Electronic structure of tetragonal $Ba_{2-x}Ba_xBi_2O_7$ and related layer-type bismuthates

L. F. Mattheiss

AT&T Bell Laboratories, Murray Hill, New Jersey 07974 (Received 21 November 1991)

The electronic structure of body-centered-tetragonal $BaK₂Bi₂O₇$, an ordered prototype of the recently synthesized perovskite-type layer compound BaK_1 , Ba_0 , Bi_2O_7 , has been calculated with the use of the linear augmented-plane-wave method. In rigid-band terms, the results predict metallic properties for the entire Ba K_{2-x} Ba_xBi₂O₇ alloy series, with $E_F(x)$ rising with increasing x to gradually fill a pair of nearly two-dimensional (sp σ)^{*} conduction bands. For compositions $x > 0.8$, the onset for filling the upper $(sp\sigma)^*$ subband produces a sharp increase in the density of states. The resulting value (per Bi) is about 50% greater than that for cubic $Ba_{1-x}K_yBiO_3$ near the composition ($y \approx 0.3-0.4$) where T_c ($\sim 30 \text{ K}$) is a maximum. This suggests that a slightly increased Ba composition $(x \sim 0.8)$ should provide more favorable conditions for possible superconductivity in these $BaK_{2-x}Ba_xBi_2O_7$ alloys than those predicted for the nonsuperconducting $x \sim 0.7$ phase that has been prepared thus far.

Since the discovery¹ of high-temperature superconductivity in the cubic $Ba_{1-x}K_xBiO_3$ alloy system, with measured T_c 's that have reached the 30 K range,² efforts to synthesize new bismuthate and plumbate superconducting phases have been largely unsuccessful.^{$3\frac{1}{2}$ 9} The sole exception has been the observation of superconductivity $(T_c \approx 3.5 \text{ K})$ in the cubic BaPb_{1-x}Sb_xO₃ alloy system⁴ with $x \approx 0.25$. This transition temperature is significantly lower than the value $(T_c \approx 12 \text{ K})$ that was observed initially by Sleight, Gillson, and Bierstedt¹⁰ in the nearlycubic BaPb_{1-x}Bi_xO₃ system in the same composition range, $x \approx 0.25-0.30$. This suggests that the increased Bi(6s) binding energy relative to the $Pb(6s)$ and $Sb(5s)$ values may play an important role in enhancing the superconducting properties of the Bi-based compounds.

In their work on the Ba-Pb-0 and Ba-Pb-Bi-0 systems, Fu et al ⁵ discovered that these materials form a Ruddlesden-Popper-type¹¹ homologous alloy series with general composition $Ba_{n+1}(Pb_{1-x}Bi_x)_nO_{3n+1}$. These tetragonal phases consist of n perovskite-type $BaPb_{1-x}Bi_xO_3$ layers, which are separated along the c axis by rocksalt-type BaO bilayers. The $n = 1$ and $n = \infty$ end members of this series correspond to body-centeredtetragonal (bct) $Ba_2Pb_{1-x}Bi_xO_4$ and (nearly) cubic $BaPb_{1-x}Bi_xO_3$, respectively. The former compound shares the same K_2NiF_4 -type structure with the high- T_c cuprate superconductor $La_{2-x}Ba_xCuO_4$ (Ref. 12). Thus, these Ruddlesden-Popper phases provide an interesting structural link between the cubic bismuthate high- T_c superconductors and their tetragonal cuprate counterparts. They also provide a valuable system for investigating the influence of dimensionality on the superconducting properties of chemically similar two- and three-dimensional perovskite-type phases.

