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Using an extension of the Gutzwiller approximation and applying the Bethe-lattice method, we have
studied the magnetic phase transition between various phases of one-band Hubbard Hamiltonian. We
allow the magnetic moments to point in an up or down direction and determine self-consistently the lo-
cal magnetic moment on each lattice site. We obtain that the paramagnetic state with local moments is
energetically more favorable than the Pauli paramagnetic state. The phase transition from magnetically
ordered to disordered states involves mainly a transition to a paramagnetic state with local moments.
We calculated the magnetic phase diagram as function of on-site Coulomb repulsion U and dopant con-
centration 8. Results are discussed in connection with the phase diagram observed for high-T, super-
conductors. In agreement with experiment, we obtain, for reasonably large values of U, a small critical
dopant concentration of 3-5% for the destruction of antiferromagnetism due to the occurrence of a
paramagnetic state with local moments. We show that the Hartree-Fock approximation greatly exag-
gerates the stability of magnetic states. The validity of our results is discussed.

I. INTRODUCTION

Since the discovery of high-T, superconductors five
years ago,"? many studies were carried out both experi-
mentally and theoretically. Several physical properties
have been well established experimentally, in particular,
the magnetic phase diagram.>* By now it is clear that
correlations and magnetic fluctuations play an important
role in these materials.’” !> For example, this is indicated
by the insulating and antiferromagnetic phases in the half
filled case, as well as by the photoemission spectra. The
experimental phase diagram shows that the antiferromag-
netic phase for the hole-doped system is very sensitive to
the effective dopant concentration, which is induced by
substitution and oxygen vacancies. Antiferromagnetism
is destroyed already for dopant concentrations of
2-49%.%* The resulting paramagnetic state exhibits very
strong short-range spin correlations.!’ It behaves like a
spin-glass phase rather than a momentless Pauli
paramagnetic state.

In order to describe the normal-state properties of the
strongly correlated system, one usually applies the Hub-
bard Hamiltonian.!*% The electrons form a narrow ener-
gy band resulting from hopping between the Wannier
states of neighboring lattice sites, with repulsive interac-
tion between two electrons of opposite spins on the same
lattice site. The physical properties of the Hubbard mod-
el are expected to be important for understanding the
mechanism responsible for high-T, superconductivity.>®
Although the Hubbard Hamiltonian is simple in form, it
cannot be solved exactly, except in one dimension.
Therefore, various approximate techniques have been
developed. Among these, the Hartree-Fock approxima-
tion (HFA), Green’s-function decoupling scheme,'* the
Gutzwiller variational approximation,’® and the slave-
boson method!®~2! have most frequently been used. The
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slave-boson method was developed by Coleman'® and by
Barnes'” among others in the study of heavy-fermion sys-
tems. As shown by Kotliar and Ruckenstein'® (KR), the
Gutzwiller approximation can be obtained from the
slave-boson method as a mean-field limit, the so-called
saddle-point approximation. Zou and Anderson'® have
demonstrated the physical meaning of the slave-boson
technique in the derivation of neutral fermion spectrum
in the resonating valence bond state. However, Rasul
and Li?° found that the contributions from transverse
spin fluctuation are missing when they used the KR for-
mulation of the slave-boson method to calculate the
spin-fluctuation contribution to the specific heat in the
Hubbard Hamiltonian. It was realized by Li, Wolfle, and
Hirschfeld?! that the KR formulation is not spin rotation
invariant in boson space because of the assumption of a
spin-quantization axis. This is expected to lead to errors
for studies involving spin dynamics and fluctuations and
furthermore might also lead to errors in mean-field calcu-
lation where the spin-quantization axis is spatially nonun-
iform. Therefore, the validity of the KR slave-boson
mean-field model might be questionable. However, re-
cently several groups’”?’ made comparative studies of
the KR slave-boson mean-field model and quantum
Monte Carlo calculations for the dimensions D =2 and 3
Hubbard models, and excellent agreement is obtained for
the ground-state energy and local quantities for both
paramagnetic and the antiferromagnetic phases. The
paramagnetic and antiferromagnetic ground-state ener-
gies calculated in the KR slave-boson mean-field approxi-
mation have also been shown by Metzner and Vollhardt**
to be the exact result in the limit of infinite dimensions.
Therefore, one can also study the effect of dimensionality
on the validity of the slave-boson mean field by expand-
ing around D = w, using (1/D) as small parameter. Re-
sults for self-energy?’ are available for the one-band Hub-
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bard Hamiltonian in the weak-coupling limit. While for
D =1, no agreement with the 'D =« mean-field result is
obtained. For D =3, one finds very good agreement.
Also, for D =2, one finds reasonably good agreement
with the D= oo mean-field results. Similar calculations
for the Anderson Hamiltonian also confirm this trend.?
All these studies show that the KR slave-boson mean-
field calculations yield very good results for the ground-
state properties for dimensions D > 2.

