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Using both empirical potentials and first-principles total-energy methods, we have examined the en-
ergetics and elastic properties of all possible graphitic tubules with radii less than 9 A. We find that
the strain energy per carbon atom relative to an unstrained graphite sheet varies as 1/R? (where R is
the tubule radius) and is insensitive to other aspects of the lattice structure, indicating that relation-
ships derivable from continuum elastic theory persist well into the small-radius limit. We also predict
that this strain energy is much smaller than that in highly symmetric fullerene clusters with similar ra-
dii, suggesting a possible thermodynamic preference for tubular structures rather than cage structures.
The empirical potentials further predict that the elastic constants along the tubule axis generally soften
with decreasing tubule radius, although with a distinct dependence on helical conformation.

The discovery by Kritschmer eral.' of a process for
producing bulk quantities of fullerene clusters has opened
up new opportunities for producing unique carbon-based
materials. Among the possibilities are materials based on
carbon fibers that have radii similar to that of Cg. For
example, lijima? has reported evidence of needlelike tubes
consisting of concentric carbon fibers with radii as small
as 22 A forming at the negative end of an electrode in an
apparatus typically used to produce fullerene clusters. If
the synthesis and processing of these fibers can be precise-
ly controlled, they may yield new materials with impor-
tant structural and electronic properties.

Theoretical studies of these small-radii graphitic tu-
bules have focused primarily on their electronic proper-
ties. Local-density functional® (LDF) and empirical
tight-binding electronic structure calculations® ¢ predict
that these materials will show conducting properties vary-
ing from metals to moderate band-gap semiconductors de-
pending on their radii and helical arrangement of the car-
bon hexagons. In contrast to the electronic properties, rel-
atively little has been reported regarding the lattice ener-
getics and elastic properties of these structures. Such in-
formation may be helpful for optimizing the conditions
necessary for producing subnanometer radii graphitic tu-
bules with high strength-to-weight ratios.

We have examined the energetics of a set of tubules
that can be constructed conceptually by rolling up a single
sheet of graphite into a cylindrical tube with a constant
radius. We report herein calculations for the energy and
the force constant along the tubule axis for all such tu-
bules with radii less than 9 A using two related many-
body empirical potentials. We find that the strain energy
per carbon atom relative to an unstrained graphite sheet
goes as 1/R? (where R is the tubule radius) and is insensi-
tive to other aspects of the lattice structure, indicating
that relationships derivable from continuum elastic theory
persist well into the small radius limit. These results are
further supported by first-principles LDF calculations on
a series of selected tubules. We also predict that the
strain energy associated with infinitely extended tubules is
much smaller than that for highly symmetric icosahedral
fullerene clusters with similar average radii. We find that
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the force constants associated with stretching along the
tubule axis decrease (i.e., the tubules become softer with
decreasing radius). Unlike the strain energy, however,
this force constant is sensitive to the helical structure of
the tubule with the dependence increasing at smaller tu-
bule radii.

We can visualize an infinite tubule as a conformal map-
ping of a two-dimensional honeycomb lattice (depicted in
Fig. 1) to the surface of a cylinder that is subject to
periodic boundaries both around the cylinder and along its
axis. The proper boundary condition around the cylinder
can only be satisfied if the circumference of the cylinder
maps to one of the Bravais lattice vectors of the graphite
sheet.* Thus each real lattice vector of the two-
dimensional hexagonal lattice (the Bravais lattice for the
honeycomb) defines a different way of rolling up the sheet
into a tubule. Each such lattice vector, R, can be defined
in terms of the two primitive lattice vectors R; and R; and
a pair of integer indices [n,n,], such that R=n R,
+n,R,. The point-group symmetry of the honeycomb
lattice will make many of these equivalent, however, so
truly unique tubules are only generated using a one-
twelfth irreducible wedge of the Bravais lattice. Within
this wedge only a finite number of tubules can be con-
structed with a circumference below any given value such

FIG. 1. Irreducible wedge of the graphite lattice. Primitive
lattice vectors Ry and R are depicted in the inset. 8 defines the
angle that the circumference vector makes with the primitive
lattice vector. The dashed lines depict the 9-A cutoff for tubule
structures.
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as that shown by the dashed lines in Fig. 1.