Initial efforts to induce metallic behavior and superconductivity in these Pb-based tetragonal Ruddlesden-Popper phases via $Bi \rightarrow Pb$ substitutional doping have been unsuccessful.^{6,7,9} One problem with this approach is that it ignores the successful strategy¹ of leaving the conducting Pb-0 or Bi-0 octahedral complexes intact and instead doping substitutionally at the chemically and electronically inactive Ba sites. However, Cava et al .¹³ have recently synthesized a very promising material in this regard, a K-doped, Bi-based $n = 2$ member of the Ruddlesden-Popper series with general formula $BaK_{2-x}Ba_xBi_2O_7$ and composition $x \approx 0.7$. While superconductivity has not been observed in these samples, a simple rigid-band extrapolation of previous bandstructure results for the isostructural $Ba_{n+1}Pb_nO_{3n+1}$ series¹⁴ suggests that a slightly increased Ba composition $(x \ge 0.8)$ should produce more favorable conditions for possible superconductivity in these materials.

In order to address these issues, a scalar-relativistic version¹⁵ of the linear augmented-plane-wave $(LAPW)$ method has been applied to calculate the electronic band properties of $BaK_2Bi_2O_7$ and related layered bismuthates (including Ba_2BiO_4 and $Ba_3Bi_2O_7$). The $BaK_2Bi_2O_7$ and $Ba₃Bi₂O₇$ results represent the ordered end-member prototypes of the $BaK_{2-x}Ba_xBi_2O_7$ alloy series that has been synthesized¹³ thus far only with the composition $x \approx 0.7$. These end-member band-structure results confirm the validity of a rigid-band treatment for intermediate doping compositions x . They also confirm that doping at the electronically and chemically inactive Ba site in the cubic ' $Ba_{1-x}K_xBiO_3$ alloys^{1, 16, 17} should also be effective here.

The present LAPW calculations have been carried out self-consistently in the local-density approximation with the use of the Wigner interpolation formula¹⁸ to treat exchange and correlation effects. The implementation¹⁵ imposes no shape approximations on either the crystalline charge density or potential. In this investigation, the LAPW basis has included plane waves with a 10.5-Ry cutoff $(-770$ LAPW's) and spherical-harmonic terms through $l=8$ within the muffin-tin spheres. The potential and charge density have been expanded using \sim 9200 plane waves in the interstitial region and lattice-harmonic expansions $(l_{\text{max}} = 6)$ inside the muffin-tin spheres. Brillouin-zone integrations have been carried out using a

ten-**k**-point sample in the $\frac{1}{16}$ irreducible Brillouin-zor wedge. The atomic $Ba(5p^66s^2)$, $K(3p^64s)$, $Bi(6s^26p^3)$, and $O(2s^22p^4)$ states are treated as valence electrons, while a frozen-core approximation is applied to the more tightly bound core levels.

The essential features of the $BaK_{2-x}Ba_xBi_2O_7$ structure are illustrated in Fig. 1. The primitive cell contains two perovskite-type layers with equivalent Bi sites that are octahedrally coordinated by oxygens. The $BaK_{1,3}Ba_{0,7}Bi_2O_7$ structural parameters, which have been determined by single-crystal x-ray-diffraction measurements,¹³ are summarized in Table I. According to these structural parameters, the Bi-0 coordination geometry is quite symmetrical. In particular, the Bi-0 bond distances (-2.14 Å) with the planar [O(2)] oxygens are slightly larger than the average apical-oxygen $[\sim 2.17 \text{ Å}$ for O(1) and \sim 2.04 Å for O(3)] values. A similar anisotropy occurs in Ba_2PbO_4 , where the Pb coordination geometry involves two short (-2.06 Å) apical Pb-O bond distance and four longer (\sim 2.14-Å) planar values.¹⁴

An interesting aspect of these x-ray structural data is the fact that they reveal a preference between the two Ba sites (types 2b and 4e, respectively) in regard to $K \rightarrow Ba$ substitution. In particular, the data analysis shows that the type-2b sites are occupied entirely by Ba atoms and the K-Ba alloying effects are confined solely to the type 4e sites. These form the rocksalt-type bilayers that separate neighboring cells along the c direction.