That the phase diagram does not depend sensitively on
the dimensionality for D =2, can be understood as fol-
lows. The slave-boson mean-field discussed above is a lo-
cal approximation. The dimensionality is implicitly con-
tained in the shape of the density of states (DOS), since
this is the only quantity that is involved in the minimiza-
tion of the ground-state energy. Thus, by properly scal-
ing the energy parameters, the magnetic phase diagram
does not depend sensitively on the shape of the density of
states, since for the energy minimization, only integrals
over the density of states occur. This can be also seen
from the calculation of Kotliar and Ruckenstein.!® Of
course, the phase boundaries will shift somewhat as the
dimension changes from D =2 to 3 due to the van Hove
singularity in two dimension, but the overall feature of
the magnetic phase diagram will remain the same. This
discussion suggests the use of the KR slave-boson mean-
field approximation for determining the magnetic phase
diagram. This should then yield reliable results for
D =2.

Using a slave-boson mean-field treatment, many calcu-
lations have been performed for the Hubbard or extended
Hubbard Hamiltonian.?272%27~2% So far, all calculations
have assumed translational symmetry in real space,
which limits these studies to ordered magnetic states.
Hence, magnetic transitions consist of a transition from a
ferromagnetic or an antiferromagnetic state to a Pauli
paramagnetic state. Furthermore, one obtains a large
discrepancy with experiment for the doping dependence
of the antiferromagnetic state. The experimental results
show that the antiferromagnetic state is destroyed for
dopant concentration of 2-4%, while the slave-boson
mean-field model yields a critical dopant concentration,
about 15% for typical Hamiltonian parameters. This
discrepancy is expected, since the translational symmetry
excludes the spin disordered states. Note that without
using the translational symmetry, one expects the
paramagnetic state with local moments existing on every
lattice site and having random directions to be the more
realistic paramagnetic state. It is well known that the
Pauli paramagnetic state underestimates the entropy of
the system. Thus, it overestimates the antiferromagnetic
transition temperature.

In this paper, we use the Hubbard Hamiltonian and
apply the slave-boson mean-field approximation. We do
not assume translational symmetry and include properly
the on-site charge fluctuations and the occurrence of lo-
cal magnetic moments on every lattice sites. This re-
quires a theoretical treatment extending previous studies
using the slave-boson method. To determine the elec-
tronic Green’s functions and the density of states, we ap-
ply the Bethe-lattice method in real space, which has
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been successfully used for the study of alloys.® In the di-
agrammatic expansion of real lattices, the first and often
the only set of diagrams that can be summed are the tree
diagrams that correspond to a Bethe lattice. This ap-
proximation consists in choosing only self-retracing
paths.3! 732 Van Dongen and Vollhardt** have shown that
the phase diagram obtained from the Bethe-lattice struc-
ture qualitatively agrees with those for a hypercubic lat-
tice in D=0 for a simplified Hubbard model in which
only one kind of spin is allowed to hop.

