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Microscopic tunneling theory of long Josephson junctions
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We present a numerical scheme for solving a nonlinear partial integro-differential equation with non-
local time dependence. The equation describes the dynamics in a long Josephson junction modeled by
use of the microscopic theory for tunneling between superconductors. We demonstrate that the detailed
behavior of a solitonic mode (fluxon dynamics) in the junction is different from the results of the conven-
tional perturbed sine-Gordon model.

I. INTRODUCTION
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where u is the normalized speed of the soliton.

For many years Josephson junctions have been studied
successfully using the analogy with the pendulum equa-
tion. Similarly, the long Josephson junction (LJJ} has
been modeled by the well-known perturbed sine-Gordon
equation' (PSGE) given by

sing=a—p, pp„„,——ri .

Here P is the phase difference between the quantum-
mechanical wave functions of the superconductors
defining the junction, the normalized spatial dimension is
represented by x, and the time dimension is represented
by t, where x and t are normalized to the characteristic
Josephson length A,J and to the inverse plasma frequency
co of the junction, respectively. The perturbations
[right-hand side of Eq. (1)] represent the dissipation and
energy input to the system. The tunneling of quasiparti-
cles through the junction is represented by the a term,
the surface current of quasiparticles in the superconduc-
tors is represented by the p term, and the energy input to
the system is the normalized external bias-current density
q forced through the junction.

The perturbed sine-Gordon equation has proved itself
to explain and predict many characteristics of the LJJ,
using different types of perturbations and boundary con-
ditions of the system. In particular, the studies have been
focused on the dynamics and manipulation of the so-
called first zero field step (ZFS1) in the dc I-V curve,
where a localized magnetic-Aux quantum travels through
the junction. This phenomenon has been explained
theoretically by the solitonic 2m.-kink solution to the un-
perturbed sine-Gordon equation (SGE) [left-hand side of
Eq. (1)],since the SGE can be integrated to give the exact
solution

However, in spite of the successful application and
qualitative results obtained from the PSGE, the theoreti-
cal foundation of this equation is limited to frequency re-
gions much smaller than the gap frequencies of the
superconductors —or, in case of different energy gaps of
the two superconductors, the validity of PSGE is limited
to frequencies much smaller than the difference between
the gap frequencies. Strictly speaking, the microscopic
theory for tunneling between superconductors predicts
that Eq. (1}is only valid for a static field P (P, =0), since
no frequency dependence of parameters or information of
the gaps of the superconductors are maintained in this
model. Recently, LJJ's have been fabricated with very
high critical current densities. This results in large plas-
ma frequencies, which again give rise to increased impor-
tance of maintaining the information of the gap structure
in the model in order to get detailed information. Thus
we believe that for many future studies of junctions with
high critical current densities, it may prove important to
make use of the microscopic theory model instead of the
PSGE to explain and predict the detailed behavior of
these devices. Also we note that detailed analysis of the
real junction is made more direct in the microscopic
theory, since all system parameters are fixed by the exper-
imentally measurable quantities: A,J, co, T, and 4;, where
T is the temperature of the system and 6; is the energy
gap of the ith superconductor (i =1,2).

Several other approaches to model small Josephson
junctions have been published throughout the years, but
none of them seems to be adequate for modeling the dy-
namics of LJJ's. In Ref. 2 an approach called the
successive-approximation method was used to calculate
I-V characteristics. The method utilizes the fact that the
solution in every single point of the I-V characteristic is
strictly periodic with the period T =h /2e ( V). In prin-
ciple, the same procedure could be used for the calcula-
tion of I-V characteristics for the annular LJJ since the
voltage in each spatial point is strictly periodic. Howev-
er, the method is restricted to stationary solutions and
offers only little insight into the dynamics of the system,
since all calculations are performed in the frequency
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domain. In Ref. 3 the whole problem is reformulated
into a system of coupled ordinary differential equations,
but the necessary approximations seem to be very rough.
The electronic device of Ref. 4 used a technique very
similar to the one presented in this paper, but the fitting
of the current amplitudes seemed to be very inaccurate.
In addition to this, the extra effort when coupling a large
number of the electronic devices in order to simulate a
system with spatial extension seems unreasonable.

and space dimension, respectively [r (sec.), g (meter)]. If
V is the voltage across the insulator, we have from the
well-known Josephson relation that

B(b 2e 2m @
h

2e

II. THE MODEL

Let P(g, r) be the considered phase difference between
the two superconductors and let r and ( denote the time

The tunneling current density at a given space point is
given by Refs. 6—10 (here presented in a slight variant of
Ref. 7):

~)+~2 o, . t + t+t' — k, . t — t+tJ —kt' sin +J kt' sin—
eR„

f1COpdt'+
2eR~

(4)
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is the usual expression for the critical current. This
definition of the critical current makes the normalized
super current for static phase differences having its criti-
cal value for J(x, t ) =/ =1, similar to the normally used
PSGE normalization of currents giving the supercurrent:

I(x, t ) =I,si Pn, /=const.

