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We study the dilute-gas expansion for a two-dimensional Fermi system with arbitrary short-range

repulsive interactions. In contrast with the three-dimensional case, we find an unusual pole in the vertex

part in the particle-particle channel, for all center-of-mass momenta q(2k+. We show that this

represents an excitation consisting of bound hole pairs, which disperses down to zero energy at q =2kF.
We study the effect of these bound states on the single-particle self-energy and find that the quasiparti-

cles are well defined. Thus in the low-density regime, there is no breakdown of Fermi-liquid theory. In

the Appendix we discuss the two-particle phase shift in the dilute Fermi gas, its connection with bound

states, and the analogy with the potential scattering phase shift.

I. INTRODUCTION
With the discovery of high-temperature superconduc-

tivity in the layered copper-oxide materials, there is
great interest in understanding strongly correlated fer-
mion systems. The unusual properties of these materials
above T, have led to suggestions that the normal state
is not an ordinary Landau Fermi liquid. The extent to
which the experiments force us to modify the traditional
Fermi-liquid idea is a matter of some debate at the
present time. On the theoretical side, it mould be nice to
have examples of models in two or more dimensions
which do not have a broken symmetry and yet show
non-Fermi-liquid behavior. It is, of course, well known
that one-dimensional (1D) interacting Fermi systems are
not ordinary Fermi liquids —they show power-law
singularities, instead of a discontinuity, at their Fermi
surface, and there is a separation of the charge and spin
degrees of freedom.

Anderson has recently suggested that the ground state
of the 2D Hubbard model differs from a Landau Fermi
liquid due to the existence of antibound states which
lead to a nonvanishing Fermi-surface phase shift even in
the low-density limit. If Fermi-liquid theory indeed
breaks down in this limit, i.e., very far from half filling,
then it should be possible to establish this fact unambigu-
ously. First, unlike near half-filling, there are no other
instabilities —antiferromagnetism, metal-insulator transi-
tion, Nagaoka ferromagnetism, etc.—to contend with.
Second, in this regime one can make a continuum ap-
proximation for which there is a small parameter in
which to make a systematic expansion. (Note that a
low-density expansion is possible only for a Fermi system
with short-range interactions. It is, of course, well
known that the Coulomb system at low densities is a
Wigner crystal. )

In this paper we study the following question: Is the
low-density Fermi gas in 2D a Fermi liquid or does the

two-dimensionality lead to nontrivial behavior? We find
that, in spite of the occurrence of unexpected nonpertur-
bative effects in 2D, the system has well-defined fermionic
quasiparticle excitations. Thus, two-dimensionality alone
is not suScient to lead to a breakdown of Fermi-liquid
behavior. Some of the results of this paper have been
previously presented in Refs. 9 and 10.

In the remainder of this section we summarize our re-
sults and end with an outline of the paper. The model we
study is a 2D Fermi gas with arbitrary short-range repul-
sive interactions where the interparticle spacing is very
much larger than the range of the two-body interactions.
The three-dimensional case —dilute gas of hard-sphere
fermions —was studied in great detail many years
ago" ' and provided an early example of a Landau Fer-
mi liquid in which all the quantities of interest could be
calculated systematically in an expansion in kFa, where a
is the s-wave scattering length. Using a T-matrix
analysis, we find the expansion parameter appropriate to
2D. For weak repulsion, the domain of validity of the
low-density expansion is k~R «1, where R is the range
of the potential; while for the case of a hard-disk poten-
tial of radius R, one is limited to 1/log(1/k+R ) « 1.

We study the vertex part in the particle-particle chan-
nel and find an unusual pole for all center-of-mass mo-
menta q (2k~ which do not exist in higher dimensions.
At first sight, this pole, which is below the bottom of the
two-particle band, might appear to indicate a breakdown
of Fermi-liquid theory. However, we argue below that it
is, in fact, a collective excitation of the system consisting
of a bound pair of holes, which does not lead to either an
instability (phase transition) or to a more subtle break-
down of Fermi-liquid theory, at least within the low-
density regime. We show that these bound states lead to
a ~to~ correction to the standard 2D result' for the
imaginary part of the single-particle self-energy
X"(kz,co)-co in~to~. Using analyticity, we argue that the
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quasiparticle residue Z is nonzero. The effect of the
bound states on the quasiparticles is weak due to the lim-
ited phase space available for scattering into these states
and to the small spectral weight in the bound pole at low
energies.

Working directly with the Hubbard model, Fukuyama,
Narikiyo, and Hasegawa' have subsequently obtained re-
sults identica1 to ours for the self-energy within a T-
matrix approximation. Using a completely different for-
malism, Mattis and Chen' have shown that the quasipar-
ticle renormalization Z for the low-density Hubbard
model is nonzero.

In a companion paper, ' written in collaboration with
Zhang, we address the issue of the Fermi-liquid parame-
ters of the 2D Fermi gas. The occurrence of a pole in the
vertex part means that certain vertices which are usually
assumed to be regular in Landau Fermi-liquid theory are,
in fact, singular in 2D. Nonetheless, we find' that the
singularities are sufficiently weak that the f function
describing the residual interaction between the quasipar-
ticles is well behaved.

The rest of the paper is organized as follows. In Sec.
II, we show how the vertex part of interest may be ex-
pressed in terms of the two-body scattering T matrix. We
also discuss the region of validity of the low-density ex-
pansion in 2D. In Sec. III, we study the singularities of
the vertex part in the particle-particle channel, and show
the existence of the bound states in addition to the usual
continuum of excitations. We then turn to the effect of
the bound states on various quantities of interest. In Sec.
IV, we study the phase shift characterizing two-body
scattering in the system. In Sec. V, we use the phase shift
to calculate thermodynamic functions like the ground-
state energy and the chemical potential. In Sec. VI, we
look at quasiparticle lifetimes and residues to check the
validity of Fermi-liquid theory.

