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Spin-liquid state of Wigner-Jordan fermions of the quantum antiferromagnetic
Heisenberg model on a triangular lattice
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A disordered spin state, the nearest-neighbor virtual bonding state of Wigner-Jordan fermions, of
the quantum antiferromagnetic Heisenberg model on a triangular lattice is found to have a zero-
temperature energy —1.106J per spin, lower than that calculated from spin-wave theories, and in ex-
cellent agreement with that from numerical calculations, ( —1.094~0.018)J per spin. The excitations
of the state are Wigner-Jordan fermions with a gapless spectrum. The low-temperature specific heat is

predicted to be proportional to T, with v between —, and 1, significantly deviating from the spin-wave

prediction, T . At higher temperature, a broad peak in the specific heat near T/2J=0. 75 is also pre-

dicted.

The possibility that the quantum antiferromagnetic
(AFM) Heisenberg model on a triangular lattice may
have a quantum ground state qualitatively diA'erent from
the classical Neel state has made the system one of the
most studied. It was first suggested by Anderson' that the
ground state may be of the resonating-valence-bond
(RVB) type based on the estimation that the zero-
temperature energy of the RVB state is lower than that of
the classical Neel state. Kalmeyer and Laughlin sug-
gested a different type of quantum ground state, the m =2
fractional quantum Hall (FQH) state. Similar applica-
tions of the fractional quantum Hall state to the quantum
AFM spin problem have also been made by Mele. Both
the RVB state and the m =2 FQH state are quantum spin
liquid states. The excitation spectrum is gapless in the
RVB state, when long-range resonating valence bonds are
included, whereas that of the m =2 FQH state possesses
a gap. The zero-temperature energy of the RVB state is

estimated by Anderson to be —0.98J per spin, and that of
the m =2 fractional quantum Hall state —0.94J per spin.
While these energies are lower than that estimated from
the variational spin-wave theory, ' —0.926J per spin, they
are much higher than that calculated from the conven-
tional spin-wave theories based on the Holstein-
PrimakoA transformation, —1.078J per spin, and that
from a variational wave function, —1.073J. The latter
spin-wave theories and the variational wave function pre-
dict a long-range spin ordering with a reduced sublattice
magnetization. So far no other quantum states have been
reported to have a lower zero-temperature energy than
that estimated from the conventional spin-wave theory.

Numerical calculations ' for a finite number of spins

give conflicting results with regard to the existence of the
sublattice magnetization. Exact diagonalization of a 27-
spin cluster (which is, to our knowledge, the largest finite

system for which calculations have even been performed)
indicates the nonexistence of the sublattice magnetization.
Large projections of the finite system wave function onto
the RVB state were found, but the projection nevertheless
decreases linearly with the system size. ' Experimental
realization '' of the quantum AFM Heisenberg model on a
triangular lattice has been reported, where neutron-

scattering data of NaTi02 suggest a disordered spin
ground state. It is therefore important to see if one could
find a disordered quantum spin state which has a lower
zero-temperature energy than that of the Neel ordered
states. In this paper we show one such state, the nearest-
neighbor virtual bonding (NNVB) state of Wigner-
Jordan (WJ) fermions. The NNVB state has a pure
imaginary bonding field, (d; d~) = ~id, where i and j are
nearest-neighbor sites, d; is a creation operator of a WJ
fermion at site i, and h, & 0 at any temperature. The state
has a zero-temperature energy Eo= —1.106J per spin, in

excellent agreement with that calculated from the 27-spin
cluster extrapolated to infinite sizes, ( —1.094~0.018)J
per spin. The excitations of the NNVB state are ferrnions
and are gapless. The density of states of the %J fermions
has a divergence at zero excitation energy which is not the
usual Van Hove type, but behaves as l/E '~ . Such a den-

sity of states would predict, taking possible fluctuations
into account, a temperature dependence of the low-

temperature specific heat to be T', with v between —,'and
1, significantly deviating from that predicted from spin-
wave theories, T . At higher temperature, the specific
heat shows a broad peak near T/2J=0. 75. The above
predictions may be examined by experiments and also by
numerical calculations of finite systems.