We also introduce the normalized space dimension by

x =A.~ '(, A.J =QPo/(2~I, L ),
where L =go(2A, I +t,„)/8' with t„ the oxide thickness
and 8' the width of the overlap. In the one-dimensional
junction, we assume that 8' && XJ.

Here the time t is normalized to the inverse plasma fre-
quency co ', k =co /co, and the gap frequency is given
by co =(b, +bz)/fi, where b,;=6,, (T) is the energy gap
of the ith superconductor. R„(Qm) is the normal resis-
tance above the gap, and the functions J and J are de-
rived from the microscopic theory of tunneling. From
this it is well known that the kernel for the quasiparticle
current contains a singularity in ~=0 due to the linear
normal resistance. This part is specifically written out in
Eq. (4).

The constant k contains information about the rela-
tionship between the two characteristic time scales in our
system: the plasma frequency and the gap frequency.
The latter parameter has no analog in the sine-Gordon
(SG) system since any information about the gap is ex-
cluded from that description.

We will define the normalized current density Jby

I(x, t)=I,J(x, t),
where

Finally defining the plasma frequency by

co =+2m.I, /( POC ),
where C =e„eo8'ft„,we get

(10)

Ib co&L 'Aco&

, P= ', a=
I, ' R '

2eR~I,

where R is the resistance per unit length of the junction
describing the transport of quasiparticles in the London
layers, and Ib is the bias current density forced through
the junction. In making these definitions we have fol-
lowed the usual procedure for the perturbed sine-Gordon
equation as closely as possible (see, e.g. , Ref. 11). Equa-
tion (10) is then the wave equation modeling the LJJ
making use of the microscopic theory for tunneling. As
can be seen by comparison with Eq. (1), the modifications
to the PSGE are the terms describing the active transport
of electrons across the junction. However, the practical
solution of this partial integro-differential equation is ex-
tremely dificult in its direct form, since the nonlocal time
dependence in principle has to be evaluated from —~ up
to the current time in each time step of a numerical in-
tegration method. Moreover, the convergence of these
integrals [Eq. (4)] is relatively slow, since the kernel func-
tions J and J approach zero as 1 ft for large arguments.
Thus the direct numerical solution of the above integro-
differential equation is in practice impossible.

III. NUMERICAL PROCEDURE

The key point in the numerical procedure is to apply
the suggestion made in Ref. 7 to the problem. There the
kernel functions are expanded in terms of finite Dirichlet
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series:

J (t)=Re g g A „(kt) exp(p kt)
n=1 m=0

N M

J~(t)= Re g g B „(kt) exp(p„kt)
n= 1 m =0

where A „,B „,and p„are complex constants and Re( )

means the real part of a complex number. The advantage
of this expansion is obviously that the integro part of the
wave equation can be updated by considering only the
previous time step of a numerical method. Inserting Eq.
(11) into the current expression Eq. (4), we find that the
tunnel current J(t ) at a given space point is given by

J(t)=atttt(t)+ —sin Re g (A „+B „)f ( t'k)—e " cos dt'
N, M 0, —p„kt' (t'+t)
m=0
n=l

N, M t I

+ o R g (A B}—f ( t'k)— " si ~ dt'
2 0

n=l

where the constants K and a are

(12}

M N
t~=Re g g ',m!, a=

0„, (
—kp„) +' 2k t~

and the critical current density is expressed as

(13)

4hI, = K .
eR„fin)

(14}

The numerical technique to evolve the solution one step in time is trivial with respect to the phase difference P. Evolv-
ing the tunnel current, we have to take the time evolution of the integral into account. We therefore consider the tun-
nel current at the time t+dt:

m, n

+ P(t+dt ) 0, p„kt .— P'(t'+t+dt )

QO 2
m, n

1 . P(t+dt )
sin Re g (A „+B „)F „(t+dt)

K 2

+cos ttt(t+ dt ) Re g (A „—B „)G „(t+dt)
m, n

where the functions F, G, f, and g are given by0, kp„t' t('t(t'+ t)—F „(t)= ( t'k) e —" cos dt',

0, —kp„t . tb(t'+t)
G „(t)= ( t'k} e "—sin dt',

F „(t+dt)=e " f „(t,dt)

m m
+ g &

(k dt) 'F,„(t)
1=0 .' .