We discuss the physical significance of our results in
Sec. VII, and comment on their relevance to some of the
proposals for the breakdown of Fermi-liquid theory made
in the recent literature. We contrast the 2D calculation
with the one-dimensional case, and comment on the con-
nection of our results with the rather different case'
of attractive Fermi systems in 2D. Finally, in Sec. VIII,
we summarize our conclusions.

In the Appendix, we discuss the analogies between the
formalism used for the dilute Fermi gas and that for the
problem of noninteracting fermions in the presence of an
impurity potential. Since the only important interaction
processes in the dilute Fermi system are two-particle col-
lisions, in the presence of the medium, these are con-
veniently described by a two-body phase shift. The intui-
tive content of this phase shift is brought out by studying
the analogies and differences between this phase shift and
that of ordinary potential scattering theory.

II. MANY-BODY FORMALISM

We study a gas of fermions of 2D with a spin-
independent repulsive two-body interaction whose range
R is much less than the average interparticle distance
kF '. As discussed below, the shape of the potential can

be completely arbitrary; we can even tolerate some at-
traction so long as it is weak enough not to lead to the
formation of a bound state in vacuum. For simplicity we
only consider potentials for which the low-energy T-
matrix elements are dominated by the s-wave channel in
the partial-wave expansion.

In this section we first review the T-matrix formalism
for the two-body problem in 2D. We then obtain a for-
mal expression for the vertex part in the particle-particle
channel for the many-body system. Finally, we comment
on the expansion parameter and region of applicability of
the low-density expansion in 2D.

A. T~o-particle scattering in vacuum

We begin by calculating the T matrix which describes
the scattering of two fermions in a relative s-wave, spin-
singlet state in the particle vacuum, i.e., the two-body
problem. The diluteness condition kFR && 1 in the
many-body problem allows us to focus only on matrix
elements of the low-energy T matrix between states with
small wave numbers. In the many-body description it
will be convenient to represent the particle interactions
by this T matrix instead of the interaction potential, V.
This not only allows us to deal with arbitrarily strong
repulsion, e.g., hard cores, but also allows us to charac-
terize the low-energy, long-wavelength, two-body interac-
tion in terms of a simple, separable kernel.

The two-body problem has dynamics only in the rela-
tive coordinates and the T matrix is given by the Born
series

Tk k (co)= Vk k. + g Vk p G„,(p, co)T ~ k (co),
P

where G„,(p, co)=(co fi p /2mo—+i') ' is the relative
coordinate propagator in vacuum with mo =m /2 the re-
duced mass. Anticipating the many-body description, it
is instructive to account for the center-of-mass variables
explicitly and generalize the two-body T matrix of (I) to

Tk, k'('q ) Vk, k'+ g Vk, +, '(q ~)T, ', '(q ~) . (2)
PP

Here the kernel in the two-body problem represents the
propagation of a pair of particles in vacuum with mo-
menta +p+ q/2; therefore,

dc' 1
(q, co) = i-

2m o)' —e +i gp+ q/2

1

co co 6 p+q/2+ 1 'l7 PP

1

co —A p /2mo —A q /2M+i'

with the single-particle energy c&=fi k /2m and
M=2m. This generalized T matrix of Eq. (2) clearly
reduces to (l) in the limit q~O. Diagrammatically, Eq.
(2) may be represented by ladder diagrams with repeated
two-particle scattering. Note that, since there are no
particle-hole excitations in the particle vacuum, these di-
agrams exhaust all scattering possibilities in the two-body
problem.
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It will be seen that one can set q=0 in (2) without loss
of generality for our calculation, and thus we will solve
the two-body problem in a frame where the center of
mass is at rest. The on-shell T matrix for the two-body
problem is given by

4' 1
rp(~) —=

mL ~ —cot5p(co)+ i
' (4)

where L is the size of the system. (See Ref. 19 for more
details on 2D scattering theory. ) Using the usual tech-
nique of matching wave functions at the interaction range
R, it can be shown that the low-energy s-wave phase shift
5p(co ) in 2D is given by

cot5p(co) =(1/n)ln(co. /E, )+O(co/EII ),
where Ez =IrI /2mR . Just as the 3D phase shift is de-
scribed by the scattering length, in 2D it is characterized
by a single parameter E, with dimensions of energy.
A general expression for E, is given by
E, =4saexp( —2y+2/Pp), where y is Euler's constant
and Pp is the logarithmic derivative of the 1=0 wave
function evaluated just inside in the range of the poten-
tial, and at zero energy.

Consider, for example, the potential V(r)
= Vp8(R r). It is —easy to show that

E, =aEzexp[bxII(x)/Ip(x)], x—:QVp/sa,

where the I„(x) are modified Bessel functions, and a and
b are constants of order unity. In the weak repulsion lim-

it, VO~O, the parameter E, diverges exponentially, while
for the opposite hard-core limit, Vo ~~, one finds

E, -O(s„). Further, as shown in Ref. 19, the parameter
E, is greater than or of' order the energy scale c.z even if
the potential has some attractive part —say, for instance,
a "hard-core plus square-well" potential —provided the
attraction is not strong enough to give rise to a two-body
bound state in vacuum.

We shall thus consider effectively repulsive short-range
potentials for which the parameter E, characterizing the
low-energy phase shift is greater than or of the order of
the already large energy scale EII =II1 /2mR . Thus, we

have

sions. We will show below that, in the many-body prob-
lem, this logarithm is cutoff on the scale of the Fermi en-

ergy.