Using a slave-boson mean-field approximation, we
studied extensively the relative stability of various or-
dered states like antiferromagnetic, ferromagnetic, and
Pauli paramagnetic state. We also consider a paramag-
netic phase in which local moments are assumed to exist
on each site, as in the magnetically ordered phases. Lo-
calized moments in transition metal alloys have been dis-
cussed before by Engelsberg, Brinkman, and Doniach,**
Wang, Evanson, and Schrieffer,*> and Zuckermann.?® The
disordered phase has been, in the past, extensively stud-
ied in the Hartree-Fock approximation®’ ~*! and is some-
times referred to as a spin glass. It is interesting to note
that, in the context of high-T, superconductivity, the re-
lationship of this disordered local-moment phase to an
average picture of the resonating valence bond state has
been pointed out.*> We obtain that the phase boundary
from the antiferromagnetic state to the paramagnetic
state is significantly shifted to a lower dopant concentra-
tion (with respect to half filling). This results from the
presence of the paramagnetic state with local magnetic
moments, which is energetically more favorable than the
Pauli paramagnetic state, as has been obtained previously
in Hartree-Fock studies of itinerant magnetism.’’ !
However, comparing with Hartree-Fock results, we find
that the phase space for the magnetically ordered states is
drastically reduced as a function of the dopant concentra-
tion when the correlations are properly taken into ac-
count. A priori, it could be expected that the remaining
charge fluctuations not yet included in the slave-boson
mean-field treatment could affect the magnetic phase dia-
gram. The effect of Gaussian quantum fluctuations
beyond the slave-boson mean-field theory has been con-
sidered recently by perturbation expansion in the
Kotliar-Ruckenstein representation.*>** The discussion
of the magnetic instabilities essentially depends on the
structure of the unperturbed correlation function. These
fluctuations are essential for describing dynamical prop-
erties, such as spin dynamics or photoemission experi-
ments, but we are concerned here with static properties
in the ground state. Recent calculations by Ferrer
et al.¥ including charge fluctuations beyond the
Hartree-Fock approximation by self-consistent second-
order perturbation theory indicates, however, good
agreement with the slave-boson mean-field results, as well
as Monte Carlo calculations.?>23

In Sec. II, we first discuss the slave-boson method in
the mean-field approximation, i.e., Gutzwiller variational
approximation by Kotliar and Ruckenstein,'® and derive
the energy functional. Then, following Liu,*® we apply
the Bethe-lattice method for determining the electronic
Green’s function. This yields the density of state, which
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is then used to calculate the energy. In Sec. III, results between the new and old Hamiltonian in the original
for magnetic phase diagrams and the antiferromagnetic ~ physical space. These are

(AF) stability energy at half filling are presented. Espe- to_ ¢ ¥
cially, the role of the paramagnetic state with local mag- CioCio = SioSic T d; d; (2a)
netic moments is demonstrated. Conclusions are present- and
ed in Sec. IV.
eje,-+s,~T¢s,~T+s,Tls,-l+d;"d,-=l . (2b)

II. THEORY
By introducing Lagrange multipliers to take into account

The one-band Hubbard Hamiltonian is given by the above constraints, one arrives at the following Hamil-

H=3 tCiTaCja + S Un;n;, - (1)  tonian in the mixed fermion and boson space:
(ij),o i
— i T
In order to treat correlation effects in the ground state, H= 20Aici0civ+ 2 9i09j0Ci0Cjo
one introduces the four auxiliary boson operators e, s;,, be e
and d; which refer to the empty state, the singly occupied +2Ud,~Td,- +20Ai(s;r,,s,-o+d,-*d,-) . (3a)
i i,o

state with a spin up or down, and the doubly occupied

state. Therefore, all the charge fluctuations of the single

site are taken into account properly. In this mixed fer- Here, the A’s are the Lagrange multipliers introduced to
mion and boson space, two constraints have to be  satisfy the above constraint, Eq. (2a). The operator g;,, is
satisfied in order to make a one-to-one correspondence  given by

_ ¥ + _
gis=(1 _difdi —siTosia) l/z(eiTsia+s[;7di )(1 _eiTei —S8;5%5) 2 (3b)
In the mean-field approximation, all the bosonic operators are treated as numbers. Furthermore, one can eliminate the
numbers e;, s;1, S;|, using the constraints given by Eq. (2). One then obtains the Gutzwiller variational approximation,
which corresponds to a minimization problem of E with respect to A; and d:

