient P2 is negative.

Experience with many simulated annealing runs has
shown us that most runs produce a somewhat disordered
pattern as in Fig. 1. The result is influenced by the
geometry of the situation, i.e., our choice of Lz and Ly,

ary conditions across our system. Figure 1 sho~s plots of
the magnetic field and order parameter for the choice of
GL coefficients mentioned in the previous section.

The salient features are as follows: (I ) All the physical
quantities oscillate with a fundamental wavelength quite
close to that predicted by the stability analysis. (2) The
deviations of the order parameter from the unperturbed
(1,0) state are quite significant, as is evident from the
large fluctuations in the quantity ~rljrlj~. (3) We are
measuring h in units comparable to H, 2 [see Eq. (6)j, so
that the maximum values attained are quite large, being
of the order 0.06. (4) For the free energy we have
F= —0.567, a value markedly lo~er than the unper-
turbed state's value of F = —0.5.

The wavelength of the instability, A, can be computed
from Eq. (16) of Ref. 7. In rescaled units we get

(a)

g

~

40 .:.::::::::.:.:::,
'

50

40

(b)

40

30

(c)

20 '.-.':::.::::::::,::::::::,::)- 20 20

10
L

10

0 20
0

0
0

x/g
FIG. 1. Results from a B=O simulated annealing run, with the parameters listed in Sec. II. The lattice was discretized in units of

0.5$. (a) Contour plot of gj. rlJ*. The lightest regions have values of approximately l.26, while the darkest regions have values of about
0.893. (b) Contour plot of ) r)J gj ). The lightest regions have values of about 0.964, while the darkest have values of about 0.00l 5. (c)
Contour plot of the scaled magnetic field, h. The lightest regions have values of about 0.064, and the darkest regions have values of
approximately —0.064.
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and their relation to the preferred wavelength of the pat-
tern. The free energy is always in the vicinity of F= —0.56.

25&' '
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IV. BWO RESULTS —1.0

We performed simulated annealing runs with the same
set of parameters as in the previous section, but adjusted
the boundary conditions to fix (h), or N, the number of
flux quanta, at various values. In this section all runs have
L„=40and L~ =40, so that B =Neo/l 600( . In Fig. 2 we
plot the free energy F, and the field 8=4rr8(f)/r)B as
functions of N. To evaluate H we use the virial theorem
recently introduced by Doria, Gubernatis, and Rainer. '

The results are quite striking. To good precision, F is con-
stant out to about N=14, and then starts to rise. In
agreement with this, when we compute H via the virial
theorem we find that it is zero to good accuracy out to
N =14, and then starts to rise. Figure 3 shows a typical
result for N =4, while Fig. 4 shows a result for N =18.

Our preliminary interpretation is as follows. Between
N =0 and about N =14 the system is in a two-phase state;
part of the superconductor is occupied by the strips, and
part by vortices. The strips are similar to the modulations
that appear in the 8=0 case, and usually close in on
themselves as in Fig. 3. The vortices are smaller objects,
at the center of which the magnetic field reaches a local
minimum. The phase of the order parameter changes by
2n on a contour which encloses one of the vortices. Thus,
the vortices are singular, and g and g,, must vanish some-
where in the core region.

As N increases the number of vortices increases, and
the area of the system covered by the strips decreases.
Past N =14, or B=7&o/800(, the strips have disap-
peared. We note that at N =14 the separation between
nearest-neighbor vortices is approximately A/2. We also
note that the vortices change their symmetry at N =14;
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for N & 14 they have a triangular symmetry, while for
N & 14 they have a circular symmetry. It may be possible
to interpret an array of these vortices as a domain, and the
strips as the result of a combination of vortices and an-
tivortices. For a discussion of unusual vortices when the
GL coeScients are in the stable range see Refs. 14 and 15.

We can understand why the magnetic field at the center
of the vortices goes down, as is seen in Figs. 3 and 4, from
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FIG. 2. Results from a succession of runs, with the parame-
ters given in Sec. II, for various values of the total magnetic flux
through the system. The scaled free energy, F, represented by
the asterisks, is defined in Sec. II; N is the number of flux quan-
ta, so that B=N&o/1600(2. H, represented by the diamonds, is

measured in units of pa/1600(2.
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FIG. 3. Results from an N =4 run, so that B =go/400(2. The parameters are given in Sec. 11; the lattice was discretized in units of

0.8(. (a) Contour plot of r)~r)j . The lightest regions have values of about 1.22, while the darkest regions descend to values of 0.427.

(b) Contour plot of tr)jr)~t. The lightest regions have values of 0.98, and the darkest have values of 0.00. (c) Contour plot of the

scaled magnetic field, h. The lightest regions have values of 0.0579, and the darkest have values of —0.0588.
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tional to zxVg . In the vortex cores, where the magni-
tude of the order parameter is strongly varying, this term
in the current circulates in a counterclockwise direction,
reducing h from its value far from the core. We stress
that intuition gained from a knowledge of conventional
vortices is not applicable in cases ~here the supercurrent
is dominated by the third term in (16).

Since 8 & 0, we do not have diamagnetism; the average
interior magnetic field is larger than the applied field. In
a case as in Fig. 4, for example, surface supercurrents
generate a field parallel to the applied field, while the vor-
tices generate a local field in the opposite direction. A dis-
cussion of the possibility of unusual magnetic phenomena
in unconventional superconductors can be found in the ar-
ticle by Gorkov. '

FIG. 4. Results from an N=18 run, so that B=9&0/800$ .
The lattice was discretized in units of 0.8(. The parameters are
the same as in Fig. 3. We show a contour plot of the scaled
magnetic field, h. The lightest regions have values of 0.08, while

the darkest have values of about 0.003.

the following considerations. Recall that the supercurrent
is given by the following expression:

4e
Jk = Im(K} tIj Dk tij + 2 K23(t)kDj* t)j + tlj Dj tik )~

+—(Kz —K3) [V x (t1 x tI')]k .

Note that with our choice of parameters, the last term
has a large coefficient, since K2 and K3 are much larger
than K~ and have opposite signs. We have evaluated the
current for the configurations shown in Figs. 3 and 4, and
indeed the last term makes the dominant contribution.

When the order parameter is of the form g
=tI(R)(l, i), this last term produces a current propor-

V. DISCUSSION

From a theoretical point of view these novel ground
states are quite interesting: The gauge-invariant coupling
of the order parameter to the vector potential induces an
intricately patterned equilibrium state. From an experi-
mental viewpoint we note that the coefficients K; and P;
can be varied by adding impurities and by varying exter-
nal parameters such as the pressure. Hence, in any exist-
ing unconventional superconductors, the coefficients in the
GL functional could be tuned in an attempt to reach the
unstable region.
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