We begin by summarizing the two-dimensional (2D)
Wigner-Jordan (WJ) transformation' ' on which our
analyses are based. The strategy of the WJ transforma-
tion is to transform the spin variables into spinless fermion
operators. Thus a spinless fermion operator, d;, for site i,
is defined to be d; =e 'S;, where S; is the spin low-

ering operator, and the phase p; is given by
=g~~;dj d~B;~ [B;~—= 1m log(r~ —r;), where r 1 =x~.+ry~
is the complex coordinate of the jth spin]. The z com-
ponent of the spin operator is related to the number opera-
tor of the WJ fermions, S,- =d; d; —2. It can be sho~n
that the above defined transformation preserves all spin

commutation relations, as other transformations, such as
the Holstein-PrimakoA transformation, also do. The ad-

vantage of the WJ transformation is that it automatically
satisfies N unique identities of the S=

2 spin operators,
S;+S; +S; S;+=1, whereas for the Holstein-PrimakoA
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where the summations are over all nearest neighbors, and
pi~;(d~d~ —

2 )8;~. The phase factor in the first
term, in its present form, cannot be treated by a mean-
field approximation, since it does not commute with the
fermion operators d; and d~. However, we can rewrite it
as

I~fj PI ~ ~ I+fj a t a —
& (BP —Big)/2

where 4ii =g~&; ~ (di di —
2 )(Bi~ Bi;), and we have—

used the identity dj exp(id~de 8;~) =d~. A;~ commutes
with both d;t and d~, since d;td; and d~d~ are excluded
from its summation. We notice that Bj;—8;j= ~ z,
where the sign depends on the relative location of the site i
and j. In a spin state where the z component of the spins
is zero on average, which is indeed the case for the
Heisenberg model on a triangular lattice, (d; d;) =

2 .
Thus in the mean-field approximation, +;~ can be taken to
be zero. This approximation can be viewed as the zeroth
order of the expansion of e' ' in terms of (di di ——,

' ), and
therefore is expected to be valid when the condition
(di di) = —, is satisfied. We next define a nearest-neighbor
bonding field, h, ;~, for each nearest-neighbor pair of WJ
fermions,

6;,=—&d;dj. ) =he' " . (3)

transformation the identities are satisfied only if infinite
on-site repulsive interactions between the bosons are add-
ed. The 2D WJ transformation has been used in studying
the quantum AFM Heisenberg model on a square lattice
at finite temperatures, where one obtains the in-phase flux
state' which has a complex bonding field, (d; dj) =he' ",
with the phase given by a uniform gauge field of strength
half flux quanta per spin. The in-phase flux state' has an
energy Eo= —1.3J per spin in the T 0 limit, and a
linear excitation spectrum with the velocity approximately
equal to that of the spin waves. The Rarnan spectrum'
calculated for the in-phase flux state shows significant im-
provement over that calculated from spin-wave theories
compared with the experimental spectrum ' of La2Cu04.

There is a local gauge invariance in the WJ transforma-
tion, namely that the phase p; can be replaced by III;+C;
as long as C; is a c number. One therefore could take ad-
vantage of this invariance to simplify the spin problem.
For the quantum Heisenberg model, a desired choice of
the local gauge (i.e., the C s ) is such that the fluctuations
around a mean-field state in the LY part of the Hamil-
tonian maximally cancel those in the Z part. The possibil-
ity of such cancellation can be seen in the WJ representa-
tion of the Heisenberg Hamiltonian [Eq. (1) below]. For
the Heisenberg model on a triangular lattice, we shall use
C; = —

& P~&; 8;~. (Since only the phase differences, p~.—P;, come into play in the Heisenberg Hamiltonian, we
actually only need to choose the differences, C~

—C;. ) As
can be easily seen below, this choice is the simplest, and at
least for the ground-state energy, the cancellation men-
tioned above appears rather complete with this choice.