B. Two-body scattering in a medium

Now we turn to the many-body system: a degenerate
Fermi gas with two-body interactions described by the T
matrix of Eq. (8) at temperatures kT: 1/P—«p, where p
is the chemical potential. Unlike the two-body problem,
the inclusion of all contributions to the perturbative ex-
pansion is an unattainable task. Progress can only be
made by restricting the analysis to some class of diagrams
which, hopefully, represent the dominant physical pro-
cesses. Following Galitskii, " we argue that, in the low-

density regime for a system with short-range interactions,
the leading contribution comes from graphs with the
smallest number of internal hole lines, i.e., the ladder dia-
grarns. This follows from the Fermi factor
f= Iexp[p(eI, —Iu)]+1] ' associated with each hole
propagator as compared to the factors of 1 f for p—arti-
cle propagators. This approximation focuses on the re-
peated scattering of two particles, or two holes, and ig-
nores, for example, density fluctuations in the particle-
hole channel.

The vertex part I in the particle-particle channel,
within the ladder approximation (see Fig. 1), is given by

I I, I, .(q, I co„)='VI, I, .+ g VI, % .(q, I'co, )I I, .(q, ice ),
P~p

(9)

where ice,=2vmi/P is a Bose Matsubara frequency. The
kernel, which represents the propagation of two ferrnions
in the medium, is given by

1 1
A'~ z (q, iso„)= ——g

II n sp+q/2+1

X .
l CO/ LPII 6 P+q/2+P

1 —f(e,+ /2 p) f(s — + /2 V)
—c,p+q/p 6 p+q/2+ 2p

We shall see below that, in fact, one needs a rather more
stringent inequality g

—= 1/ln(E, /2m~) &&1 for the validi-

ty of the low-density expansion.
The low-energy s-wave T matrix can be shown' to be

independent of the momenta k and k' for kR «1 and
O'R «1. Using the above results, we then obtain the T
matrix in manifestly separable form

4M 1
Tg I (co) 7p(co) (8)

mL ln~E, /co~+in8(co)

Is+ q/2, $

—Is+ q/2, g

k'+ q/2, g

—Is'+ q/2, g

(10)

The first approximation is valid in the small k and k re-
gime, and the second ignores terms of order (co/ez ). We
see that, at low energies, the T matrix has a logarithmic
singularity —the scattering amplitude vanishes
logarithmically —which is characteristic of two dimen-

FIG. 1. Ladder approximation for the vertex part I describ-
ing the scattering of two fermions in the medium. The fermions
have opposite spin, relative momentum 24k, and center-of-mass
momentum Aq.
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where the internal frequencies are fermionic,
ip„=(2n+1)mi/P .The retarded vertex part I (q, co} is
given, as usual, by the analytic continuation
I (q, co)—:I (q, co+i')

It is now convenient to eliminate the interaction poten-
tial in (9), and express it in terms of the two-body T ma-
trix of (8} for the reasons discussed before. We thus ob-
tain

I &&.(q, ico )=T&k.(q', co')+ g Tkz(q' co')8' (q ico.) —~'~ (q' co')11 y (q ico.) .
P~P

where

(12)
ro '(q', co')+g (q', co') g(q—, i co)

g (q, ico„)= gAzz(q, ico, )

k

(13)

and

y (q, co)= g JY„„(q,co) .
k

(14)

The result (12) for the vertex part is independent of the
primed variables on the right-hand side. We can thus
choose q'=0, and use the results for the two-body prob-
lem obtained earlier. The ultraviolet divergence of y,
arising from the integration in (13), is canceled by the
identical one from y in (14). The infrared divergence in

~0
' is canceled by a similar divergence in y as discussed

below.

C. Expansion parameter

The logarithm in ro (co ) in (12) is effectively cutoff on
the scale of 2sF which is the natural scale for two-particle
energies in the many-body system. Consequently, the
scattering amplitude on the Fermi surface, Re[ro(2sz)],
emerges as the small parameter in the problem, which we
define as

1g= «1 .
ln(E, /2EF }

(15)

Our solution (12), which is of the form
I = 1/(1/g —X), differs from that of the usual Galitskii"
analysis in 3D and its 2D extension by Bloom ' in that it
includes contributions to all orders in the scattering am-
plitude g. The Galitskii-Bloom results can be obtained by
expanding the above expression to second order in g, i.e.,
I =g+g X. While no new physics is obtained in the
low-density limit in 3D by going beyond O(g ), this is
not so in 2D as we shall see in the following sections.

It should be stressed that, for a general potential, (12)

Here we are free to choose the arguments (q, ico„) and
(q', co') independently, since the interaction V does not
depend on any of these variables.

In the low-energy regime relevant to the dilute limit, T
is independent of the momentum labels, from which it
follows that 1 is also separable. Consequently, for
kR (&1 and k'R &(1, (11) reduces to a scalar equation
and can be easily solved to give

I qq, (q, ico )=I (q, lco )

gH„bb„d= 1/1n(1/na ) «1 . (16)

III. BOUND STATES

Having obtained the vertex part in the particle-particle
channel in the previous section, we now turn to an
analysis of its singularities as a function of the energy
variable co, for fixed q. A branch cut in the vertex part
represents a continuum of two-particle scattering states,
while an isolated pole is associated with a collective
mode, or a bound state. Since we are dealing with a nor-
mal (i.e., nonsuperfluid) system, one would not expect a
bound state in the particle-particle channel. However,
we will find that, in two dimensions, such a mode does ex-
ist for q &2kF, and disperses down linearly to zero at

is exact only to second order. Beyond that it sums an
infinite class of diagrams but makes an approximation in
that (a) it ignores the higher (I )0) angular momentum
scattering channels, (b) it accounts for only two-body col-
lisions, and (c) it ignores any polarization of the medium.
The second point is important in that, even if one defines
the problem to have only s-wave interactions, the neglect
of three- and higher-body collisions makes a systematic
low-density expansion to higher orders difficult. ' In
spite of this caveat, we will see below that it is essential
for our purposes to go to all orders in g, since the bound
states we will find below have as essential singularity
exp( —1/g ) and thus cannot be obtained in any finite or-
der of perturbation theory.