The present LAPW band-structure results for the ordered $BaK₂Bi₂O₇$ alloy in which these 4e sites are fully occupied by K atoms are shown in Fig. 2. The 23-band valence- and conduction-band manifold, which extends from \sim +4 to -11 eV, evolves from the O(2p) and Bi(6s) states. The Fermi level occurs within the lower portion of a pair of $(sp\sigma)^*$ antibonding subbands that originate from the strong Bi-0 nearest-neighbor interactions. Their bonding counterparts intersect the corelike bands at lower energies $(-10.0 \text{ and } -10.5 \text{ eV})$, which represent the Ba(5p) and $K(3p)$ levels, respectively. Since the lowest Ba and K conduction bands are located well above (\sim 5 eV) the BaK₂Bi₂O₇ Fermi level, these constit-

FIG. 1. Primitive body-centered-tetragonal unit cell for $BaK_{2-x}Ba_xBi_2O_7$. Oxygens in the Ba, Bi, and K-Ba planes are denoted $O(1)$, $O(2)$, and $O(3)$, respectively.

TABLE I. Measured (Ref. 13) atom-position parameters for the body-centered-tetragonal compound $BaK_{1.3}Ba_{0.7}Bi_2O_7$ with space group $I4/mmm$ (D_{4h}^{17}) and lattice-parameter values $a = 4.2477$ Å and $c = 21.885$ Å.

Atom	Type	x	ν	z
Ba	2b			
$K_{1,3}Ba_{0,7}$	4e			0.18923
Bi	4e			0.09934
O(1)	2a			
O(2)	8g	7		0.0914
O(3)	4e			0.1923

uents essentially donate their three outer $(6s^2$ and 4s) electrons to the $Bi(6s)$ -O(2*p*) band manifold.

The $(sp \sigma)^*$ conduction bands are very similar to those obtained previously [see Fig. 5(a) of Ref. 14] from a tight-binding treatment for the isostructural and isoelectronic compound $Ba_3Pb_2O_7$, where tight-binding parameters have been derived from a fit to LAPW results for Ba_2PbO_4 . According to this tight-binding analysis, ¹⁴ the splitting between the two $(sp \sigma)^*$ conduction bands in Fig. 2 originates from the fact that the upper $(sp \sigma)^*$ band, which is odd under reflection in the basal plane, interacts with two apical oxygens whereas the lower (even) $(sp \sigma)^*$ band interacts only with one. As expected, the main

FIG. 2. LAPW band results for $BaK_2Bi_2O_7$ along symmetry lines in the bct Brillouin zone. Those bands labeled by squares [triangles] have at least 40% Bi(6s)-O((2)p(x,y)) [Bi(6s)- $O((1,3)p(z))$ orbital weight within the corresponding muffintin spheres. The x's identify bands with significant ($>$ 30%) Ba or K d-type character.

difference in the present $BaK_2Bi_2O_7$ bands is due to the increased binding energy (\sim 2.4 eV) of the atomic Bi(6s) level relative to that of the corresponding Pb(6s) state. In contrast to the calculated semiconducting behavior in $Ba_3Pb_2O_7$, this shifts the $BaK_2Bi_2O_7$ (sp σ)* bands to lower energies to the extent that they overlap the nonbonding O(2p) bands and produce metallic behavior. A less obvious consequence of the increased Bi(6s) binding energy is to increase the $O(2p)$ component of the conduction-electron states near E_F . Qualitatively, this could increase T_c by enhancing the coupling between the Fermi-surface electrons and bond-stretching oxygen phonons.

As shown by the square and triangle symbols, the orbital character of the $(sp \sigma)^*$ subbands varies systematically with wave vector and energy. The lower-energy portions of each subband involve primarily $Bi(6s)$ (sp σ) interactions with apical oxygen $[O(1)$ and $O(3)$, respectively] $p(z)$ -type orbitals, while the uppermost states exhibit planar Bi(6s)-O(2) $p(x, y)$ character. As discussed previously,¹⁴ this variation from apical-to-planar Bi-O bonding effects in the Ba $K_2Bi_2O_7$ (sp σ)* conduction bands is a manifestation of their hybrid nature.

