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Interaction of two Suxons near a local inhomogeneity in a long Josephson junction
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Collision of a free fluxon in a long dc-driven damped Josephson junction with a fluxon pinned by the

microshort or microresistor is analyzed by means of perturbation theory. It is demonstrated that, in the

case of like polarities of the fluxons, three different outcomes of the collision are possible: depinning,

capture, and exchange. If the polarities are opposite, the possible outcomes are depinning, annihilation,

and a quasielastic collision. The boundaries between the different regimes in the parametric space of the

model are found.

I. INTRODUCTION vo =o [I+(4y ln f) ]
'~ sgnf . (1.3)

Pk(x, t) =4 tan ' exp o
x g(t)—

(1—u )'
(1.2)

where o =+1 is the polarity of the fluxon, g(t)=ut+ fo is
the coordinate of its center, and v is its velocity (u & 1).
In the homogeneous dc-biased damped LJJ (e=O;
f,y «1), the fluxon's velocity uo is uniquely determined
by the balance between the driving and friction forces, '

In this work we develop an analysis of collisions be-
tween a fluxon (magnetic-flux quantum) pinned by a local
inhomogeneity in a dc-biased damped long Josephson
junction (LJJ), and a free fluxon. This process is an in-

teresting physical problem, which may also have some
practical importance in the designing of elementary logic
units for the Josephson computer. Besides, the outcome
of the collisions between free and pinned fluxons is im-
portant in determining the I V(current--voltage) charac-
teristic of a very long junction, containing a regular or
random lattice of microinhomogeneities and a "rarefied
gas" of fluxons.

The analysis of the problem is based on the well-known
perturbed sine-Gordon (SG) equation, '

P« —P„„+sing = f yP, +e5(x )si—nP—,
where P is the dimensionless magnetic flux, f is the bias
current density, and y is a dissipation coeScient. The
last term on the right-hand side of (1.1) corresponds to a
local inhomogeneity of the maximum Josephson current
density (a microshort and a microresistor for negative
and positive e, respectively).

The interaction between a fluxon and localized inho-
mogeneities was studied experimentally in Refs. 2 and 3.
The experimental results support the theoretical model
(1.1).

In the absence of perturbations, i.e., at f=y =e=O,
the fluxon is described by the well-known kink solution of
the SG equation,

In the "nonrelativistic case" (f «y, vo «1) Eq. (1.3)
simplifies to

vo =no fl4y . (1.4)

If there is a weak inhomogeneity ( le l
« 1), one can an-

alyze the motion of a fluxon using the perturbation
methods. ' In the adiabatic approximation (when the ra-
diative losses and a distortion of the fluxon shape are ig-
nored), one can derive the motion equation of a nonrela-
tivistic flux, that proves to be equivalent' to the equation
describing the motion of a classical particle with the mass
m =g in the potential

U,tt(g) =2trcr fg 2e sech g, —

in the presence of the friction force

(1.5)

F g
d~

[it is assumed (dgldt) « 1, otherwise the effective parti-
cle obeys the "relativistic" equation of motion].

The potential (1.5) can pin a fluxon, provided'

f &f., =—(4v'3/9~) lel;

in this case, the potential has two equilibrium positions,
one stable and one unstable (the minimum and the max-
imum of the potential).

If the bias current density lies in the interval
0 &f &f„,the LJJ with sparse inhomogeneities may sup-
port two types of fluxons: the pinned ones, and the free
fluxons moving between the inhomogeneities. If both col-
liding fluxons have like polarities, the collision between
the free and pinned ones may have three di6'erent out-
comes: (i) the capture of both fluxons; (ii) the "ex-
change", i.e., the capture of the free fluxon and depinning
of the pinned one; and (iii) the depinning of the formerly
pinned fluxon without the capture of the free one. In
what follows, these three possibilities will be referred to
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as the capture, exchange, and depinning, respectively.
For the case of like polarities, the collision is analyzed in
detail in Sec. II.