The construction of the tubule from a conformal map-
ping of the graphite sheet allows us to make additional
deductions about the tubule structure. Because the primi-
tive reciprocal-lattice vectors of the hexagonal lattice (the
Bravais lattice of the honeycomb lattice) are scalar multi-
ples of real lattice vectors, the tubule can be shown to be
translationally periodic down the tubule axis.* This
feature allows us to use standard supercell techniques with
periodic boundary conditions for our analysis of the lattice
energetics. Each tubule can have up to three inequivalent
helical operations derived from the primitive lattice vec-
tors of the graphite sheet. Thus while a// tubules will ex-
hibit a helical structure, tubules constructed by mapping
directions equivalent to 8 =0° or 30° in Fig. 1 (which cor-
respond to lattice translation indices of the form [n,0] and
[n,n], respectively) to the circumference of the tubule will
possess a reflection plane. These high-symmetry tubules
will therefore be achiral. For convenience, we will denote
these high-symmetry structures based on the shapes made
by the most direct continuous path of bonds around the
circumference of the tubule. We will denote the [n,0]-
type structures as sawtooth, and the [n,n]-type structures
as serpentine structures. For other values of 6, the tubules
will be chiral and have three inequivalent primitive helical
operations. By varying 6 for tubules with similar radii, we
can then ascertain which properties depend on the helical
nature of the tubules.

We calculate the strain energy and stretching force con-
stant of each tubule using two related many-body empiri-
cal potentials.”® For both potentials the binding energy is
given as

Ebina=2 }):V[VR(r,-,-) —BiiValri)dl, (1)
i j>i

where r;; is the scalar distance between atoms i and j,
Vr(rij) and V4(r;;) represent a pair-additive core-core
repulsion and an attraction due to valence electrons, re-
spectively, and B;; is a many-body empirical bond order
that couples quantities such as bond angles and local coor-
dination to the attractive potential. Tersoff’ has shown
that if Morse-like functions are used for the pair terms, a
wide range of structural properties of solid-state carbon
can be accurately modeled using this formalism. Further-
more, well-known trends relating bond length to total-
energy and stretching force constants are reproduced, sug-
gesting that this approach provides a reasonable starting
point for predicting trends such as those studied here.

The two potentials used are both based on Eq. (1), but
vary slightly in the form of B;; and the parameters used in
the pair terms. The first empirical potential (hereafter re-
ferred to as EP1) was introduced by Tersoff,” and was fit
to the lattice constant and binding energy of a number of
carbon lattices as well as the elastic constants and vacancy
formation energies of graphite and diamond. This poten-
tial has recently been used by Hamada, Sawada, and
Oshiyama® to generate tubule structures subsequently
used in tight-binding electronic structure calculations.
The second empirical potential (hereafter referred to as
EP2) was developed in the context of a reactive hydrocar-
bon potential,® and has been fit to similar properties as
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EPI1. Specific details of the two potential functions are
given elsewhere.”*®

In addition to the empirical potential calculations, we
have also calculated the electronic structure of a set of tu-
bule structures using a first-principles, all-electron self-
consistent LDF approach originally developed to treat
chain polymers® and recently adapted for helical symme-
try.'® This method calculates the total energy and elec-
tronic structure using local Gaussian-type orbitals within
a one-dimensional band-structure approach. The one-
electron states are Bloch functions generated by repeated
application of a screw operation, and belong to the irre-
ducible representations of the screw symmetry group with
a dimensionless analog of the wave vector k. Herein we
used twenty-four evenly spaced points in the one-
dimensional Brillouin zone (—z <k <) and a carbon
7s3p Gaussian basis set.