1 1 1
E=—(Hg)+-—SUd}+— 3 oA {c] ) . (42)
N € N r 1 N i’o 1 lo~io
Here, H g is the modified effective single-particle Hamiltonian
Heﬂ: - 2 O'A[CILC‘-U"‘ 2 tqiaqjacizcja ’ (4b)
i,o (ij), o
with
q,%,=——1—{[(1—n,~+d,-2)(n,~o—d,-2)]”2+[d,»z(n,»—n,-a—d,-z)]l/ZV . (40)
ni(1—n;;)
i
N denotes the total number of lattice sites. n;, is the oc-  energy of the system. We introduce the probability » for

cupation number at site i with spin index o, n,=n;; +n;, the neighboring moments to point in the same direction.
and d,.2=(n,~fn,- ) denotes the double occupation. The s gives the probability for the neighboring moments to
Lagrange multipliers A; and double occupation numbers ~ point in opposite direction. Thus, r+s=1. Within this
d? are, in principle, site dependent. These parameters A,  approximation, r =1 corresponds to a ferromagnetic state
play the role of exchange fields determined self- and r =0 to an antiferromagnetic state. All other values
consistently for the different phases in contrast with HFA of r correspond to some sort of short~r‘ange ordering, ex-
where A, =U(n;;—n;;)/2. In solving the subsequent cept r=0.5, which refers to a generalized paramagnetic
equation for the Green’s function, one usually assumes  State. This coincides with the Pauli paramagnetic state if

translational symmetry and thus neglects any magnetic ~ the on-site moment is zero. Note that by applying the
disordered states in the system. Bethe-lattice method to the slave-boson theory we are

also able to include approximately magnetically disor-
dered states. This approximation should produce a more
realistic magnetic phase diagram than obtained in previ-
ous studies, for example, using translational symme-
try. 2820

To obtain the energy functional, Eq. (4), we first calcu-

Previous HFA studies®’ ~*! have shown that, in certain
parameter ranges, the system does not want to stay in
these magnetically long-range ordered states. For a given
orientation of the moment at a site, neighboring moments
may point up or down with respect to the z direction.
The proper moment configuration is determined by the
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late the contribution resulting from H,.;. We introduce (0+04,)G ij),(@)=8;+ 3, 14;,9,,G ), (@) . (6)
the retarded Green’s function (=)

G iy (1)=—1i6( H{[c;y(1), c]fra( 0)].), (5) Since every site has either a moment pointing up or down

(A;>0,A;<0), we will use +,— to denote these two
directions. Therefore, the diagonal Green’s function at
the origin satisfies

where 6(t) is a step function. The Green’s function
satisfies the following equation of motion:

_
(@+0A)G g} (@)=1+2t[rg,9,G i} (@) +5,4,G 10)s (@)] , (7a)
(@0—0A)G (49)s (@) =1+2t[rg,q,G 10), (@) +59,4,G ({g)s (@] . (7b)

The sign of the exchange energy for an electron with spin ¢ depends on the local-moment direction. The exchange en-
ergy is denoted by o A for site with the moment pointing in up direction and by —o A for site with the moment pointing
in down direction. z is number of nearest neighbors, 0 and 1 stand for the origin and first neighbor to the origin. g, is
the band narrowing factor due to the on-site Coulomb repulsion. Since g, =q; , we have dropped the superscript +
and expressed all the band narrowing factors in terms of the quantities of moment-up state from now on. In the Bethe-

lattice method one defines the following transfer matrix

(8)

(9a)

(9b)

ij — G:JIO)U
T
{00)0
Thus, one can write the on-site Green’s function in terms of their transfer matrix
G(T)ot = :
° otoA—zt(rg,q,T; " +sq,q,T; %)’

__ 1

G(OO)U -

o—0A—zt(rqq, T, +sq,9, T)) ’

The assumption made in the Bethe-lattice method is that the transfer matrix is independent of the lattice, this is
equivalent to assuming a certain profile for the density of state. By deriving the equation of motion for the Green’s
function G(ﬁo“;,, etc., on the right-hand side of Eq. (7) one obtains for the transfer matrix the equations