We conclude this section with a discussion of the re-
gion of validity of the low-density expansion in 2D. To
understand the inequality (15), we return to the example
of the repulsive disk potential: V(r)= Voe(R —r) with
the parameter E, given by Eq. (6). The low-density re-

gime requires cF «cz =A /2mR . For weak repulsion

Vo « sz /1n(s~ /e~ ), we have g = Vo/E„, and the expan-
sion parameter is essentially the potential strength.

In the more interesting limit of a hard-core potential
( Vo ~ ~ ), the expansion parameter is g = 1 /ln( Ez /EF ).
The requirement 1/ln( 1/kFR ) « 1 is much more
stringent than merely kFR «1. Thus, as the potential
strength increases, the regime of densities in which the
results are valid become more restrictive.

Finally, one can make contact with the low-density
limit of the Hubbard model by replacing the "range" R
by the lattice spacing a, Vo by U, and c~ by t, the hop-
ping energy. Using eF=mA n/m=2vrtna, where n is
the density, we can obtain from (6) and (15) the expansion
parameter in 2D. For weak coupling this is just U/t,
however, for U/t &)1, the regime of validity is given by
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k . W 'll first show the existence of this pole pic-
torially (for all temperatures), and then obtain an ana yti-
cal form for its T=O dispersion.

Mathematically, the new bound state is analogous to
collective modes like zero sound or plasmons which are
isolated poles in the particle-hole channel vertex part
separated from the particle-hole continuum. However,
what makes the new poles unusual is that they are in t e
partic e-par ic e c1 - t 1 hannel. For attractive interactions one
is familiar with particle-particle channel poles, in t e
upper half plane, which signal the superconducting insta-
bility. In our case, the interactions are repulsive, t e
poles are on the real axis, and there is no associated insta-
bility. We will argue that the bound-state poles represent
well-defined excitations of the system.

A. Graphical analysis of the pole structure of I

In this subsection we will work in a finite L XL box, so
that all singularities of the vertex part of (12), inc u ing

ossible branch cuts, will appear as discrete poles. Wepossi e r
thus seek solutions z, for fixed q, qto the e uation
I '(q z)=0 where we have made the analytic continua-q,zj, w ere we
tion i co,~z.

I t
)The fact that the rhs of (12) is independent of (q, co

can be exploited by choosing convenient values for these

variables, such as q'=0 and co'= —2p&0. Using the T-
matrix of (8), with g defined in (15), we can rewrite (1 ) as

1 1 1 — 1—A„„(q, )—
CI (q, z)

(17)

where C=mC= L /4M which is related to the density of7

states througu h C =(1/4)L dn /de. We have also used
ue to the in-p=cz thus ignoring the shift in energies due to t e in-P

teraction which is higher order in g.
Using (10) and the identities —,

' —f(x ) = —,
' tanh(px /2 )

and

t anh(a +b )+tanh(a b)—

(18)

where

=2 tanh(2a )[1+cosh( 2b ) /cosh(2a ) ]

in the above equation, we find that the poles of I (q, z are
determined by

tanh[p(ek+ eq/z
—

p, /2]
I' k, q,2C „ek+e /~

—p —z/2

—1F(k,q, g) = [1+cosh(2P+Eke~/2cosg)/cosh[P(ek+eq/p p ]]

with P the angle between lt and q.
Consider first the noninteracting case: g ==0. The free

two-particle propagator clearly has poles at

z=~r...«q)=ek+q/2+E —k+q/2 2p ~

These solutions are simply products of two single-particle
plane waves with relative momentum 26k and center-of-
mass momentum q.fi . For any given q, the allowed values
of k become dense in an infinite system. One then obtains
a branch cut, representing the band of incoherent two-
particle scattering states. For eac q,h the bottom of the
two-particle band is at frequency co" given by

co = min (ek+q/p+E k~q/p 2pq=

=R q /4m —2p=2(E /z
—p) . (20)

Let us now see how interactions modify the two-
particle spectrum. eWe focus only on the real z axis an,
in the remainder of this subsection, use co =Re [z ]. e
look for the poles of the vertex part by graphical solu ion
of (18) as shown in Fig. 2. The solutions of (18) are given
by the intersection of the solid curve, representing the rhs
as a function o co, wif ' f with the horizontal dashed line at—1/g. The vertical dashed lines indicate the nonin-
teracting solutions.

in 18)For q )2k~, the argument of the tanh function in (

is always positive. A graphical solution (analogous to the
one shown in Fig. 2 for the case of q &2k~) shows that
the poles of the vertex part in the interacting system are
sandwiched between those of the noninteracting system
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FIG. 2. Poles of the vertex part I representing the two-
particle spectrum in a finite box are obtained by a graphical

f~. (18) for fixed q. For repulsive interactions —g
(shown as the horizontal dashed line) intersects the e t- an

f ~. (18) (the solid curves), plotted as a function o
co=Rez, at a series of closely spaced points within t e wo-

a ~ * These form a branch cut in the infinite

F ole1 1 In addition, for q &2k+, there is an isolated po e
at co&(q) below the bottom of the band co* in 2D.
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at re&„,(k, q). In the infinite volume limit these closely
spaced poles, with interlacing zeros, merge to form a
branch cut. For q )2kF, the singularity structure of the
vertex part is thus the same as for the noninteracting sys-
tem: a branch cut on the real axis for co ) co*)0.