G „(t+dt)=e "
g „(t,dt)

m m
+ g ( (kdt) 'G (t)

1=0

kf „(t,dt)=k f (dt t') e " cos — dt',
0

t A( '+
0 2

(17) Here F „(t ) and G „(t ) are known numbers, since these
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I

H „=f (dt t'—) e " h(t')dt'. (19)

This estimation can be performed in several ways depend-
ing on the knowledge we have about the function h(t').
If we have access to h(dt ), h(0), and h( —dt), as is the
case for a finite difference method, we get

contain information only about the past. The functions
f „(t,dt) and g „(t,dt) are the contributions in order to
update F „(t ) and G „(t ) with dt in time.

The problem is now reduced to finding a good estimate
of a function [see Eq. (18)]:
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FIG. 1. Fourier transforms of the kernel functions J~ and Jq
used in the nonlocal time description. Solid lines are the ap-
proximated functions, given by Eq. (11) and Table I. Dots
represent the true functions given in, e.g., Ref. 8. These points
have been used in the fitting process in order to obtain the ap-
proximated functions: T=4.2 K and 6= 1.35 meV.

Sm+2+h( dt) ——
2 (dt)'

m+1, n

dt
(20)

where we have defined

—kp„KA dt kp t '

—kp„dt m!=e
)m+1

m! (dt )'

( k )m+1 —I

(21)

IV. NUMERICAL RESULTS

We have applied the above sketched numerical pro-
cedure to a long (normalized length L =48) Josephson

The numerical procedure to solve Eq. (10) is then comp-
leted: Evolve P( xt) one time step ahead to P(x, t+dt).
Find f „(t,dt) and g „(t,dt) as sketched above. Update
F „(t) and G „(t) to the time t+dt and calculate
J(t+dt) from Eq. (15).

The computing speed of solving Eq. (10) is much lower
than the speed of solving the PSGE. However, we have
found, in agreement with Ref. 7, that %=4,5 and M=O
represents a quite sufficient set of expansion functions to
describe the true kernels appropriately. Thus we find
that modern work stations are capable of doing simula-
tions of this kind. In fact, our experience is that the most

complicated and time-consuming part of the work is to
determine the expansion coefficients A „,8 „,and p„by
fitting to the kernel functions —and not the actual
dynamical simulation time.

junction with annular geometry in order to study the
steady-state wave form of a traveling 2m kink. The nu-
merical scheme for evolving the phase diff'erence P( xt)
in time was chosen to a second-order explicit finite
difference method, and a fourth- order finite difference
method was used to describe the spatial dimension. For
simplicity, we have chosen the surface loss term (PP „)
in the wave equation to be absent. Other system parame-
ters were chosen to be 4, =62=5=1.35 meV, T=4.2

K, co =850X10 rad/sec, describing a high current-
density junction of niobium superconductors. We have
also tried simulations at higher temperatures, such as
T=0.7T, =6.4 K (b, =1.15 meV). In both cases, we
have chosen the normalized time step size to be dt =0.01
and the spatial grid size to be dx =0.02.

In Tables I and II, we show the chosen expansion
coefficients of different temperatures and gaps. In all
cases, the choice of M =0 has been made. As can be seen
from Eq. (18), this makes the numerical procedure faster.
In Fig. 1 we show the resulting Fourier transform of the
approximated kernel functions (solid curves) together
with the analytically given kernels (dots) for T=4.2 K
and b, (T)=1.35 meV. The shown dots of the true func-
tions have been used to determine the expansion
coefficients of the approximate functions. Clearly, we
find that for the case of T=4.2 K and b(T) = l. 35 meV
the fitting is very successful. Larger temperatures result
in less good agreement between the approximated and the
true functions mainly due to a larger smearing of the gap

TABLE I. Expansion coefficients for the Dirichlet series. The choice of M=O and %=4 has been made. T=4.2 K and
A(T) =1.35 meV.

Re(~, „)
1.262 392

3.096 907 x 10-'
1 ~ 309 572x10-'
3.785 244X 10

Im(AO „)
9.869 201x10-'
1.565 118x10-'
1.034 911x10-'
8. 130994x 10-'

Re(80 „)
—2.992 064 X 10
—1.056855 x 10

1.097 765 X 10
3.689 581 x 10

Im(80 „)
—2.309 830 X 10

6.3 10 330x10-'
6.287 742 X 10
1 ~ 407 315x 10-'

Re(p„)
—1.711 349

—6.597 119X 10
—1.778 335 X 10
—3.432 953 x 10

Im(p„)

2.632 837 X 10
7. 111608x10 '

9.878 772 x10-'
1.003 440
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TABLE II. Expansion coefficients for the Dirichlet series. The choice of M=O and N=5 has been made. T=6.4 K and

h(T) =1.15 meV.