(0+0 AT} (0)=tg,q, +(z— Dtlrg,q, T+ TF* (0)+50,4,T; ¥ T ()],
(w—oA)T;+(a))=tqaqo+(z—l)t[rqaqET;"T;J’(wH-sq(_,qa T T, (0)],
(0+oA)TS  (0)=tq,q, +(z—1t[rg,q, TS TS (0)+5q,9,T; TS (0)],

(w—aA)T;"(a))=tqaqa+(z—1)t[rqaqET;_T;"(w)+sqaqu;'—T;_(co)] .

We use the simpler average procedure for the transfer
matrix that has been used previously.*® For not too small
z, the difference between this and a more sophisticated
scheme can be neglected. Furthermore, one can simplify
the result by introducing the following transformations:

No="959, TS " +59,9,T; * (11a)
and

$,=rq,q, T, +sq,q9, TS . (11b)

From this one obtains the following expression for the re-
tarded Green’s function*®

Giio =G oo ‘

 =— 12
007 y+ogA—zty, ’ 12

with 7, given by

(10a)
(10b)
(10c)
(10d)
r
rig} stg3q?
= +
K ot+tA—(z—1)ty; w—A—(z—1)tn, (132)
and
rtgt stqgq?
m, : L1 (13b)

- o—A—(z—ty, o+A—(z—Dty; ~

Using this Green’s function one can calculate the density
of states

Na(w)=—71T—ImG(J{,O+,¢,(a)) , (14a)
the average electron number per lattice site
Ep
n,= [ N,(odo, (14b)

and the total energy
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E

"N, (0)dw+oAn, |+Ud?.  (l4c)

E=§{f

As usual, the Fermi energy is determined from the total
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For the states with translational invariance, one can
get the full analytical expression for the Green’s func-
tion, %47

_ (z—2w—zi[4z—1)g*t*—w?]'?

number of electrons in the system. For a fixed parameter G go) (@)= 20— o (15a)
r, one has to minimize the total energy of the system self- (z°g°t"—a7)
consistently with respect to the variables d and A. for the Pauli paramagnetic state,
2(z—1)
G 0)o (@)= (15b)
(00% (z—2)w+oA)+zi[4(z—1)g* 2 —(0+oA)?]2
for ferromagnetic state, and
2z—1)(w—0cA)
G (0010 (@) (15¢)

for antiferromagnetic state. From Eq. (15a), it is clear
that the half bandwidth in the noninteraction system is
Ep=2tV(z—1). Note that z— o and keeping V'zt
finite reproduces the elliptic density of states commonly
used as a model density of states.

In summary then, we determine the density of states
from Eq. (14a), the magnetic moment from py=n;—n,
and the total energy from Eq. (14c¢).

III. RESULTS

We have performed numerical calculations for three
magnetic phases. With » =1, we determine the ferromag-
netic (FM) state, with r =0.5 the paramagnetic state with
local moments (LMP), and with » =0 the antiferromag-
netic state (AF). It should be mentioned that the states
with r5:0.5 have some short-range magnetic moment or-
dering. If r>0.5 this short-range magnetic ordering is
ferromagnetic like. If r <0.5 this short-range magnetic
ordering is antiferromagneticlike. To demonstrate the
significance of the LMP state, we concentrate here on the
state without short-range ordering, i.e., r =0.5. We ob-
tain that the transition from a magnetically ordered state
to a disordered state involves mainly a paramagnetic
state with local moments. Once the LMP state is includ-
ed, the stability of the antiferromagnetic state is drastical-
ly reduced with increasing dopant concentration. To
minimize the errors introduced by the simple averaging
of the transfer matrix with respect to the moment
configuration, we use for the coordination number of the
Bethe-lattice z =12. Results for different values of z can
be deduced from the ones for z=12, since the presented
results are nearly scaled by the half bandwidth
Ep=2tV'z—1 and will not depend crucially on z.