For q & 2kF, the argument of the tanh can change sign
leading to the change in slope of the solid curve at ~=0
as shown in Fig. 2. (The curve plotted in this figure is
well known from superconductivity; the pairing instabili-
ty is related to the disappearance of two poles from the
real axis, for the case of an attractive interaction g (0,
which is evident from looking at positive values of the or-
dinate. ) Here we are interested in repulsive interactions
for which the lhs of (18) is negative, and thus we focus on
negative values of the ordinate. We immediately see a
new feature: in addition to the incoherent scattering
states there is a new solution co =cob(q), split

off

belo the
two-particle band [cob(q) (co ], which did not exist in the
noninteracting system. The two-particle spectrum is
shown in Fig. 3.

It might seem that a similar graphical analysis of the
three-dimensional case would also yield such a solution.
This is not true since the existence of this solution re-
quires a nonzero density of states near k =0, which is the
bottom of the band in the relative coordinate. Such a non-
vanishing density of states is available in two dimensions,
but not in three. The importance of two-dimensionality
will be further clarified by the analytical calculation in
the following subsection.

B. Dispersion

To determine the dispersion for the collective mode,
and to understand its effects upon various physical quan-
tities in later sections, we work at T=O. This allows us
to obtain analytical results in many cases. We will be in-
terested in the retarded vertex function I,which is ob-
tained from I ' by the usual analytic continuation:

1 '(q, co) = I '(q, co+i rI)

=C[ A (q, co)+iB(q, ro)], (21)

co —co /2p,

Qq =coq /2p

To make further progress, we need a simple expression
for A (q, co) for co (co~, i.e., below the bottom of the band.
Towards this end, we make the transformation
k~k+q/2 in the two terms with the Fermi functions
[see (10)] in the kernel of (17). Writing the contribution
of these two terms in dimensionless variables we get

where A(q, co} and B(q, ro) are the real and imaginary
parts of I ' with a factor of C=mL /4vrR taken out
for later convenience. Once the thermodynamic limit is
taken, the roots of (21) only give the isolated poles. Us-
ing (x+ir}) '~Px '+irr5(x), where P indicates the
principal value, we see that the continuum of scattering
states are now accounted for by the nonzero value of
B(q, co) within the two-particle band co ) co~.

The energy of the bound state is obtained by solving
A (q, cob(q ))=0. We expect from the preceding analysis
that cob(q ) (co~ and therefore B=—0, which can also be
seen by inspection of the retarded version of (17). For
convenience we scale all two-particle energies with 2p
and introduce the dimensionless variables

dx J f(p(x —1) )

0
3

1 1

a bcosP a—+b cosP
(23)

Cdb

with a=x+2u +1—co and b =2+x(u +1), where
x =a&/p. We next use the identity

I dP(a+b cosP) '=rr sgn(a )6(a b)/+a b— —
0

to perform the angular integration. Now

a b=x —2(co+1—)x+(2u +1—co) )0

FIG. 3. The particle-particle channel spectrum plotted as a
function of the center-of-mass momentum q. For each q there is
a continuum of states, co(q, k)=cQ+q/2+6 —Q+q/2 2p, starting
at the bottom of the two-particle band at co~, and labeled by in-
creasing values of the relative momentum 2k. In addition, for
each q & 2kF, there is an isolated state below the band at cob(q).
The separation ~co* —cob(q) ~

has been somewhat exaggerated for
clarity.

2f '~—
a b—
Ql —2(co+1)+(2u +1—co)2 —co= —21n

2(u ro)— (24)

for all x. The last inequality follows from the fact that
the roots x+=co+I+2+(ro —u }(u +1) of a bare—
complex since co(u . Thus, at T=O, we may rewrite
(23) as
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The remaining terms in (17) can easily be evaluated using

1 1

x+u —r) x+1
q

=ln
u co

q

(25)
1.5 I 1 I

(
1 I I I

)

I I I 1.5

Putting all this together, we then get the following ex-
pression which is valid below the bottom of the band:

A(q, co) =—+ln[u —co]
1

q

—2 in[a(u~+1)(u~ —co)+co /4 —c0/2] .

(26)

0.5

0
0

q/kF

1

3

0.5

, i'
0

To solve for A(q, co) =0, one simply expands the
square root in the small quantity u —co, which specifies
how far below the bottom of the band the isolated pole is.
The leading contribution expressed in terms of the origi-
nal variables is

A(q, co) =—+in[2@(co' —co)/(co') ],
g

(27)

which is valid for q &2kF, or equivalently co* (0. From
the root of this equation we find the collective mode fre-
quency

cob(q) =cuq exp( 1/g )(co ) /2p, q (2k~ (28)

There is no solution for q & 2kF, as expected from the
graphical analysis. The expression for cob(q) above has
an essential singularity in g.

The existence of this pole can be traced back to the
propagation of two holes associated with the second term
in (1 f+ )(1 f )——f+f—leading to the numerator in
(10). It is also clear that this state is collective in that it
requires a Fermi sea for its existence, i.e., it does not exist
for the two-body problem where kz =0.

The energy of a hole state is measured from the Fermi
surface downwards, so that its energy increases as one
goes farther below co=0. The bound state associated
with each isolated pole then has positiue excitation energy
~cob(q)~, even though the pole frequencies lie below the
bottom of the band of two-particle states associated with
each q. The energy dispersion of the bound state is then

co= icob(q) i, (29)

which vanishes linearly at q=2kF and attains a max-
imum at q =0. We thus obtain, from the particle-particle
channel spectrum of Fig. 3, the excitation spectra for two
holes and for two particles shown in Fig. 4. Our interpre-
tation of the bound state as a bound excitation of a pair
of holes will be further clarified when we consider its
effect on the thermodynamics of the system in Sec. V
below.

Even though the two-particle excitation spectrum is
not bounded above, a finite density implies that the two-
hole excitations do have an upper band edge for each
q & 2kF, and the poles we have found may be thought of
as antibound states of holes. A crucial property of the
2D gas which leads to these bound excitations is the non-
vanishing density of states at small momenta.