Re(AO „)
1.1512

4.6448 x 10-'
3.6220X 10
1.0081x 10-'

—1.4238 X 10

2.4884
—5.3992x 10-'
—2.7513 x 10-'

6.2859 x 10-'
—2.0830 x 10-'

Re(B, „)
4.6306

—9.1064x 10-'
2.9323x 10-'
7.5897x10-'

—7.3936x 10-'

Im(BO„)

—1.3335
2.6744

5. 1136x 10-'
3.6630x 10-'
4.2239 x 10-'

Re(p„)
—4.1092
—1.9877

-4.9713x 10-'
—7.4228 x 10
—4.9681X 10

4.6640x 10-'
1.6939

9.7030x 10-'
1.0054

9.6522X 10

P(0) =(()(L ) 2vr, — (22)

simulating the topological condition of one trapped flux
quantum in the annular junction. In addition to the ini-
tial condition in P we need an initial condition for the
functions F „and 6 „. Using the fact that we have
chosen a static solution as initial condition for the phase
difference, we easily get from Eq. (16) that

singularities in the approximated functions. The success
of the approximation of the kernel functions depends, of
course, on the patience of the individual who performs
the fitting and on the number of expansion parameters
available. However, it has been our experience that when
restricted to M=O we obtain the best results for the low
temperatures. From the plots of the kernel functions, we
see the essential difference between the traditional per-
turbed SG model and the model of microscopic theory,
that is to say, the frequency dependence of the
coefficients in the perturbed SG model. In Ref. 12 it was
found that, in the low-frequency limit, the SG terms are
represented as follows: The coefficient to the sing term is
Re(I~), Im(I~) corresponds to the loss term aP„and
Im(I~) is the coefficient to a term proportional to P,cosP.
In the low-frequency limit, Re(I ) has no equivalent in
the perturbed SG model. The critical current density
Re(I~ ) is clearly increasing for increasing frequencies up
to the gap frequency, whereafter it is decreasing to zero.
The other essential parameter, the quasiparticle loss
Im(I~), is almost zero for low frequencies and, by an al-
most steplike behavior at the gap, it is changing to a nor-
rnal resistance curve. As initial conditions we have made
use of the static 2m-kink solution Eq. (2) for u =0, since
this is an exact solution to Eq. (10), for r1=0. This solu-
tion fits very closely to the applied boundary conditions:

0.10 1.0

length of L =48 in order to simulate an infinite system
length. The bias current g was increased in small steps
5g, after each step allowing the system to relax in 1000
normalized time units before measuring the steady-state
speed of the soliton (voltage across the junction). The
speed (u) is found by measuring the increase of the aver-
age phase difference in 100 normalized time units, giving
the normalized voltage. The velocity of the solitonic
wave is then given by u = VL /2~

In Fig. 2 one-soliton curves are calculated by use of the
step size 5rl = 10 (dashed lines, right axis) and
Srl=10 (solid lines, left axis). The upper dashed and
solid curves are for T=6.4 K and the lower dashed and
solid curves are for T=4.2 K. Clearly, the soliton veloc-
ity is larger for lower temperatures than for larger, which
of course is to be expected. The abrupt jumps of the volt-
age represented by horizontal lines from the top of the
dashed curves are due to the disappearance of the local-
ized 2n.-kink structure, which becomes unstable into a
mode characterized by almost homogeneously distributed
magnetic flux and voltage. Actually the junction changes
from a mode determined by the plasma frequency into a
mode determined by the gap frequency. This happens for
q values significantly smaller than g= 1, and it seems to
happen for even smaller bias values for lower tempera-
tures than for the higher temperatures. This characteris-
tic is different from the conventional SG model, where
the localized SG kink may exist in an infinite-length sys-
tem for all rl~ (1 if the surface loss is absent (P=O). '

The reason for the instability of the kink in the strongly
driven system with no surface loss is found in Fig. 3.
Here, we have plotted an instantaneous picture of the x

F „(x,O)=, cos
m! $(x,O)

k( —p„) 2

G „(x,O)= ', sin
m! . $(x,O)

k( —p„) 2

(23) 0.05
GG

We here note that the numerical procedure is not very
sensitive to the initial conditions in F „and 6 „. We
have used, without any complications, the initial condi-
tions Eq. (23) even for nonstatistic initial conditions in P.

