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Specific heat of quantum Heisenberg model on a triangular lattice with two exchange parameters
and its application to 3He adsorbed on graphite
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The quantum Heisenberg model on a triangular lattice with two exchange parameters, J between

nearest-neighbor spins forming a Kagome net, and gJ between spins in the Kagome net and ones at
the center of each unit cell of the Kagome net, is studied using the signer-Jordan transformation.

The specific heat calculated from the model is found to have a double-peak structure when g is finite

but substantially smaller than 1. The experimentally measured specific heat of the second-layer He

adsorbed on graphite can be explained in terms of our model calculation.

Recent specific-heat measurements of He adsorbed on
graphite at millikelvin temperatures by Greywall and
Busch ' have revealed some surprising results. Near densi-
ties corresponding to the completion of second-layer ad-
sorption, the specific heat shows a peak at 2.5 mK,
whereas the entropy calculated from the specific-heat
data, integrated from zero temperature through this peak
assuming a linear temperature dependence of the specific
heat below 2 mK, is only approximately —,

' ks ln2, one-half
of the expected value. The peak position is rather insensi-
tive to the areal density. The missing entropy, together
with magnetization measurements, seems to strongly
suggest the existence of a second peak (or a shoulder) in

the specific heat below 2 mK. This interesting behavior of
the heat capacity is apparently associated with the
second-layer He nuclear-spin-exchange interactions since
the first-layer He atoms are highly compressed and
therefore contribute very little to the specific heat. ' The
exchange interactions among the second-layer He nu-

clear spins are likely to be antiferromagnetic (AFM), as

suggested from the magnetization measurements.
Since the first-layer He atoms form a triangular lat-

tice, at appropriate densities a solid phase of the second-

layer He atoms registered with respect to the first layer
may also form. Elser noticed that at the density

p =0.178/A the ratio of the second-layer density
(0.064/A ) to the first layer density, 0.56, is close to the

fraction -', , and therefore suggested a J7x J7 triangular
structure that has two types of atoms, one residing on the
saddle points between adjacent dimples in the first layer,
with the other directly above a first-layer atom. A quan-
tum Heisenberg model on a Kagome net is suggested to
explain the heat-capacity puzzles. Roger, on the other
hand, emphasizes the importance of the higher-order ring
exchange processes, whereas Machida and Fujita invoke

the lattice-gas model. Various models are all studied

using numerical methods with small systems, and double

peak structures of the specific heat are found. The posi-
tion of the lower temperature peak in these calculations,
however, is about an order of magnitude lower than that
of the higher one. Since the boundary effects will be very
significant at such low temperatures, the double peak
structure of the specific heat may not be intrinsic to the

models, but an artifact of the finite-size calculations, a
possibility also noticed by the authors ' In this paper we

study the quantum Heisenberg model on a triangular lat-
tice with two different exchange parameters, J between
spins forming a Kagome net and rij between spins in the
Kagome net and ones at the center of the unit cell of the
Kagome net, using the two-dimensional (2D) Wigner-
Jordan (WJ) transformation developed recently. The
double peak structure of the specific heat is found for a
disordered (spin liquid) state, and is interpreted as the re-
sult of a small but finite g. A simple interpretation of the
missing entropy emerges as to be associated with the "ex-
haustion" of the states below 2 mK from the exchange in-

teraction gJ. The position of the "high" temperature
peak is shown to be insensitive to the ratio of the two ex-
change parameters, implying the insensitivity to the areal
density observed experimentally. The heat-capacity puz-

zle of the second-layer He near density of 0. 178/A can
therefore be explained rather coherently. While our re-

sults support the notion suggested by Elser that the
heat-capacity puzzle may be understood from the quan-
tum Heisenberg model on a triangular lattice, without in-

voking higher-order ring-exchange processes, they differ
from Elser's results in several significant ways. First,
Zeng and Elser ' attribute the double peak structure of
the specific heat to the quantum AFM Heisenberg model

on a Kagome net (r1=0), whereas in our study we find

that the heat capacity of the quantum spins on a Kagome
net is only singly peaked, and that at low temperatures the