FIG. 4. (a) The spectrum of two-hole excitations including
the bound excitations, with dispersion co= ~cob(q) ~

for q (2kF,
which lie above the band. This spectrum is obtained simply by
taking the absolute value of the negative frequency spectrum in
Fig. 3. (b) Spectrum of two-particle excitations.

Specifically, it is density of states associated with the
scattering of fermions with zero relative momentum, i.e.,
~pl') and ~p$) which is responsible for this effect. The
low-lying bound hole excitations then involve momenta p
close to the Fermi surface.

In the discussion on the expansion parameter it was
pointed out that g in (28) is small for arbitrary weak or
strong repulsion, provided that the appropriate diluteness
criterion is met. It should, however, be noted that, even
though our results apply to the hard-disk limit, the low-
density restriction leads to a "weak-coupling expansion"
since one perturbs about plane-wave states. Also, in anal-
ogy with the thresholds for (attractive) Cooper pairing in
2D and 3D, one might ask whether similar bound hole
excitations might appear in 3D above some threshold
repulsion. Apart from the density-of-states considera-
tions, this inherently weak-coupling nature of the dilute-
gas expansion precludes any such states in 3D for the
low-density systems we consider.

IV. PHASE-SHIFT ANALYSIS

We investigate the effect of this bound state on various
physical quantities in order to develop some understand-
ing of its nature. In this section we look at the phase
shift 5(q, co), which characterizes two-particle scattering
in the dilute Fermi system, and is defined by

I (q, co) = ~I ~exp[i5(q, co)] . (30)

5(q, co) is the many-body analogue of the more familiar
phase shift which describes the scattering of particles off
a potential. This analogy is explored further in the Ap-
pendix, where we also establish a connection-
Levinson's theorem —between the phase shift at the bot-
tom of the band and the bound states.

There are at least two good reasons to study the phase
shift. First, we will show in the following section [see Eq.
(47)] that the thermodynamics of the interacting many-
body system is very simply related to 5(q, co). Second, it
has been suggested in the recent literature ' that a
nonzero Fermi-surface phase shift 5(2kF, O) signals a
breakdown of Fermi-liquid theory. We find that
5(2kb, co~0)=0, but further argue that this value can-
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not be used as a diagnostic for the Fermi-liquid theory
(see Sec. VI).

A. Further analysis of the vertex part

We have earlier obtained a simple expression for
A(q, co), namely, (26), which was valid below the bottom
of the band, where B=0. We now need to obtain more
general expressions for A(q, co) and B(q, co), which are
valid for all q and co. We begin with the retarded form of
(12) at zero temperature. We use the T matrix of (8) and
choose q'=0 and co'= —

~co
—

coq~ [instead of co'= —p
used in (17)]. Using the dimensionless variables intro-
duced in (22) and defining b,co= co co", w—e get

—= A +iB1

CI q, co

1 1=—+ln

h(x, u, P)+ dx
x —b, ro —i g x +

~

b co
~

(31)
with the occupation factor

h(y, z, (t ) = 1 —28[ —y
—z —2v'y(z+1)cosg] .

The angular integral is given by

sgn(q 2kF ) —for g (q) )x +u,
h(x, u~, P)= 1 F(x+—u, u ) for g+(q))x+u )g (q)

~dP
0 'IT

1 for x+u )g+(q),
(32)

where

g+(q)=2(uq+I+Qu +1)
and

(33)

=2F(y, uq ):——arccos
2+(y —u )(u +1)

(34)

P+(P) dy F(y, u, ) for q &2kF,
(P) (y co)

while

~+[~] dy F(y, u, ) for q)2k,
g ~ g (q) (y g)

and

We thus find that the real imaginary parts of (31) are given by

pro
—u, [

A(q, co)= —+ln
[g (q) —ro]'

(35)

(36)

sgn(q —2kF ) for co & g (q)

B(q,co)=n8(ro u)X —1 F(co;u ) for —
g (q)&co&(+(q)

1 for g+(q) &ro .

(37)

The integral in (35) has to be evaluated numerically for
most values of the center-of-mass momentum. However,
these expressions make explicit the locations of various
features in the phase shift, as will be apparent below, and
will also prove useful for making asymptotic expansions.

where n is the number of bound states below the two-
particle band. In the preceding sections, we found that
n =8(2k~ —q) and thus the phase shift is confined to
the range ( —m. , m. )]. The phase shift is then given by

B. Phase shifts
5(q, co) =arctan[ —B(q,co)/A (q, co)] (39)

5(q, coq ) =nqm, . (38)

We are now in a position to explicitly compute the
two-particle phase shift 5(q, co) for the many-body sys-
tem. From (30) we see that the phase shift is only defined
modulo 2~ and requires the additional prescription that
5~0 as ~~+Do. Levinson's theorem proved in the Ap-
pendix states that

subject to the above considerations.
The phase shift can now be found from the above equa-

tion with A and B given by (35) and (37). In brief, the re-
sults are as follows. The presence of the bound-state
pole, for q (2kF, leads to a discontinuous jump in the
phase shift from zero to m as co increases through the
bound-state energy cob(q). As co increases further, the
phase shift remains at m. until the bottom of the band co*.
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Within the band, 5 decreases monotonically from n to
zero at the Fermi surface co=0, and then takes on nega-
tive values for co & 0.

We now turn to a discussion of the numerical results
and the asymptotic forms. For all the figures in this sec-
tion, we have taken the value of E, =200p, or equivalent-

ly g=1/ln(100)=0. 217, for the parameter characteriz-
ing the interaction.