The band-structure results in Fig. 2 exhibit nearly two-dimensional (2D) characteristics, despite the basic isotropic character of the central Bi(6s) states. These 2D features result from the rocksalt-type K_2O_2 double-layers, which act as insulating barriers to separate neighboring $BaBi₂O₅$ units along the c axis. One obvious measure of 2D behavior is the limited dispersion exhibited by the bands along the ΓZ direction. Another is the symmetry of the bands about X and the midpoint of the ΔU line. These lines, which are coplanar in an extended-zone scheme, are separated vertically by the same ΓZ dimension $(2\pi/c)$ in the primitive Brillouin zone.

These 2D band characteristics originate from the fact that the continuity of the $O(3)-Bi-O(1)-Bi-O(3)$ c-axis bonds in Fig. ¹ is interrupted by the body-centering translation, which places the electronically inactive K^+ ions above and below the O(3) sites in neighboring cells. As a result, the strong apical-oxygen $(sp\sigma)$ interactions with the intermediate Bi atoms produce pairs of bonding and antibonding molecular-orbital-type states that are shifted by large energies but in turn exhibit minimal caxis dispersion.¹⁴

This qualitative picture is reflected by the valenceelectron charge-density results that are shown in Fig. 3. The strong nearest-neighbor Bi-O $(sp \sigma)$ bonds are identified by the long-dashed curves that represent the 0.04-electron/ $(a.u.)^3$ contours. The bonding is nearly isotropic about the Bi site.¹⁹ The planar Bi-O(2) (sp σ) bonds extend periodically throughout the crystal along the [100] and [010] directions. However, the corresponding apical-oxygen [O(3)] bond charge is visibly confined, diminishing rapidly in the upper portion of the figure rather than continuing in the direction of the neighboring K^+ ion (at a distance of \sim 2.59 Å) in the adjoining layer.

The BaK₂Bi₂O₇ density-of-states [$N(E)$] results in Fig. 4 provide a general overview of the electronic properties for this compound. These results have been calculated using tetrahedral interpolation, based on LAPW results

FIG. 3. Valence-electron charge-density contours on a central (100) plane of $BaK₂Bi₂O₇$. The lower boundary is the basal reflection plane that contains the $O(1)$ atoms. Neighboring layers contain Bi-O(2) and O(3) sites, respectively. The charge densities are expressed in units of electrons/ $(a.u.)^3$ and adjacent contours increase by a factor of 2. The 0.02 and 0.04 contours are identified by the short and long dashes, respectively.

FIG. 4. Total and muffin-tin projected density-of-states results for $BaK₂Bi₂O₇$.

at 42 uniformly distributed **k** points in the $\frac{1}{16}$ irreducible Brillouin-zone wedge. The $BaK₂Bi₂O₇$ Fermi level falls on the leading edge of a $N(E)$ peak that arises primarily from the weakly bonding $p(x, y)$ states at the O(3) sites that are clustered near E_F in Fig. 2. As discussed in more detail below, $Ba \rightarrow K$ substitution will raise the Fermi level and decrease $N(E_F)$ from the undoped value $(-3.7 \text{ states/eV cell})$ to a more typical value (-0.5) states/eV cell) for the $(sp \sigma)^*$ conduction band.

As expected from earlier studies on related tetragonal¹⁴ (Ba_2PbO_4) and nearly-cubic¹⁷ (BaBiO₃ and Ba_{0.5}K_{0.5}BiO₃) phases, the muffin-tin projected Ba and K components are extremely small in the $(sp \sigma)^*$ conduction-band energy range. Thus, these electronically inactive divalent or monovalent constituents are ideal candidates for raising the Fermi level via substitutional doping while minimizing disorder-induced scattering of the conduction electrons near E_F . As Cava et al.¹³ have shown, Ba \rightarrow K substitution leads to one interesting possibility, $BaK_{2-x}Ba_{x}Bi_{2}O_{7}$. Clearly, other possible divalent constituents (e.g., $BaK_{2-x}Sr_xBi_2O_7$, etc.) should also be explored. tuents (e.g., $\text{Bar}_{2-x} \text{st}_x \text{Br}_2 \text{O}_7$, etc.) should also be ex-
pred.
As in the cubic $\text{Ba}_{1-x} \text{K}_x \text{BiO}_3$ system,^{1,17} the doping