specific heat of the spins on a Kagome net is linearly pro-

portional to temperature. Second, while the position and

the shape of the high-temperature peak is in excellent
agreement with calculations by Zeng and Elser, ' our in-

terpretation of the nature of the peak is different. In

terms of our interpretation, the peak is not an unusual

one. It signals that at the peak temperature all spin de-

grees of freedom are thermally accessible. Therefore at
temperatures much higher than the peak temperature the

specific heat decreases as 1/T (recall that specific heat is

a derivative of the internal energy with respect to temper-

ature), and below the peak temperature the specific heat

also decreases since less states become thermally accessi-
ble. The interpretation of the low-temperature peak is
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similar. At that peak all the states related with interac-
tions (rlJ) between the inequivalent spins are thermally
accessible. Thus in terms of our interpretation, the peaks
do not signal condensations to different states, in contrast
to that speculated by Elser. In fact, the spins remain in a
disordered state at all finite temperatures.

The study of the quantum Heisenberg model on a tri-
angular lattice with two exchange parameters is interest-
ing in its own right. Spin-wave calculations ' have
shown that the number of spin waves from zero point vi-

brations is large because of geometrical frustration, and
for g less than 0.2, spin-wave calculations show that the
sublattice magnetization is smaller than zero, a pathologi-
cal result. A large number of spin waves from zero point
vibrations indicates that the quantum spin identities,
Si+S( +Si S;+—= 1, are not satisfied. " It is therefore im-

portant to develop other methods to study the model.
Methods developed based on the 2D Wigner-Jordan
transformation have shown to be promising alternatives.
In particular, when applied to the isotropic antiferromag-
netic Heisenberg model on a triangular lattice, ' the
method yields a spin liquid state which has a ground-state
energy lower than that calculated from spin-wave the-
ories, yet almost identical to that calculated from direct
diagonalization of small systems. Here we generalize the
method to include the quantum Heisenberg model on a
triangular lattice with two exchange parameters.

The generalization, however, is a rather nontrivial task,
and therefore will be discussed briefly below. The unit cell
of the 47 X J7 lattice is shown in Fig. l. Atoms A, B, and
C are sitting on the saddle points between adjacent dim-

ples of the first-layer atoms, and atom D is sitting directly
on top of a first-layer atom. Atoms 2, 8, and C form a
Kagome net, and D is at the center of each unit cell. The
thick lines designate nuclear-spin-exchange interaction, J,
between A, B, and C atoms, whereas the thin lines repre-
sent the exchange interaction, gJ, between D and A, 8,
and C (we shall call it the interaction between in-
equivalent spins). We expect J to be positive (i.e., antifer-
romagnetic), and the magnitude of rl less than 1. The
Heisenberg model is then

H=JQS; Sj+rlJQS; S„, (I)
(J in

where the first summation is over the Kagome net, and the
I

A-

FIG. I. Unit cell of the J7&J7 registered phase of the
second-layer 3He adsorbed on graphite. Atoms 3, B, and C
form a Kagome net. The thick lines designate the exchange in-

teraction J, and the thin lines gJ.

second over the nearest-neighbor spins connected by the
thin lines. We first transform the spin variables into spin-
less fermion variables, i.e., S; =d; exp[i(tt; —

p, )j, where

d; is a fermion annihilation operator at site i, and

gjp8 dj dJBIJ [BJ 1m In(r j —r; ), where r J xj + 1)J. . t

is the complex coordinate of the jth spin]. The local gauge
phase, P, , can be any real function of the site index i
This local gauge invariance can be used to minimize fluc-
tuations around a particularly chosen mean-field solution,
and for the triangular lattice, the choice of p, =

& g~~; Bj
has been shown to be a good one. ' The z component of
the spin operator is related to the number operator of the
WJ fermions, S;=d;td; —

z . In a spin state where the z
component of the spins is zero on average, which is indeed
the case for the triangular lattice, (dtd;) = —,'. We next
proceed to find a mean-field solution of the transformed
Hamiltonian by defining two nearest-neighbor bonding
fields: A~;J—= (d;djt) =h~e' " for i and j belonging to the
Kagome net, and d,z;„=(d;d„)=h—ze