For q =0, one has g+(0)=g (0}=0,and the integral
in (35) may be evaluated analytically to obtain

A(O, co}+t8(0,co) =—+ln1 2p co+2@,

N

+in.8(to+2)M)sgn(co) . (40)

The phase shift 5(O, to) from this is plotted as a function
of co in Fig. 5. As described in the summary above, 5
jumps from 0 to n. as co increases through co& (0),
reflecting the existence of the bound state. In 2D, the ini-
tial decrease in 5 just above the bottom of the band fol-
lows the logarithmically singular form

5(q, co}~n. 1+ 1

1/g+lnt ~co
—u ~/[u —

g (q)] J

as co~u~+ for q%2kF (41)

as can be verified from (35) and (37).
After the sharp falloff, the phase shift decreases mono-

tonically within the band, with another singular feature
at the Fermi surface. At co=0 the phase shift goes
through zero logarithmically with

5(O, co)~ as co~0,
—m. sgn(co)

1/g + ln( 1/co }
(42)

~(q, cu)~ —+lulu~I/( (q} J —F(y, u~)

as ro~O (43)

which follows from (40}. As cu increases through the Fer-
mi surface it becomes negative and flattens off again. The
singularity in (42) is not special to 2D and comes from
the discontinuity in the occupation factors in (13) at the
Fermi surface which exists in all dimensions.

It is worth commenting on the sign of the phase shift.
In ordinary potential scattering theory 5&0 signifies a
repulsive interaction (see the Appendix). From this point
of view the sign change in 5 at the Fermi surface co=0
may appear puzzling. However, we will find that the pos-
itive phase shift below the Fermi surface will lead to an
increase in energy, characteristic of repulsive interac-
tions, since, in the free energy in (47), the Bose factor
g(co) tnultiplying the phase shift also changes sign at
co —0.

For 0 & q & 2kF, the phase shift has to be obtained nu-

merically. In Fig. 6 the solid curve represents the results
of such a calculation for q=0. 5kF. The structure near
the bottom of the band uk &2= —0.9375 is qualitatively

F
similar to the previous case. The new features, different
from the q =0 case, are (i) the shoulders at co=)+(q), and

(ii) the linear vanishing of the phase shift at the Fermi
surface. This can be seen analytically by using the
asymptotic forms valid for 0 & q & 2kF. We find

I I I I
J

I I I I

(

I I I I
[

I I I I I I I

)
I I I 1

f

I I I I

[
1 I I I

—Cdb Cdq

] I I I I I I I I I I I I I I I I I I I I

—1 —0.5 0 0.5
I

—1 —0.5 0
I I I I I I I

0.5

FIG. 5. Phase shift as a function of co for fixed q=O (i.e.,
u, = —l, and g =/+=0) from Eq. (40) for the parameter

g = 1/ln(100). As 5 increases through cob(q), it jumps from zero
to m., it remains at m. until the bottom of the band co~ after which
it drops oS' very rapidly, then flattens off and finally again de-
creases logarithmically through zero at the Fermi surface co=0.

FIG. 6. Phase shift as a function of co for fixed q =0.SkF (i.e.,
u~ =—0.9375, g =0.375, and g+ =0.625) calculated numeri-

cally for g =1/ln(100). The new features compared with those
shown in Fig. 5 are the cusps at g (q) and g+(q), and the linear
decrease of 5 through zero at the Fermi surface —indicated by
the dotted line.
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and

B(q co)~co/Qltc l(u +1) as co~0

on expanding the arccosine. It then follows that

5(0&q &2kF, co)~ gK—(q)co as co~0,

(44)

(45)

0.5—

I
I I I

I
I t t

—0.2—

—0.4—

I I
l

I I I
l

I I I

l
I I l

f
I l

where the coefficient K(q) can be calculated. This
asymptotic form is plotted as the dotted curve in Fig. 6.

For q =2kF, the bottom of the band as well as g (2kF)
coincides with the Fermi surface. There is then no
bound-state pole, the phase shift is zero for co 0, and
there is no logarithmic decrease just above the bottom of
the band as in (41). The numerically evaluated phase
shift is shown as the solid curve in Fig. 7. By integrating
(35) by parts, one can show that, for small frequencies,
A (2k„,co )~ 1/g + stnaller terms, while B(2kF, co )

~'(/ coe(co) to give the asymptotic phase shift

—05—

—0.6—I!i il & i & I I r & I I i I I II

0 0.2 0.4 0.6 O. B 1

10 ' (u —vq)/2p,

5(2k~, co)~—g+coe(co) as co~0 (46)
I I I I I

near the Fermi surface, which we plot as the dotted curve
in Fig. 7.

For the case of q &2k„, the phase shift is zero for all
frequencies below the bottom of the band u, which is
now positive. In Fig. 8, the solid line shows the numeri-
cally calculated phase shift for u =0.01, i.e., for
q =2&1.01kF. The phase shift again drops off logarith-
mically above coq as in (41) but now increases rapidly
above g (q) (which is now very close to co') leading to a
sharp spike. It then decreases again to a shoulder feature
at (+(q). The detailed form of the spike is shown in the

FIG. 8. Phase shift as a function of co for a value of q & kF,
corresponding to u~ =0.01, calculated numerically for
g=1/ln(100). Note the sharp spike just above the bottom of
the band which is seen more clearly in the inset.

0-5 I I

I

& I &

I

I

—0.5—

q=2kF

J

0 2 4 6

FIG. 7. Phase shift as a function of co for fixed q =2kF (i.e.,
u, =g =0 and g+ =4) calculated numerically for
g= 1/ln(100). For this special case, g (q) coincides with the
bottom of the band coq as well as the Fermi surface co=0. Here
the initial decrease in 6 follows the &co asymptotic form of Eq.
(46), indicated by the dotted line, rather than the more rapid
logarithmic decrease for the other cases.