If the free and pinned fluxons have opposite polarities,
one can expect the depinning as one possible outcome of
the collision. Instead of the exchange, in the case of the
opposite polarities one can have the elastic collision, when
the pinned fluxon remains pinned, and the free one keeps
moving in the same direction. Finally, in this case one
can have the annihilation of the fluxon-antifluxon pair in-
stead of the capture in the case of the like polarities. The
analysis of the fluxon-antifluxon collision is given in Sec.
III ~

Finally, in the concluding Sec. IV we briefly discuss
possible generalizations of the problem considered in this
work.

d2' d'
+r +F e—' '=0

dr' d1-
(2.4a)

d g'~ dg~+I +F+sgnesinh(&sech gz+4e ' '=0.
dr

(2.4b)

dg/dr= F/I— (2.5a)

(2.5b)

The influence of the inhomogeneity on the motion of the
incoming free fluxon can be ignored. In this case, the
force generated by the inhomogeneity and acting on the
incoming free fluxon is of order e and may be neglected.
This system has to be solved with the following initial
conditions at ~~ —~:

II. THE COLLISION BETWEEN THE FLUXONS
WITH LIKE POLARITIES

In this section we will consider the collision between
the free and pinned fiuxons whose coordinates are g, and

g~ ( we assume gz & g, ), and the polarities are 0, =cr&= l.
The analysis will be based on the perturbation theory, so
that all the parameters f, y, and e in the underlying
equation (1.1) will be assumed small. The coordinate ga
of the pinned fluxon is determined by the equation
d U,ff/d(=0, i.e.,

sinh(0sech $0+vrf /2e=0 . (2.1)

A. The depinning of the pinned Nuxon

First of all we will find critical conditions for the de-
pinning of the pinned kink. The qualitative idea underly-
ing the subsequent analysis is that the fluxon will not be
depinned if the kinetic energy transferred to it by the free
one is dissipated during the collision. We will see below
that, at f—~e~, this is possible provided the dissipation is
sufficiently strong, y R ~e~' . In this case, the motion of
the fluxon is nonrelativistic. As it is well known, the flux-
ons with like polarities repell each other and, if they are
nonrelativistic, they stay at a distance much larger than
their proper size (which is —1 in the notation adopted).
In this case, the effective potential of the fluxon-fluxon in-
teraction is

—2F+sgnesinh(&sech gz=O.

A solution of (2.6) exists if

(2.6)

F (F„/2 . (2.7)

Thus, the boundary of the capture region in the paramet-
ric space, F =F(I ) [it is implied that the capture takes
place at F & F(I )], lies beneath the line F =F,„/2.

To proceed with the analysis, let us first consider the
repulsive inhomogeneity (e &0). In the limit F, I ~0, it
is possible to find the asymptotics of F(1 } analytically.
In this case, the pinned fluxon rests far from the inhomo-
geneity:

(0= —,'ln(F/4), (2.8)

and the influence of the inhomogeneity on the collision is
negligible. If the scaled velocity V:F/I is of ord—er one,
then (2.4) in the lowest approximation can be written in
the form

d kl 2 1 0
dH
d2

k2 +e
d

(2.9a)

(2.9b)

The pinned state of the fluxon exists if
F &F„—:2&3/9=0. 3849. Adding up the expressions on
the left-hand sides of Eqs. (2.4a) and (2.4b), we find the
condition necessary for the inhomogeneity to hold both
fluxons

V ff(kl k2) (2.2)

2

(2.3)

F= , g, =—g —ln—
2 E

we obtain the following system of the equations of motion

(recall that we assume gz&g, ). Considering the fiuxons
as mechanical particles, ' and changing the variables

1/2 1/2

7 =
2

System (2.9) can be integrated directly:

(', =$0—21n V—Vr+ln(1+e '),

$, =$0—ln(l+e ') .