The quantum AFM Heisenberg model, H =JP;i S; S~,
can be written in the WJ representation

H ~Jgd; e' i ' di+ JP(d(td( ——,
' )(d,~d& —,

' ), (I)—

The phase of the bonding field, 8;i, can be shown self-
consistently below to be —(B~; —8;~)/2. The Heisenberg
Hamiltonian, Eq. (1), is now readily reduced to the
mean-field Hamiltonian,

HMF=JQ(1+26)e ' " " d d&+6NJA . (4)

This mean-field Hamiltonian is easily diagonalized in the
momentum space. The single-particle energy of momen-
tum k is

Ek= —2J(1+26)[sin(k bi)+sin(k b2)+sin(k b3)l

Ek/J(1 +2~) ~ nF(Ek),
1

6N
(6)

where nF(E) is the Fermi function at energy E. At zero
temperature, Eq. (6) gives h =0.159. The mean-field en-
ergy, from Eq. (4), is given by EMF —6NJ(1+8, )A, and
at T=O, EMF= —1.106J per spin. This energy is lower
than that of the spin-wave theory, and is in excellent
agreement with numerical calculations.

The solution given above describes a disordered (or
liquid) state of the spins in the sense that no preferred
direction of the spins is given in the solution. The expan-
sion of e' " in terms of (di di —

—,
' ) thus can be understood

as an expansion around the disordered state, in contrast to
the I/S expansion in the spin-wave theories which is
around the Neel ordered state. Our results that a self-
consistent solution can be obtained for (d; d;), 5 and 8;~.

indicate that the solution is a locally stable one. While the
comparison of the energy of the NNVB state with that of
the Neel state from spin-wave calculations suggests that
the energy of the NNVB state also represents a global
minimum, it would be useful to compare the energy of the
NNVB state with that of the Neel ordered state calculat-
ed using the WJ transformation. For this purpose, we
divide the triangular lattice into three sublattices, 8, B,
and C, and for each sublattice we carry out a %J transfor-
mation which is related to the transformations in the other
sublattices by a 2x/3 (or —2x/3) rotation. Thus for the
A sublattice, we have S~+; =8;+e ', and S~;=2;+A; —2,
where we have designated the x-z plane to be the plane of
the lattice. The transformation in the 8 sublattice is relat-
ed to that of the A sublattice by a 2ir/3 rotation around
they axis:

(5)
where bi, bp, and b3 are the three nearest-neighbor vec-
tors. This energy spectrum can be viewed as a concise
representation of the two spectra, Ek+ =(Ek(, and Ek= —~Ek(. All states in Ek are filled by the WJ fermions,
and all states in Ek+ are empty. The spectrum therefore
possesses a particle-hole symmetry. This particle-hole
symmetry is a reflection of the fact that in the original
Heisenberg Hamiltonian the energies for two parallel and
two antiparallel nearest-neighbor spins are equal in mag-
nitude, but opposite in sign.

From the definition in Eq. (3), both the phase 8;~ and
the amplitude 6 of the bond-order mean-field 5;i can be
determined self-consistently,
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Sr' = —,
' J3(Bt+BI—2 ) —

4 (BI+e' '+BIe '),
Sttl =(1/2i)(81+e ' —BIe '),

(7a)

(7b)

and

Sltl = —
4 J3(BI+e '+ BIe ') —

2 (BI+BI—2 ) . (7c)

A similar transformation for the C sublattice can also be
written down. The phase p; for the three sublattices is
chosen to be

y; =g (d~ dj ——,
' —6 ) )8;~,

where p~ =(S;.), and d~. =AJ (B~, C~. ) if j belongs to the
sublattice A (8, C). Following the spin-wave calcula-
tion, we next only retain the terms bilinear in the fermion
operators in the Hamiltonian, using the usual mean-field
approximation of breaking quartic terms into bilinear
terms. The reduced mean-field Hamiltonian becomes

HMF=J g[—( —,
' +Aq)Uk (Ak+8 —+k+Ck+A+k+Bk C —+k)+ 4 Uk(Ak+Bk+Ck+Ak+Bk Ck)+H. c.

k

—6&((Ak+Ak+Bk Bk+Ck Ck 2 )j+3hi+3A2,

where h2 =(A;+8;+tt) and

ik 8&, —ik $2, ik. $3
Uk =e +e +e

The Hamiltonian can be diagonalized numerically using a
6& 6 matrix, and the mean-field energy is minimized with
respect to h, ~ and h, 2. The result is that at T=O the sub-
lattice magnetizations, which are 120' apart from each
other, are about 53% of the maximum value, and the ener-
gy is —0.863J per spin. The value of the sublattice mag-
netization is in excellent agreement with that calculated
from spin-wave theories, but the energy is substantially
higher than that of the NNVB state, and also that of spin
waves. The discrepancy in the energy of the Neel state
calculated from the WJ transformation and that from
spin-wave theories may be attributed to the relative simple
approximation in our treatment, but may also be related
to the fact that the energy from the spin-wave theory is
only calculated up to the first order in the 1/S expansion.
While further studies are clearly needed to answer these
questions, it is nevertheless demonstrated that at a compa-
rable approximation level, the disordered spin state has a
lower energy than that of the ordered state.