In Fig. 1 the phase diagram for the transitions from the
antiferromagnetic (AF) to the Pauli paramagnetic (Pauli-
PM) state is shown. It should be noted that the onsite
Coulomb repulsion U is scaled by the half bandwidth
Ep=2tV'z —1. One sees that the maximum dopant con-
centration (8=1—n) at which the phase transition
occurs is less than 0.2, the phase boundary changes rapid-
ly for small U and becomes almost vertical for U > 30Ep.

B (z —2)(@*— AP +zi {(0*— AM)[4(z—1)g2q2t*— (0*—A?)]} /2

[

With regard to the transition from AF to Pauli PM our
result is almost the same as the one by Kotliar and Ruck-
enstein,'® as can be seen by scaling the energy parameters
by half bandwidth. This indicates that the slave-boson
mean-field phase diagram does not depend sensitively on
the form of the density of states. Our result can also be
compared with the one for D = « calculated by Fazekas,
Menge, and Miiller-Hartmann.*® It is seen that the
overall features of the phase diagram are very similar.
The U — o limit of AF-Pauli-PM boundary is §.=0.1,
a value close to that obtained by Fazekas, Menge, and
Miiller-Hartmann,*® while Metzner and Vollhardt?* re-

ported a slightly larger value §,=~0.15. Due to the
100+
754
&
& 504
)
AF Pauli PM
25+
]
]

O T T T T T
00 Ol o2 5 03 04 05

FIG. 1. Phase diagram for the transition between Pauli
paramagnetic (Pauli-PM) phase and antiferromagnetic (AF)
phase using a one-band Hubbard Hamiltonian. The doping
concentration is §=1—n and U is scaled by half the bandwidth
(Eg=2tVz—1).
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particle-hole symmetry, the other half of the phase dia-
gram can be easily obtained by making a mirror reflection
along the U axis.

In Fig. 2 we present the phase diagram for transitions
from ferromagnetic (FM) to Pauli paramagnetic states.
Our result is very similar to the one obtained by Kotliar
and Ruckenstein'® for U > 15Ez. For smaller values of
U, we obtain rather different results. In our case the fer-
romagnetic state is still stable with respect to the Pauli
paramagnetic state for 8E; <U <15E and for small-
dopant concentration. However, the stability energy for
ferromagnetism in this region is very small. The phase
transition in this region might be of first order and thus it
would not have been obtained by Kotliar and Rucken-
stein, since their method used is only valid for a second-
order phase transition. A comparison with results for
D = (Ref. 48) shows that the overall features of the
phase diagram are very similar, except for the small-
dopant-concentration region and 8Ey < U <15Ejp.

In Fig. 3 we show results for the interesting third-
phase transition from the paramagnetic state with local
moments (LMP) to the Pauli paramagnetic state. The
LMP state develops at somewhat higher values of U and
lies in between the antiferromagnetic and ferromagnetic
phase boundaries. As can be deduced from Fig. 1 and
Fig. 3, the LMP-Pauli-PM phase boundary crosses the
AF-Pauli-PM phase boundary at the point U=5E; and
5=0.16 and becomes linear for larger values of U and ap-
proaches asymptotic §<0.3 parallel to the U axis. One
sees further from Fig. 2 and Fig. 3, that this
LMP-Pauli-PM phase boundary also crosses the
FM-Pauli-PM phase boundary at U=75Ez. We would

100+

{ FM Pauli PM
257

0 T T T 1 T
00 Ol 02 60.3 04 05

FIG. 2. Phase diagram for the transition between Pauli
paramagnetic (Pauli-PM) phase and ferromagnetic (FM) phase
for the one-band Hubbard Hamiltonian.
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100
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FIG. 3. Phase diagram for the transition between Pauli
paramagnetic (Pauli-PM) phase and paramagnetic phase with
local magnetic moments (LMP) for the one-band Hubbard
Hamiltonian.

like to emphasize that this phase is a homogeneous ran-
dom moments phase and has lower energy for most of the
phase space. We will see later that this LMP phase may
explain the occurrence of a spin-glass state after the de-
struction of antiferromagnetism in the hole-doped high-
T, superconductors.