(2.10a}

(2.10b)

The point ~=0 is the instant at which the two fluxons are
at a minimum distance. Certainly the solution (2.10), as
well, can be obtained from the exact two-kink solution of
the SG equation. Using the expression (2.8), we find that
the second (formerly pinned) fiuxon gets over the poten-
tial barrier (gz=O) at the moment
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1 4
ln

2V F 0.4-

Due to the collision, it acquires the velocity

= V( —1+ 'F' —)
d

0.3-

The change of the fluxon*s velocity under the action of
the force F and the dissipation is small, and we ignore it.
The depinning boundary is determined by equating the
kinetic and potential energies, which leads to the follow-
ing expression for the critical velocity:

FV= —=&+ F'"+ -.
2

F
0.2-

0.1

or

F =r(1+-'r'"+ ) .
2

(2.11)
0 0.3 0.6 0.9

I

1.2

In the case of the attractive inhomogeneity (e)0), the
energy of interaction between the fluxons is small at the
moment of passing the potential barrier. The energy
transferred to the pinned fluxon must be less than the ki-
netic energy of the incoming one, hence limp p V(F) ) 1.
Numerical integration of the system (2.4) with F= I'=0
yields V(0) —= V„=l. 17.

In the general case (finite F and I ), Eqs. (2.4) and (2.5)
were solved numerically. The results of the calculations
are shown in Figs. 1 and 2 (the curves between the re-
gions II and III). The boundary of the capture region is
similar to that for the solitary fluxon, but its horizontal
fragment is situated at F=F„/2. In the region below
this boundary, the inhomogeneity holds back both flux-

ons; above this boundary the previously trapped fluxon
gets depinned.

The dependence of the critical velocity V = F/G and of
the critical kinetic energy E= V /2 of the incoming free

FIG. 2. Interaction regimes in the case of the nonrelativistic
incoming fluxon and attractive inhomogeneity (I—depinning,
II—exchange, and III—capture).

fluxon on the external force F are shown in Figs. 3 and 4.
For comparison, the barrier's height 6 =—U,„—U;„ for
the potential

U=Fg+ —,'sgnesech g, (2.12)

is depicted in Fig. 4. One can see that the threshold
value of the kinetic energy E is of the same order as the
barrier's height b, but it is usually slightly higher than 5
because of the incomplete energy transfer in the collision.
However, for F near F„/2 we have E & h. This result is
not in contradiction to the energy conservation. Actual-

OA-
1.0

0.5

F
0.2

0.5

0.1

0.2 0.4 0.6 0.8
0.05 0.1 0.15

FIG. 1. Interaction regimes in the case of the nonrelativistic
incoming ffuxon and repulsive inhomogeneity (I—depinning,
II—exchange, and III—capture).

FIG. 3. The critical capture velocity for the attractive (curve
1) and repulsive (curve 2) inhomogeneities.
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0.6

at the moment of the depinning of the formerly pinned
fluxon X-1. For large ~, the motion is described by the
equation

I —2e =0;
d7

thus, X—ln( 27/I ). When the incoming fluxon ap-
proaches the inhomogeneity, the interaction force

0.4

0.2

is small in comparison with terms proportional to F and
I . So, the motion of this fluxon is fully similar to the
motion of the solitary fluxon interacting with the inhomo-
geneity. The boundaries between the exchange and de-
pinning regions are shown for this case in Figs. 1 and 2.

The case of small I needs a special examination. We
will consider the cases of repulsive and attractive inho-
mogeneities separately.

0.05 0.1
F

0.15

FIG. 4. The critical kinetic energy of the incoming fluxon for
the attractive (curve 1) and repulsive (curve 2) inhomogeneities
in comparison with the barrier height (curve 3) ~

ly, the quasistationary balance between the external drive
and the dissipation for the incoming fluxon is violated be-
cause it is braked, and the force F brings some additional
energy into the system.

B. The exchange

The depinned fluxon leaves the neighborhood of the in-
homogeneity during the time of order one and, in what
follows, the motion of the fluxon is governed by the equa-
tions

I. The repulsive inhomogenei ty

Let us assume F/I'- V-1. In the case of small F and
I, the collision of particles is governed by (2.9), while the
interaction force is large in comparison with the omitted
terms proportional to F and I . One can see [cf. (2.10)]
that the term proportional to F becomes important at
7-~lnF~, when the velocity of the incoming fluxon is
-F. Then the fluxon is accelerated by the force F.