'" for n belonging to
the center of a unit cell of the Kagome net. The phase 0;j.
(and 8;„) is either jr/2 or —x/2, depending' on the rela-
tive positions of sites i and j, as can be self-consistently
determined below. h~ and hz can be approximately con-
sidered as the bonding amplitude between nearest-
neighbor spins. ' The reduced mean-field Hamiltonian
can be written as

HMr:=2J(1+24~)g(ALBqsink r~+AkCksink sz+BqCksink v3+H. c.)
k

+2rlJ(I+2hz)g(AqDqsink. r3+BkDksink rz+CqDqsink r~+H. c.)+3NJh~+3NgJAz, (2)

where Ag, Bg, Cg, and Dg are the WJ fermion annihila-
tion operators at the respective sublattices, as shown in
Fig. 1, and r [, r 2, and s 3 are the nearest-neighbor vectors
of the triangular lattice. The mean-field Hamiltonian can
be diagonalized using various methods. The complication,
however, comes from the self-consistent conditions:

g(BqAq)sink r~= g(CqAq)sink. rz,1

N4g N4k
(3a)

and

g&D&D, ) = —, .
1 t 1

N4g N4t

(3c)

(3d)

hz = Z, (DI, AI,. )sink r 3
= g(DqBk)sink. r z,

1

N4k N4g
(3b)

1 1g(BI,AI, )cosk r~ = g(D.kCq)cosk r
~
=0,N4g N4g
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We find that it is most convenient to diagonalize the
Hamiltonian and obtain the thermally averaged occupa-
tion number and the bonding amplitudes by using the
Green's-function method. Equation (3d) requires that the
states are half filled by the W3 fermions. h,

~ and h2 are
calculated for the half-filled band from Eqs. (3a) and
(3b), and the self-consistency conditions (3c) and (3d)
are shown satisfied by numerical evaluations. The mean-
field energy is

E=E )+E2 —3NJA) (1 +hi ) —3Wri JA2(l +62) . (4)

E ~ can be considered as a contribution from bonding be-
tween spins in the Kagome net, and E2 that from bonding
between inequivalent spins. The specific heat is finally
calculated from E by taking derivatives with respect to the
temperature.

The spin state described by the above mean-field solu-
tion is a disordered (i.e., liquid) state in the sense that no
preferred spin directions are given in the solution. The ex-
citation spectrum is gapless for all the g values, which in
the r1=0 case (the Kagome net) agrees with numerical
calculations. ' The absence of long-range order in a
5 =

2 AFM Kagome lattice has been experimentally ob-
served' down to a very low temperature, giving further
support of the spin liquid state for the present case
(s=-,' ).

The specific heat and the entropy calculated from the
above self-consistent mean-field solution is shown in Fig. 2
for ri=0.4. The dashed curve in the figure is C2(T)
=dE2/dT, i.e., the contribution to the specific heat from
bonding between inequivalent spins. A double peak struc-
ture is clearly seen in the specific-heat curve, one at
T/2J=0. 67 and the other at T/2J=0 05, for. r1=0.4.
While the position of the low-temperature peak changes
with g significantly, that of the high-temperature peak

does not. Figure 3 shows the specific heat of two extreme
cases, r) =I (isotropic Heisenberg) and r1=0 (Kagome
net). In both cases the specific heat is only singly peaked.
The peak position of the Kagome net is at T/2J =0.65, in
excellent agreement with numerical calculations, ' and
that of the isotropic Heisenberg model is at T/2J =0.75.
The shape of the high-temperature peak is sharpened
when g decreases, and for @=0, the specific heat below
the peak is linear in temperature. The peaks are not relat-
ed to phase transitions. We have calculated the tempera-
ture dependence of the mean fields, h,