In Fig. 4 we show the total phase diagram obtained
from combining the results shown in Figs. 1-3. The
phase diagram is determined by comparing the energies
of the different phases. One of the most interesting re-
sults is that the antiferromagnetism is drastically reduced
due to the existence of the LMP state. For U = 30Ey, the
antiferromagnetic state seems to be stable only in the vi-
cinity of half-band filling. Note, that for small values of
U <5Ej, the system still stays in the antiferromagnetic
state up to 6=0.17. The situation changes significantly
for moderately larger U values. One sees, that the anti-
ferromagnetic state is restricted to a very small-dopant
concentration, range from 3 to 5% for U=(7-10)Eg.
For increasing U (or 8) the LMP state quickly becomes
energetically more favorable than the antiferromagnetic
state. Also, the ferromagnetic phase gets changed by
LMP state. The LMP state pushes the ferromagnetic
state to very high values of U, as can be seen by compar-
ing with Fig. 2. Note, that in the lower part of the phase
diagram (U < 10E,0< 8 <0.3) as shown in the insert of
Fig. 4, the LMP state in our calculation occurs in almost
the same range of 6 as the ferromagnetic phase calculated
by Fazekas, Menge, and Miiller-Hartmann.*® For large
U, the system first changes as function of § fom the LMP
state to the ferromagnetic state, then to a Pauli paramag-
netic state. For U— o, the tendency towards ferromag-
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FIG. 4. The phase diagram obtained from comparison of the
energy for the various phases like the antiferromagnetic (AF),
the ferromagnetic (FM), the paramagnetic with local moments
(LMP), and the Pauli paramagnetic (Pauli-PM). For U > 30E,
(Ez=2tVz—1), AF is stable only in the vicinity of half-band
filling, e.g., 5=0. The inset is an enlargement of the phase dia-
gram for smaller values of U/Ejp.

netic state near half-band filling is consistent with the
conclusion by Nagaoka.*’

As we discussed in the Introduction, the slave-boson
mean-field calculations should yield very good results for
ground-state energy and local quantities for D >2.
Dimensionality influences these results only weakly
through the density of states. Therefore, we expect that
the essential features of the phase diagram shown in Fig.
4 are valid for D =2, although the exact phase boun-
daries might alter somewhat for D =2.

Our result should also be compared with the Hartree-
Fock calculations in Refs. 37-41. We see from our re-
sults that the HF approximation greatly exaggerates the
stability of the magnetic states, especially, for lower aver-
age electron occupation number. The present study
shows that the magnetic states exist only for doping con-
centration less than 0.35. The HF approximation pre-
dicts, at large U, magnetic states almost for any occupa-
tion number. As shown recently by Metzner and
Vollhardt** that HF approximation does not yield exact
results even in D = « dimension.

The result of the energy difference in the case of half-
band filling between the antiferromagnetic and LMP is
shown in Fig. 5. One gets that the energy difference first
increases rapidly with on-site Coulomb repulsion, then it
reaches a maximum, and then decreases towards zero as
1/U. This is a familiar result and agrees with the su-
perexchange interaction result at large U by Anderson.*®
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FIG. 5. The energy difference between the LMP state and the
antiferromagnetic state as function of on-site Coulomb repul-
sion U (Ty = Néel temperature).

From the energy difference the Néel temperature might
be estimated using the well-known mean-field formula

E(r=0.5)—E(r=0)=0.5kTy .

We emphasize that this is a crude estimate for the Néel
temperature. In view of the used simplified band model
and the Ising approximation for the local moments, we
see no point in trying to improve this estimate by using
more sophisticated theories of phase transition. It is in-
teresting to note that a finite temperature slave-boson
mean-field type calculation by Hasagawa®® (including
single-site fluctuation) yields similar results as shown in
Fig. 5. Using

r=~2tvVz—1/V73
and
Ty/T=[E(r=0.5—E(r=0)]2V3/2tVz —1

(C= second moment of energy), one finds that
Hasagawa’s results for peak position and height of Ty are
very close to ours. For large U, we get a smaller Ty
value, which is closer to the exact ones. This is so, since
for large U our paramagnetic state with local moments
has lower energy than the Pauli paramagnetic state.