If F, I »)in~a~ [
', the fluxon has enough time to at-

tain the equilibrium velocity. The interaction force be-
tween the fluxons is of order of I'(in~a~~ ' [because of
X-ln(27/I )] and is negligible. So, the capture bound-
ary for the incoming fluxon is the same as for the solitary
fluxon: F= I I ln2+ —. Comparison with (2.11)
shows that the exchange is impossible in this case.

If F, I 5 ~ln e~ ~

', the fluxon has not enough time to
attain the equilibrium velocity. The interaction between
fluxons is, however, weak. Let us introduce the new vari-
ables

d2' d'
+I +F e' '=0-

d 7-2 d7.

d2
+I' +F+ ' '=0

d7' d7

(2.13)

F=F, llnlel I
', I =I, llnlel I

(2.14)

We obtain the Cauchy problem for the motion of the
fluxon

until the incoming (initially free) fluxon approaches the
inhomogeneity. Then it can be captured by the inhomo-
geneity (the exchange) or it remains free (the "depin-
ning").

The crucial factor is the value of the velocity of the
fluxon when it is approaching the inhomogeneity. If F
and I are of order one, the fluxon has enough time to re-
trieve the equilibrium velocity equal to —F/I [Eq. (1.4)]
because the relaxation time for the velocity is I ' —1,
and the time of motion is -ln(~e~ ') &&1. When passing
the barrier, the interaction between the fluxons is imma-
terial. Indeed, one can derive from (2.12) the equation
for the quantity X=g —gz..

d
dH d7

+1, +F, =0, :"(0)=1, (0)=0,
dT2 ' dT ' ' dT

that has the solution

F, F, pz-
:-(T)=1— T+ (1—e ' ),

(2.15)

d:" F —I IT(T)= — (1—e '
) .

dT I,
The capture boundary for the incoming fluxon is deter-
mined by conditions

:"(T,)=0, (T, )= —1
d
dT

(the fluxon approaches the inhomogeneity with the
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threshold velocity equal to —1); hence, we obtain

I,= —1 —V, ln(1 —V, '), (2.16)
—r,

where V—:FI /I I ~ For large I „V,=1+e '; for
small I „V,=1/(2I, ). Thus, for F, I & (in~@~ (

' there
arises the exchange region 1 & V & V, (I, ) lying between
the depinning [ V )V, (I, ) ] and capture ( V & 1) ones.

For I ~ln~E~ &&1, the dissipation has no influence on
the collision of the fluxons. Using the general formulas
for the interaction of the SG kinks, one can find the ex-
pression for the shift b,g of the center of the quiescent
kink after the collision with another kink moving with
the velocity U:

0.3

0.2

0.1

1+(1—v )'i
U

4=ln
U

(2.17)
0.2 0.4 0.6

Actually, the formula (2.17) gives the coordinate of the
center of the formerly moving kink stopped by the col-
lision. If the potential energy U,tr(go+ kg) of the stopped
kink is larger than the height of the potential barrier
U,tr(g ), the kink will not be trapped. Using the expres-
sion for the potential, one can show that the boundary
between the exchange and depinning regions is deter-
mined by the condition b,x =1, where 1 =

~
eZ/n f (we

suppose 1))1). Hence,

(2.18)
2n. ( —lnv )

For v —[e
/

' we obtain

With the further decrease of y, the critical value of f
again becomes dependent on y, but now it grows with the
decrease of y. The equation (2.18) can be written in the
form

FIG. 5. Interaction regimes in the case of the relativistic in-

coming fluxon and the repulsive inhomogeneity (I—depinning
and II—exchange).

it is enough to compare the potential energy of the
stopped kink U,z(go+A, g) and the maximum potential
energy U,s(g ), where b,g(v) is the shift of the kink's
center after the collision, and (0 and g are the positions
of the maximum and minimum of the potential U,s(g).
The fragment of the boundary between the exchange and
depinning regions, corresponding to this case, is shown in
Fig. 5. In Fig. 5 we use the notation I 2

=—2y/~e~. The
asymptotic expression at y —+0 can be written as

'2
fcr f 288

—v lnv= ~@~/8y . (2.19)
2. The attractive inhomogeneity

For y »e, the motion of the fluxon is nonrelativistic, and
the depinning threshold is given by the formula