strategy in the alkali-doped bct $Ba_{n+1}Bi_nO_{3n+1}$ homologous series is to lower E_F within the $(sp \sigma)^*$ conduction band(s) in order to stabilize the target bct phase. Though the evidence is limited, there are indications that the tetragonal $Ba_{n+1}Bi_nO_{3n+1}$ compounds may be unstable in the small-n limit. For example, efforts to synthesize the undoped $n = 1$ bct phase, $Ba₂BiO₄$, have been unsuccessful thus far.^{6,9,20,21} Instead of the desired tetragonal phase, these studies have shown that, near the 2:1:4 composition range, the Ba-Bi-0 system forms an oxygen-

deficient face-centered-cubic perovskite^{20,21} in which Bi occupies one octahedral site, while a $Bi_{1-x}Ba_x$ mixture occupies the other.

In the case of $BaK_{1,3}Ba_{0,7}Bi_2O_7$, Cava et al.¹³ have noted that they were unable to synthesize this tetragonal $n = 2$ Ruddlesden-Popper-type phase through the application of conventional ceramic-processing methods. Instead, it was obtained only through the use of an electrochemical growth technique. X-ray-diffraction evidence indicated that the composition of the electrochemicallydeposited phase could not be changed significantly from the value $x \approx 0.7$ by variations in the preparation conditions. Clearly, these alternative processing methods should also be explored in efforts to produce the alkalidoped $n = 1$ Ruddlesden-Popper phase, $Ba_{2-x}K_xBiO_4$. One very promising approach involves the use of molecular-beam epitaxy, a technique that has been applied successfully to grow superconducting cubic $Ba_{1-x}Rb_xBiO_3$ and $Ba_{1-x}K_xBiO_3$ thin films. ²² This technique may provide a valuable alternative for producing K-doped $Ba_{2-x}K_xBiO_4$ or Ba-enriched $BaK_{2-x}Ba_xBi_2O_7$ bct-phase samples.

Despite their possibly unstable nature, it is interesting to investigate the electronic structure of the undoped $Ba₂BiO₄$ and end-member $Ba₃Bi₂O₇$ compounds. An approximate structure for the 2:1:4 bct phase has been derived from the $BaK_{1.3}Ba_{0.7}Bi_2O_7$ structural data of Table I. These estimated parameters for $Ba₂BiO₄$ include the values $a = 4.25$ Å, $c = 13.19$ Å, $z (Ba) = 0.149$, and $z(O)=0.154$. These values are in reasonable agreement with the corresponding Ba_2PbO_4 parameters²³ [a =4.30] \check{A} , $c = 13.3 \check{A}$, $z(Ba) = 0.145$, and $z(O) = 0.155$. For the $Ba_3Bi_2O_7$ calculations, the $BaK_{1,3}Ba_{0,7}Bi_2O_7$ structural

FIG. 5. LAPW energy-band results for the undoped $n = 1$ (Ba₂BiO₄) and $n = 2$ (Ba₃Bi₂O₇) members of the Ba_{n+1}Bi_nO_{3n+1} homologous series. Bands with specific orbital character are labeled in accordance with Fig. 2.

parameters of Table I have been used directly.

The results of LAPW calculations for these bct forms of Ba_2BiO_4 and $Ba_3Bi_2O_7$ are shown in Fig. 5. In these materials, the Fermi level is raised so that the $(sp \sigma)^*$ band(s) is half filled. Overall, the $Ba₂BiO₄$ bands are extremely similar to the earlier Ba_2PbO_4 results,¹⁴ althought the increased Bi(6s) binding energy has reduced the calculated 1.7 eV semiconductor gap in Ba_2PbO_4 to a 1.1-eV gap separating the lowest $(sp \sigma)^*$ state at Γ and the top of the nonbonding $O(2p)$ manifold at X. The lower portions of the Ba(5d) bands lie slightly above E_F and intersect the $(sp \sigma)^*$ band near X, in a manner similar to the Ba₂PbO₄ results.