There are several interesting properties associated with
the NNVB state. First, the excitations are WJ fermions

I

without a gap, as can be seen from Eq. (5). The fermionic
statistics of the excitations in the NNVB state agrees with
that of both the RVB state and the m =2 FQH state,
~hereas the gaplessness of the excitation spectrum may
have to do with the fact that (d;dj ), when expressed in
terms of spin operators, actually involves many spins. The
elementary excitation process in a spin system is to flip a
spin from down to up, or visa versa. In the WJ represen-
tation, this is described by adding (or subtracting) a WJ
fermion with energy Ek+ (or Ek ) and momentum k. The
fermionic nature of the excitation arises from the phase
change in the many-spin wave function because of the flip-
ping. Second, the density of states, p(E), of the WJ fer-
mions in the NNVB state diverges at zero excitation ener-
gy. The divergence does not come from small wave vec-
tors, but originates from the saddle points (z, —n/J3)
and ( —z, z/J3). the saddle points are not the usual Van
Hove type (quadratic). Expanding Ek near the saddle
points gives Ek-bk„(8k„—3bk~), indicating that the
divergence is stronger than logarithmic. We have analyti-
cally evaluated the density of states at low energies, and
have shown that the divergence actually behaves as
p(E) —1/E 'i . Such a strong divergence would predict a
temperature dependence of the low-temperature specific
heat to be T . Since the NNVB state is a mean-field
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FIG. 1. The specific heat of the nearest-neighbor virtual

bonding state. It is proportional to T at low temperature, and
has a broad peak located near T/2J =0.75.
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FIG. 2. The temperature dependence of the bonding ampli-

tude, h„of the nearest-neighbor virtual bonding state.
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solution, fluctuations might reduce the divergence to a
cusp or slightly shift the peak position. Thus the tempera-
ture dependence of the low-temperature specific heat
could vary from T i to T. This temperature dependence
significantly deviates from the T dependence predicted
from spin-wave theories, and is also different from the
temperature dependence of the specific heat of the quan-
tum AFM Heisenberg model for a square lattice where
both the spin-wave theories and the in-phase flux state of
the WJ fermions predict the temperature dependence to
be T . At higher temperature, the specific heat of the
NNVB state shows a broad peak near T/2J =0.75, as
shown in Fig. I. Finally, the above solution predicts no
phase transition at any finite temperature. Unlike many
other mean-field theories, where mean-field solutions exist
only in a limited parameter space, 5 in Eq. (6) is nonvan-

ishing and a smooth function at all temperatures, as
shown in Fig. 2. The nonexistence of phase transitions has
also been predicted by numerical calculations, s ' and is

also in agreement with neutron-scattering data" of Na-
TiOp.

Finally, we comment on the possible visualization of the
NNBV state. A WJ fermion at site i, from its definition,
is a vortexlike spin object with the "vortex core" at site i.
The creation of a WJ fermion at site i, apart from a phase
factor, can be approximately viewed as creating a spin
with, say, up orientation. Thus the bonding field, (d;di),
can be approximately viewed as the bonding amplitude
between the nearest-neighbor spins with opposite orienta-
tions. The phase factors effectively introduce long-range
correlations between the spins. Our picture of the NNVB
state is therefore similar to that of the RVB state. Oppo-
sitely oriented nearest-neighbor spins are bonded, and the
NNVB state is a liquid of vortexlike WJ fermions. How-
ever, the many-spin wave function is not the simple prod-
uct of the wave function of each bond, as in the RVB
state, but involves Wigner-Jordan phase factors which
correlate between long-distance spins.
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