We have examined all of the 169 tubules that can be
constructed for radii less than 9 A, assuming a carbon-
carbon bond distance of 1.44 A. We first generate an ini-
tial tubule structure with periodic boundary conditions
matching the minimum translational periodicity along the
tubule axis using the above-mentioned conformal map-
ping of the graphite sheet. Once these tubules are gen-
erated we relax the constraint of conformal mapping, and
minimize the energy with respect to their configuration
and periodic boundary along the tube axis for both these
empirical potentials. Using this optimized structure we
next calculate a numerical second derivative of the total
energy with respect to strain along the tubule axis.

Figure 2 depicts the strain energy per atom (relative to
that of the graphite sheet) for these tubules using opti-
mized structures as a function of radius for both empirical
potentials. As expected, for both potentials the strain en-
ergy decreases with larger radius, with the energy per
atom approaching the limiting graphite value shown as
the dashed line in Fig. 2. The results using EP1, however,
show a larger dependence of the strain energy on tubule
radii compared to the results using EP2. Although the re-
sults depicted in Fig. 2 are for tubules with 6 values rang-
ing from 0° to 30°, the strain energy appears to depend
only on the radius and thus is independent of the chirality
of the tubule.

We also calculated total energies for a series of high-
symmetry tubules with 6 =30° using first-principles LDF
methods. These tubules all correspond to serpentine
structures of the form [n,n]. The LDF electronic struc-
ture of the [5,5] structure has been presented elsewhere.>
We have since found the minimum energy structure of
this tubule by direct minimization of the total energy.
The minimum energy structure is found to have a radius
of 3.47 A with both types of carbon-carbon bonds being
essentially equal with lengths of 1.44 A. Using unoptim-
ized tubule structures generated from a conformal map-
ping of a graphite sheet with a 1.44-A carbon-carbon
bond distance, we have calculated the total energies of the
(3,31, [4,4], [5,5], [6,6], [7,7], and [9,9] serpentine tu-
bules. These values are plotted as open squares in Fig. 2.
The strain energy is slightly larger than that predicted
from either of the empirical potentials but shows a similar
monotonically decreasing trend with increasing radius.
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FIG. 2. Minimized strain energy relative to graphite (eV per
carbon atom) as a function of tubule radius for potentials EP1
and EP2. Zero energy corresponds to the equilibrium graphite
energies of —7.3995 and —7.3756 eV per atom for EP1 and
EP2, respectively. The solid lines are the 1/R? approximation
resulting from the best linear fit to the log-log data given in the
inset. The open squares give LDF strain energies for unoptim-
ized serpentine structures relative to the extrapolated limit. The
other symbols give corresponding strain energies per carbon
atom using EP1 (circles) and EP2 (diamonds) for fullerene cage
structures Ceo, Ci30, and Ca4p at the radii indicated.

This increased strain energy in the LDF results compared
to the empirical potential results may arise from the expli-
cit treatment of n-bonding energy in the LDF approach
that is not incorporated in the empirical potentials.

Based on a continuum elastic model, Tibbetts'' derived
a strain energy for a thin graphitic tubule of the general
form:

3
-zoe @)

where E is the elastic modulus, R is the radius of curva-
ture, L is the length of the cylinder, and a is a representa-
tive thickness of the order of the graphite interplanar
spacing (3.35 A). Assuming that the total number of car-
bon atoms is given by N =2zRL/Q, where Q is the area
per carbon, we find that the strain energy per carbon is ex-
pected to be

c _Ea’ @

N 24 RIS 3)
The inset in Fig. 2 presents a log-log plot of the same tu-
bule data presented in linear scale in the main portion of
the figure. A linear regression using the natural loga-
rithms of the data yields a slope of —2.0 £0.06 for both
empirical potentials and the LDF results, with a high
correlation coefficient. Using the results of this fit, we
have drawn solid lines in the main portion of Fig. 2 show-
ing how well the 1/R? behavior fits the results for the
empirical potentials. Thus we find that the 1/R? depen-
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dence derived from continuum elastic theory
to very small radius tubules.