Below E_F , the Ba₃Bi₂O₇ results in Fig. 5 are in good qualitative agreement with the corresponding $BaK_2Bi_2O_7$ bands of Fig. 2. The main changes occur above E_F , where the $Ba(5d)$ bands have dropped in energy to the point where they nearly intersect the Fermi level. This could be a partial consequence of neglecting alloyinginduced changes in the assumed structure for the $BaK_{2-x}Ba_xBi_2O_7$ system. Nevertheless, the close similarities between the $BaK_2Bi_2O_7$ (Fig. 2) and $Ba_3Bi_2O_7$ (Fig. 5) conduction-band results provides strong justification for the rigid-band treatment of the intermediate $BaK_{2-x}Ba_xBi_2O_7$ alloys.

An expanded plot of the $(sp \sigma)^*$ conduction bands and the corresponding density of states for this system, as derived from the $BaK_2Bi_2O_7$ results, is shown in Fig. 6. The interior scale presents the rigid-band variation of $E_F(x)$ with doping in the Ba $K_{2-x}Ba_xBi_2O_7$ alloys. As indicated, $N(E, x)$ decreases rapidly for $x > 0$ and then increases quite gradually to the value 0.53 states/eV cell (or 0.27 states/eV Bi) for $x = 0.7$, the composition of the nonsuperconducting electrochemically-prepared materi $al.$ ¹³ For purposes of comparison, the corresponding rigid-band density-of-states values¹⁷ for the cubic $Ba_{1-x}K_xBiO_3$, compounds near the maximum- T_c composition $x \approx 0.3-0.4$ are in the range 0.46–0.52 states/eV Bi. Thus, the failure to observe superconductivity in BaK_1 , Ba_0 , Bi_2O_7 may be due in part to the reduced value of $N(E_F)$ for the bct versus the cubic phase.

As discussed previously,¹⁴ there are also geometrical factors that favor an enhanced electron-phonon coupling in the cubic phase relative to its tetragonal counterparts. Namely, an analysis based on a simple tight-binding mod el^{16} shows that the electron-phonon-coupling strength of the cubic $(sp \sigma)^*$ band is focused strongly near half filling and is enhanced by the fact that there are a larger number (i.e., 6 vs 4) of face-shared oxygen neighbors. The corresponding coupling in the bet compounds is more diffuse; while the face-sharing oxygen contributions remain at half filling, the corresponding apical-oxygen interactions are concentrated near the $(sp \sigma)^*$ conduction-

try of High-Temperature Superconductors II, edited by D. L. Nelson and T. F. George (American Chemical Society, Washington, D.C., 1988).

 ${}^{2}R$. J. Cava et al., Nature (London) 332, 814 (1988). 3D. W. Murphy, L. F. Schneemeyer, J. V. Waszczak, in Chemis-

Rev. B37, 3745 (1988).

'L. F. Mattheiss, E. M. Gyorgy, and D. W. Johnson, Jr., Phys.

⁴R. J. Cava et al., Nature (London) 339, 291 (1989).

FIG. 6. Calculated variation of the $BaK_{2-x}Ba_xBi_2O_7$ Fermi level $E_F(x)$ with x within the $(sp\sigma)^*$ conduction bands according to a rigid-band treatment.

band edges.

According to the results in Fig. 6, this suggests that $BaK_{2-x}Ba_{x}Bi_{2}O_{7}$ alloys with an increased Ba content $x \ge 1$ should provide more favorable band properties for possible superconductivity. Not only is the density of states increased significantly $(-0.7-0.8 \text{ states } /eV \text{ Bi})$, but the electron-phonon-coupling strength should also be enhanced by the added contribution from the apical oxygens.