In Fig. 2 we show the normalized bias-velocity (I-V)
curves of different temperatures. For these numerical ex-
periments, the initial conditions Eq. (23) have been used
to a system with no bias current (i)=0) and for a system

0.0 0.5

Velocity u
1.0

0.0

FIG. 2. Bias speed curve (I-V curve) for the system length
L=48, with a step size dg=10 (solid lines, left axis) and
dg=10 (dashed lines, right axis). Upper solid and dashed
curves are for the case T=6.4 K, and the lower curves for
T=4.2 K.
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15-
In comparison, we have measured the wavelengths for
g=0. 8 to be

10-

5-

T=4.2 K: A, =1.28,

T=6.4 K: A. =1.47,
(25)

c~(
0 10 20 30 40

X

15-
8-

I 10-

(b)

0 10 20 30 40

derivative of the steady-state P field for diFerent values of
the bias-current density q and T=4.2 K. In Fig. 3(a) we
show the profile for a value of g=0.5, and for g=0. 8 in
Fig. 3(b). For higher temperatures (not presented in the
figures) the soliton profiles are broader, and the velocity is
smaller than for the lower temperatures due to the higher
effective damping. This is of course in analogy with the
Lorentz contraction in the unperturbed SG system,
where the fast profile is narrow compared to the slow
profile. Likewise, larger g values result in a more narrow
steady-state profile, but what is more interesting is that
the traveling soliton is followed by an oscillating tail, giv-
ing rise to radiative losses. Comparing Fig. 3(a) for
i) =0.5 to Fig. 3(b) for i)=0.8, we find that the amplitude
of these damped oscillations increases as g is increased.
This is quite similar to the behavior of the kink in the
perturbed SG model with surface losses, since that system
also shows a steady-state traveling wave followed by an
oscillating tail. ' ' However, the oscillation frequency
is quite different, since the SG system can provide the
plasma frequencies only, while the microscopic theory
also provides the gap frequency as a characteristics fre-
quency in the system. The gap frequency is shown' to be
exited locally in the system, if a step in the phase
difference takes place. Since a moving kink profile acts as
a step function in a given point of the junction, we expect
an oscillating tail with the frequency co=co =26.(T)lk in
time and the wave number k =2'/A=co /u, where u is
the velocity of the traveling wave. In normalized units,
we get for the specific choices of parameters made here

T=4.2 K: co =4.85, A, =u X1.30=1.29,

T=6.4 K: co =4. 13 A, =u X1.52=1.49 .
(24)

X

FIG. 3. Magnetic-flux density P„as a function of space in a
steady-state motion for the bias values (a) g=0. 5 and (b)
g=0.8. T=4.2 K.

15

I-

10 —-

5—
I

—5
10 20 30 40

FIG. 4. Magnetic-flux density P„as a function of space in a

steady-state motion of two magnetic-flux quanta in the annular

system for g =0.6 with an initial distance between the

magnetic-flux quanta of 5p =3.25.

which is in quite good agreement with the predicted
wavelength.

Thus we conclude that the fast moving soliton does in
fact suffer from radiative losses at the gap frequency
co =25/A. We note here that the treatment of Ref. 15
predicts that a step function with the weight of exactly
2~n should not give rise to any exitation of the gap fre-
quency. This is of course disappointing from the point of
view of 2m kinks, but we should here keep in mind that
the kink is not a perfect step function and it should in
this relation be treated as a more complicated wave form.
We should also note that, for the specific values of pa-
rameters used here, the gap frequencies for T=4.2 K and
T=6.4 K are very close to the frequencies of the linear
Klein-Gordon modes co =+I +k . However, we observe
that the measured spatial wavelength X scales with the
energy gap, which strongly indicates that this
phenomenon is due to the gap structure in the local tun-
neling processes, and not the spatial wave dynamics.

An interesting consequence of the radiative losses is
that it may provide a spatially harmonical potential for a
second soliton, and hereby create stable states of several
bunched solitons. We now consider the system contain-
ing two solitons with the internal distances 6. If we as-
sume that the soliton wave profiles to be very narrow, we
do not expect that any significant repulsion is taking
place between the two 2'-kinks, provided that we do not
choose 6 too small. However, as seen from Figs. 3, the
radiation is spatially of long range. Assuming that the
oscillations are exponentially damped, that the frequency
is indeed the gap frequency, and that the soliton profile is
smaller than the spatial wavelength of the radiation, we
can approximate an interaction energy HI between a soli-
ton and the radiation by
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