Also shown in Fig. 2 are the energies per atom with
respect to graphite for the icosahedral fullerene clusters
Ce0, Cig0, and Cyyp calculated using the respective empiri-
cal potentials. These clusters represent highly symmetric
structures which have the strain energy well distributed
around the cluster.'3 For both potentials the strain energy
associated with these clusters is much larger than the
infinite tubules with comparable radii, but should reduce
to the graphite limit as the radius increases. This larger
strain energy for the fullerenes reflects that while in tu-
bules the curvature is restricted to one dimension perpen-
dicular to the tubule axis, in fullerenes this curvature is
present in two dimensions with respect to the flat graphite
sheet. The formation of fullerene clusters rather than tu-
bules during condensation may therefore be controlled by
growth kinetics rather than energetics.

We have also examined the energetics of stretching and
compressing a tubule. Figure 3 depicts total-energy re-
sults versus strain along the tubule axis for the [5,5] ser-
pentine tubule, in which we compare results of fully opti-
mized structures for a fixed repeat length along the tubule
axis using both the empirical potentials and the LDF
method. We see that both empirical methods are in good
agreement both with each other and with the first-
principles LDF results.

After this check on the reliability of the empirical po-
tentials on calculating this effective elastic modulus of the
tubule, we have extended our empirical potential calcula-
tions on the same set of 169 tubules used above for strain
energies to the numerical second derivatives of the total
energy with respect to strain along the tubule axis. These
results (in terms of strain energy per carbon atom) are de-
picted in Fig. 4. Again, as the radii increase these values
approach a limiting value. In the limit of infinite radius,
we can correlate these results with elastic constants of
graphite if we neglect interactions between layers. In this
case our results for the second derivative of the total ener-
gy per carbon with respect to linear strain should just
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FIG. 3. Strain energy (eV per carbon atom) vs uniform ten-
sile strain in the tubule axis direction for the [5,5] serpentine tu-
bule using empirical potentials EP1 (open circles), EP2 (open
diamonds), and the LDF method (solid squares). Solid lines for
empirical potentials are used as guides to the eye.
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F1G. 4. Numerical second derivatives of energy per carbon
with respect to uniform strain along the tubule axis direction for
potentials EP1 and EP2.

equal the product of the graphite ¢ elastic constant and
the specific volume per carbon, V. Using experimentally
determined lattice constants ag=2.462 A and c(=6.707
A, and the elastic constant ¢;;=1.06 TPa,'*'> we find
Vo=8.80 A> and Voc; =58.2 eV/atom. This close
agreement of EP2 with experiment and excess stiffness us-
ing the EP1 potential has been noted in other calculations
on graphite systems. "'

For both potentials, the tubules tend to get softer with
smaller radii, with EP1 showing almost an order of mag-
nitude greater dependence of the stiffness of the tubule as
a function of radius than EP2. Unlike the energy, howev-
er, the stiffness of the tubules is dependent on 0 as well as
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tubule radius and this dependence is maximized for the
smaller, more strained tubules. We find that tubules with
smaller 0 are softer than those with a similar radius and
larger value of 8. Thus the two achiral sawtooth (§=0°)
and serpentine (6=30°) tubules yield the lower and
upper limits of the stiffness along the tubular axis, respec-
tively, for a given radius.

We have calculated the energies of optimized structures
for all possible graphitic tubules with radii less than 9 A
using two different empirical potentials. We find a strain
energy dependence on tubule radius of 1/R? derived from
continuum elastic theory even down to tubule radii of
~3.5 A, that typical of fullerene (Cgo). LDF calculations
for a series of serpentine tubules substantiate the former
trend, but yield a somewhat larger strain energy. We also
predict that this strain energy is much smaller than that in
highly symmetric fullerene clusters with similar radii.
The empirical potentials predict that as the radii of these
tubules decrease the elastic constants along the tubule
axis also decrease (i.e., the tubules become softer as their
local curvature increases). Unlike the minimized energy,
this elastic property shows a distinct dependence on 6 with
the largest variations with respect to 8 occurring for small
radii tubules. For similar radii, the lower and upper
bounds of the stiffness are given by the achiral sawtooth
and serpentine tubules, respectively.
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