2m 1n(y//e/ )

For y -e, the velocity of the incoming fluxon is of order
one, the fluxons approach each other up to a distance
—1, and the consideration of all the stages of the interac-
tion in terms of the equations of motion for the centers of
the kinks is impossible. However, the interaction force
between fluxons is of order one, and it is large in compar-
ison with that induced by the inhornogeneity. Hence, one
can use the formula (2.17) to analyze the collision of the
fluxons. After the collision, the velocity of the incoming
fluxon reduces up to the values —~e~, and so its subse-
quent motion is nonrelativistic (v —

~e~
' ), governed by

the equation

d4I
dt2 4 2

+ f sinhg, sech —
gl

=—0

(the term ydg, /dr is immaterial in the case y —
~e~ ). So,

In the case of the attractive inhornogeneity and
F, I ~0, the collision between fluxons leads to reflection
of the incoming fluxon. The kinetic energy
E„(V):(dg&/dr) /—2 of the reflected fluxon has been cal-
culated numerically by solving (2.5) with I =F =0. For
V= V, = 1.17, E„=0.184; for V» 1, E„V =C = 1.1.
Later on, the driving force F makes the fluxon return
and, when passing the initial point, it has the velocity
V„„—V„[1+0(V„/V)].

Let us assume now I ~0, and that
V=F/I —1(v —e' ) In the case .~inc~

' &&I &&1, the
fluxon approaches the inhomogeneity with the velocity
F/I —V, ; in the case I « ~inc~

' its velocity has a value
lying between V, and F/1", so its energy E is of order one
in any case. As the pinning threshold is determined by
the condition E—I in the case of the attractive inhomo-
geneity, the capture is impossible, and there may be no
exchange in the case I ~0, V-1(v —e' )

However, the exchange region exists if u » e' . We
will consider its asymptotic form for F~O, I ~0. The
capture boundary for the incoming fluxon is determined
by the condition
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E„+Udr(b, g) =0, (2.21) III. THE COLLISION BETWEEN THE FLUXONS
WITH OPPOSITE POLARITIES

where E„=g.(d(ldt) l2, since in the case I ~0 the
reflected fluxon comes back with the same energy. Using
the original units for the velocity and energy correspond-
ing to (2.3), we obtain

v =(4Ce)', C= 1. 1 .

For small finite F, Eq. (2.21) has to be replaced by

E, + U,~(4+~()= U,d k. »
where go and g are the minimum and maximum of the
potential U, tt(g). Designating

u
—= V e' f:—F,e ~lnE~

then we obtain

3 4 4C
8~ ' y2

1

and

mF1

4U 4V1

In the case when the free Auxon runs into the pinned
antifluxon, the analysis proves to be simpler than in the
case of like polarities. The difference is that fluxons with
opposite polarities pass through each other during the
collision. This implies that the interaction between the
fluxons is strong, and one may neglect the relatively weak
interaction with the inhomogeneity.

First of all, it is easy to find the threshold for annihila-
tion of the free Auxon with the pinned antifluxon. The
annihilation threshold for the free fluxon-antifluxon pair
has been found in Refs. 7 and 8. The analysis developed
in these works was based on equating the dissipative
losses for the pair with the zero velocities of the fluxons
at infinity to the net kinetic energy of the actual pair. In
the present case, the only difference is that the pinned
fluxon has no kinetic energy, consequently, the velocity
of the free Auxon corresponding to the annihilation
threshold is 3l2 times larger than in the case of the an-
nihilation of the free pair. Using the results of Refs. 7
and 8, one can find that the annihilation takes place in
the region

For f «E, E / «u «1, the energy of the refiected
fluxon may be neglected, and we obtain

2(2~ )3/2 (3.1)

U( go+ b g) = U(( ),
hence

4mf
1

f
E' E'

1/4

1/4f 3/4
1
f

(2.22)

—1/4

0.3—

In the case of f -y -e, v —1, it is necessary to insert
into (2.22) the full relativistic expression for hg. The re-
sults obtained numerically are shown in Fig. 6.