To summarize, the electronic band properties of the $n = 1$ and $n = 2$ members of the bct Ruddlesden-Popper homologous series have been calculated and analyzed, with particular emphasis on the $n = 2$ alloy, $BaK_{2-x}Ba_xBi_2O_7$. A rigid-band treatment of this phase, based on LAPW results for the end-member compounds $BaK₂Bi₂O₇$ and $Ba₃Bi₂O₇$, suggests that an increased Ba concentration $(x \ge 1)$ should provide band properties near E_F that are more favorable for superconductivity than the $x \approx 0.7$ (Ba $K_{1,3}Ba_{0,7}Bi_2O_7$) composition that has been prepared electrochemically and found not to superconduct. The results also suggest that the single-layer Kdoped $Ba_{2-x}K_xBiO_4$ bct phase is an equally promising high- T_c candidate.

ACKNOWLEDGMENTS

I am pleased to thank my colleagues R. J. Cava, E. H. Hartford, E. S. Hellman, and T. Siegrist for several valuable discussions on the subject of this investigation.

- ⁵W. T. Fu et al., Solid State Commun. 70, 1117 (1989).
- ⁶K. Kourtakis and M. Robbins, Mater. Res. Bull. 24, 1287 (1989).
- ${}^{7}H$. Uwe, J. Hirase, Y. Oiji, and T. Sakudo, in *Proceedings of the* Tsukuba Seminar on High- T_c Superconductivity, Tsukuba, Japan, 1989, edited by K. Masuda, T. Arai, I. Iguchi, and R. Yoshizaki (University of Tsukuba, Tsukuba, Japan, 1989).
- sA. A. Verheijen, W. T. Fu, J. M. van Ruitenbeek, A. Smits, Q. Xu, and L.J. de Jongh, Solid State Commun. 71, 573 (1989).
- 9Q. Xu, W. T. Fu, J. M. van Ruitenbeek, and L. J. de Jongh, Physica C 167, 271 (1990).
- ¹⁰A. W. Sleight, J. L. Gillson, and P. E. Bierstedt, Solid State Commun. 17, 27 (1975).
- ¹¹S. N. Ruddlesden and P. Popper, Acta. Crystallogr. 10, 538 (1957); 11, 54 (1958).
- 12 J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986); J. G. Bednorz, M. Takashigi, and K. A. Müller, Europhys. Lett. 3, 379 (1987).
- ¹³R. J. Cava, T. Siegrist, W. F. Peck, Jr., J. J. Krajewski, B. Batlogg, and J. Rosamilia, Phys. Rev. B 44, 9746 (1991).
- ¹⁴L. F. Mattheiss, Phys. Rev. B 42, 359 (1990).
- ¹⁵L. F. Mattheiss and D. R. Hamann, Phys. Rev. B 33, 823 (1986).
- ¹⁶L. F. Mattheiss and D. R. Hamann, Phys. Rev. B 28, 4227 (1983).
- ¹⁷L. F. Mattheiss and D. R. Hamann, Phys Rev. Lett. 60, 2681 (1988).
- ¹⁸E. Wigner, Phys. Rev. 46, 1002 (1934).
- ¹⁹Compared to earlier charge-density results for BaBiO₃ in Fig. 10 of Ref. 16, the diminished charge density near the Bi site in Fig. 3 is due to the fact that the $Bi(5d)$ electrons are treated as core (rather than valence) electrons in the present calculation.
- ²⁰M. Itoh, T. Sawada, R. Liang, H. Kawaji, and T. Nakamura, J. Solid State Chem. 87, 245 (1990).
- M. Licheron, F. Gervais, J. Coutures, and J. Choisnet, Solid State Commun. 75, 759 (1990).
- ²²E. S. Hellman, E. H. Hartford, and E. M. Gyorgy, Appl. Phys. Lett. 58, 1335 (1991).
- ²³R. Weiss and R. Faivre, C. R. Acad. Sci. **248**, 106 (1959).

FIG. 1. Primitive body-centered-tetragonal unit cell for $BaK_{2-x}Ba_xBi_2O_7$. Oxygens in the Ba, Bi, and K-Ba planes are
denoted O(1), O(2), and O(3), respectively.