~
and h2, and found

that they are smooth functions at any finite temperature.
The experimental specific heat of the second-layer He

near density 0.178/A is peaked at 2.5 mK and can be
presented as linear in temperature from 2 to 2.5 mK. This
suggests that the exchange interaction between in-
equivalent spins is significantly smaller than that between
the spins in the Kagome net (we expect g &0.5 to be like-
ly). The insensitivity of the experimental peak position
with respect to coverage may be explained in terms of the
insensitivity of the high-temperature peak position with
respect to rl in our calculation. For densities near
0.178/A, the registered phase will contain vacancies or
interstitials. It is likely that the vacancies or interstitials
will go to the center sites (the D atoms in Fig. I) since the
D atoms are directly located on top of first-layer atoms,
leaving the atoms in the Kagome net not significantly
changed. Since the position of the high-temperature peak
from our ca)culation is mainly related to the spin interac-
tions between the atoms in the Kagome net, little change
in the position of the specific heat is expected. Quantita-
tive comparison between theory and experiment is shown
in Fig. 2. The experimental data' are shown for the case
of p =0.178/A, a surface area of 203 m, and assuming
all the atoms contribute to the nuclear-spin specific heat.
A value of 2J = 3.7 mK is obtained from the comparison.
While the shape of the experimental peak is comparable
with our calculated one, the theoretical value at the peak
is about 30% larger than the experimental one. At high
temperatures the experimental data do not decrease as
1/T, in contrast to that suggested by the present as well
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FIG. 2. Specific heat (solid and dashed curves) and entropy
(dash-dotted curve) calculated for the case g=0.4. The dashed
curve is the specific heat contributed from bonding between the
spins in the Kagome net (8, B, and C in Fig. 1) and those at the
center of each unit cell of the Kagome net (D in Fig. l). The
solid circles are the experimental specific heat of second-layer
nuclear spins of He adsorbed on graphite in the unit of A'ka,
where N is computed from the second-layer areal density
0.064/A', and the surface area of 203 m (Ref. I).
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FIG. 3. Specific heat calculated for the quantum Heisenberg
model on a Kagome net (g =0, solid curve) and on an isotropic
triangular lattice (t) = I, dashed curve).
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as previous theories. The two problems might be relat-
ed to the amount of vacancies and interstitials present in

the experiment which locally melt the solid phase, and
thus only contribute to the specific heat at high tempera-
ture. Experimental evidence for a liquid component has
been noted previously. '

A more striking result from our theoretical calculation
is the interpretation of the missing entropy. The high-
temperature entropy of the spins in a pure Kagome net
(r)=0), obtained by integrating the specific heat (solid
curve in Fig. 3) from 0 to a temperature much larger than
2J, is 4 k81n2 per atom. This is expected since there are
four atoms in each unit cell, but only three atoms belong
to the Kagome net. When we turn on the exchange in-

teraction between the inequivalent spins, i.e., when @~0,
no matter how small g is, the high-temperature entropy
contributed from the bonding between the spins in the Ka-
gome net, S~ fo [C~(T)/T]dT, where C~(T) =dE~(T)/
dT, is only & k81n2 per atom. The missing other one-half
of the entropy comes from the bonding between in-
equivalent spins: Sp =fo (Cp(T)/TldT = —,

' k8 ln2 per
atom, independent of rI. Thus for any finite rI, the spin de-
grees of freedom are equally distributed among the

"bonds" formed between nearest-neighbor spins. There
are six "heavy" bonds (J) per unit cell from the spins in

the Kagome net, and six "light" bonds (rIJ) formed be-
tween inequivalent spins, each contributing one-half of the
total entropy. For 2J = 3.7 mK, and g & 0.5, the spin de-
grees of freedom associated with the light bonds are ex-
hausted below 2 mK. The temperature dependence of the
entropy is calculated for g =0.4 in Fig. 2.

In summary, we have shown that the specific heat of the
quantum Heisenberg model on a triangular lattice with
two exchange parameters exhibits a double peak structure
when one exchange parameter is finite but substantially
smaller than the other. The high-temperature peak is
mainly a property of the exchange interactions between
the spins in the Kagome net, and is thus to a large degree
insensitive to the other exchange interactions. The entro-
py at high temperature is equally contributed from both
exchange interactions. These findings qualitatively ex-
plain the experimental specific-heat puzzle of the second-
layer He adsorbed on graphite.

The author is grateful to Dr. D. S. Greywall for helpful
discussions of the experimental data.
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