Iff exceeds the value f,„„,the outcome of the collision
may be either the elastic collision or the depinning. To
find a boundary between them in the parametric space,
we can use the expression (2.17) for the collision-induced
shift of the fluxons. The distance by which each fluxon is
shifted does not depend on their relative polarity, but
the direction of the shift depends on it. When we con-
sidered the collision of the unipolar fluxons, the moving
one stopped and the quiescent one got moving, so that,
effectively, one could say that the collision gave rise to a
shift of the quiescent fluxon backward relative to the
direction of motion of the free one. In the present case,
the attraction to the moving antifluxon shifts the quies-
cent Auxon forward. Considering the position of the
shifted fiuxon in the effective potential (1.5), one can
readily see that it will be depinned if the shift exceeds the
distance l between the maximum and the minimum of the
potential. If one assumes f« ~e~, it is straightforward to
find

0.2—
I = —,'ln(~e~ l2~f ) . (3.2)

Comparing (3.2) and (2.17), we conclude that the depin-
ning (1 & b,g) takes place provided

0.1 u & 32mflE . . (3.3)

Finally, making use of (1.4) to express v in terms of f, we
conclude that the depinning condition (3.3) amounts to
the inequality

0.02 0.04 1/3
16 2yf f .,=— (3.4)

FIG. 6. Interaction regimes in the case of the relativistic in-

coming fluxon and the attractive inhomogeneity (I—depinning,
and II—exchange).

If f exceeds the value fd, , the collision will be basically
elastic.
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Comparing (3.1) and (3.4) reveals that the inequality

f,„„«f4,~ always holds. Thus, we expect that in the
case of the opposite polarities the annihilation is changed
by the depinning and then by the elastic interaction with
the increase of the driving force f.

Of course, the threshold values (3.2) and (3.4) are
meaningful when they do not exceed the critical value
(1.7) at which the pinned state disappears. If f,„„)f„,
the collision always results in the annihilation, and if
f,„„&f„&fd,~, the elastic interaction never takes place.

IV. CONCLUSION

The problems considered in the present work can be
generalized in several directions. First of all, one can
consider another type of the local inhomogeneity that de-
tains the pinned fluxon. Although the microshorts and
microresistors are of most interest in the theory of the
LJJ's, the inhomogeneity induced by Abrikosov's vortex
crossing the junction is of certain interest too. This inho-
mogeneity is described by the term e5'(x) on the right-
hand side of the perturbed SG equation. The interaction
between the free fluxon and the one pinned by
Abrikosov's vortex has also been analyzed by the present
authors, ' but this analysis does not give principally new
results.

A more general type of the local inhomogeneity than
that on the right-hand side of (1.1) corresponds to a
charged impurity in a commensurate charge-density-
wave system. In a general case, this inhomogeneity is de-
scribed by the term" esin[M '((()+8)], where M is the
integer commensurability index, and 8 is an arbitrary
constant characterizing the location of the impurity rela-
tive to the ionic lattice. The important difference of this

generalized inhomogeneity from the one considered in
the present paper is that the effective fluxon's potential
corresponding to it may have four equilibrium posi-
tions. "

It would be interesting to consider the interaction be-
tween the free and pinned fluxons outside the framework
of the perturbation theory, when the parameters in (1.1)
are not small. In this case, one may expect new types of
the interaction, which were absent in the case comprised
by the perturbation theory. For instance, if the polarities
of the fluxons are opposite, the "recharging" process
could be possible (similar to the exchange in the case of
the like polarities), i.e., the incoming fluxon becomes
pinned, while the pinned one is released. However, the
nonperturbative analysis must be essentially based on nu-
merical methods.

Finally, the extension to other models, different from
the SG one, could also be worthwhile. A natural problem
is to consider the interaction of the free and pinned 2m.-

kinks in the damped double SG model with the local in-
homogeneity

(()«
—(()„„+sin(()= yP, +a—sin(P/2)+e5(x)sing .

Interaction of the free 2~-kink with a pinned 4m-kink
could be of interest too. Another model problem is to an-
alyze the collision between the free kink in the dc-driven
damped P model with the antikink pinned by a local in-
homogeneity (in the P model, only the collisions between
kinks with opposite polarities are possible).
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