It is interesting to compare our results with the experi-
mental phase diagram observed for high-7, supercon-
ducting oxides. To fix the parameters, let us take as half
bandwidth for the effective Cu square lattice®! E;=1.5
eV and for the Coulomb interaction U=8Ez;=12 eV.
From our phase diagram shown in Fig. 4 we obtain a crit-
ical dopant concentration §.=0.045, and from Fig. 5 we
estimate 7Ty ~398 K. These results are close to the ex-
perimental values §. =0.02-0.04 and T ~320 K.>? Pos-
sibly, the more interesting result is that after the antifer-
romagnetism destruction, we obtain a paramagnetic state
with local moments on copper sites rather than a Pauli
paramagnetic state. This agrees with experiments,>*
since local magnetic moments are a prerequisite for a
spin-glass state. Our estimated value for Ty is larger
than the experimentally observed one, which seems
reasonable since spin fluctuations not included in the cal-
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culation should further lower T). By comparing with ex-
perimental results for superconducting transition temper-
ature T, as function of 8,3 we conclude that supercon-
ductivity occurs only when the system possesses local
magnetic moments.

Including parameter values r other than »=0.5 would
allow one to study also short-range magnetic moment or-
dering. The short-range magnetic ordering should resem-
ble the antiferromagnetic one near the antiferromagnetic
phase boundary and resemble the ferromagnetic one near
the ferromagnetic phase boundary. These short-range or-
dered phases should appear near the AF-LMP, FM-LMP
transition lines. As indicated in our calculation these
short-range ordered phase will smooth out the transitions
between these various phases, but the phase boundaries
are not significantly altered.

In our paper we have restricted our study to the one-
band Hubbard Hamiltonian. However, as derived by
Zhang and Rice,”! the more realistic two-band Hubbard
Hamiltonian, which describes the CuO, plane of high-T
superconducting oxides, can be mapped approximately
into a one-band Hubbard Hamiltonian assuming
t <<U,(e, —g,4). This approximately holds for high-T,
superocnducting oxides. Even so the mapping to a one-
band Hamiltonian might describe only approximately the
various electronic properties, and we feel that the ex-
istence of local magnetic moments and the transition
from antiferromagnetic to a paramagnetic state with lo-
cal moments should be basically correct and also the
trend for the dependence of T on U. ,

A few further critical remarks concerning the quality
of the approximations used for the numerical results
seem in order. First, many other studies show that for di-
mension D =2, properties involving integration over the
DOS are not sensitively dependent on details of DOS.
Thus, similar results are obtained by using Bethe lattice
approximation (adjusted to yield the proper bandwidth)
and other methods. Secondly, including the remaining
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charge fluctuations beyond a slave-boson mean-field ap-
proximation may change somewhat our phase diagram,
the stability of the antiferromagnetic phase. It might be
of interest to study this more explicitly. However, com-
parison of our results with Monte Carlo calculation?*%3
suggests that most of the charge fluctuations are already
taken care of by our slave-boson mean-field approxima-
tion.

IV. CONCLUSION

We have studied in this paper the magnetic properties
of one-band Hubbard Hamiltonian, especially the mag-
netic transitions among the various phases that are possi-
ble. The phase diagram is obtained by comparing the en-
ergies of the different states. From this phase diagram we
reach the following conclusions: the region for stable an-
tiferromagnetic state is drastically narrowed due to the
appearance of a LMP state. The transition from antifer-
romagnetic state to paramagnetic state is mostly a transi-
tion to a state with the local moments. For typical values
U of high-T, superconducting oxides, one can get reason-
able critical dopant concentration (and rough estimate of
Neéel temperature). Furthermore, we find that supercon-
ductivity occurs when Cu atoms have local magnetic mo-
ments. That a state with local moments may have lower
energy than a Pauli paramagnetism was already previous-
ly found.’’~*' Note, with increasing doping, itinerancy
may be enhanced and thus ultimately Pauli paramagne-
tism may result.
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