FIG. 9. Schematic contour plot of the phase shift 6(q, co) in

the immediate vicinity of (q =2kF, co=0), i.e., for q and m such
that lq

—2kFI «2kF and Icol «2)Lc. The phase shift takes on
the value m in the shaded region between the bound-state energy

cob(q), denoted by a dashed curve, and the bottom of the two-

particle band coq, denoted by the solid curve. Everywhere else

below the bottom of the band, i.e., in the lower right region,
6=0. Within the two-particle band, curves of constant 6 are
shown by dotted lines, except for the curve g (q) which is also
such a contour but singled out. The phase shift also vanishes

along the line q (2kF and co =0.
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inset. This rather interesting feature appears not to affect
the low-energy physics.

We conclude this section with a contour plot of the
phase shift in the (q, co) plane; see Fig. 9. We note that
(2k~, O) is a singular point with the value of 5 depending
on how that point is approached. From a formal point of
view it is most useful to study the vertex part as a func-
tion of (complex) co, for fixed q. From the analogy with
potential scattering theory, discussed in the Appendix,
one again sees that the bottom of the band is best ap-
proached from within the band for fixed q. Thus, for
(2k+, 0) we take the limit co~0+ for fixed q =2k+. Thus,
we conclude that the Fermi-surface co=0 phase shift van-
ishes for all q.

V. THERMODYNAMICS

We now consider the thermodynamics of the dilute
Fermi gas. Our main aim is to see how the bound states
affect quantities like the ground-state energy and the
chemical potential, and thus to clarify our interpretation
of these states.

Within the ladder approximation, the thermodynamic
potential can be expressed in terms of the phase shift
throu. gh

Q(p) —Q0(p) = ——g f dcog(co)5(q, co) . (47)~
q

E(N ) E0(N ) =Q(po) Qc(pa)

+(p p—a) ic/2+0((p p—a) ), (49)

where lc= —c) Q/c)p ~„=dN/dp~„) 0 as required by

stability. Further, the third-order term is negligible in
the dilute limit since the change in the chemical potential
due to interactions is controlled by the small parameter g.
We thus conclude that the interactions lead to an in-
crease in the ground-state energy. This is important to
establish, since it shows that the bound-state poles which
appeared below the two-particle band are properly inter-
preted as excitations and do, in fact, lead to an increase in
the ground-state energy.

The contribution of the bound states to (47) comes
from co between the bound-state energy cob(q) and the
bottom of the two-particle band coq, while that from the
continuum of scattering states comes from co) co*. This
breakup into bound- and scattering state contributions is
a bit artificial since we have seen that the existence of the
bound state affects the continuum contribution. For in-
stance, the phase shift in the continuum must be m. at the
bottom of the band in the presence of the bound state.
We shall, nevertheless, use the terminology of bound-
state and continuum contributions.

At T=0, the bound-state contribution is given by

q 4mL
b, QI, (p)= g f dco=

2 p exp( —1/g) . (50)"b«'] 3M
q (2kF

The resulting change in the density is

Here and below, the subscript 0 denotes the nonin-
teracting system, and the Bose function
g(co)=1/[exp(Pco) —1]. The chemical potential of the
interacting gas is determined by calculating the function
N(p)= —BQ/c)p and solving for p for a given number
density of fermions NIL .

We note in passing that (47) is the analog of Fumi's
theorem for the thermodynamics of a system of nonin-
teracting electrons with impurities. See the Appendix for
further discussion of the analogy between the phase shift
describing two-body scattering in the dilute Fermi gas,
and that of potential scattering theory.

For simplicity, we confine ourselves to T=O. The Bose
factor g(co) = —1+8(co), so that the energy integration
in (47) runs over co(0 and the momentum sum over

q 2k~. Since the phase shift 5(q, co) )0 in this region,
as shown in the previous section, we see that
Q(p) —Q0(p) )0. We now use this fact to prove that the
ground-state energy of the system increases due to the in-
teractions.

The change in the ground-state energy, for a fixed den-
sity N/L, is

ANb(p) = —
z p exp( —1/g ),4mL

u) 4

R

(51)

E(N) —Eo(N) =Q(p) —Q0(p0)+(p —p0)N, (48)

where the chemical potential of the interacting system

p and that of the noninteracting system p0 satisfy
N=N(p) —= —(c)Q/c)p)(p) and N=N0(p0) =— (dQ0/—
c)p)(pa). We substitute N(p) for N in (48), and then ex-
pand the functions Q(p) and N(p) about p0. We thus ob-
tain

6

(v/E. )

10x10

FIG. 10. The number density 1V(p) plotted as a function of
the chemical potential p (where dn /dc. =m /A is the density of
states). The noninteracting gas result is the dotted straight line,
and the dilute-gas result calculated numerically within our for-
malism is the solid curve.
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where we recall from (15) the p dependence of g. Since,
for a given jM, ANb &0, for a fixed density of particles the
bound states lead to an increase in the chemical potential.

To determine the continuum contribution, the free en-
ergy (47) and other thermodynamic quantities requires
numerical integration using the phase shifts determined
in the previous section. In Fig. 10, we show the results of
our numerical calculation of the function N(p), which in-
cludes both the bound- and continuum state contribu-
tions. The solid curve is Nark /mL as a function of p in
units of the energy scale 0.001E„while the dotted line
gives the noninteracting solution NoM /mL =p. We
see that N(p, ) &No(p), or equivalently, for fixed
p) po, i.e., repulsive interactions lead to an increase of
the chemical potential. We note another feature of the
calculation that, for sun. ciently large p/E„we find the
unphysical result that the compressibility dN/dp&0.
This merely reflects the breakdown of the low-density ap-
proximation which, as we have discussed at the end of
Sec. II, is only valid for sufficiently large E, /p.

I"'(q, co) = ~—Rb(q)5[co co—b(q )]

8(co —
coq) .1 B(q, co)

C A (q, co)+B (q, co)
(55)

The 5-function term gives the bound-state pole in I with
a residue

—(~~ )'
R b( q) = exp( —1/g ),

2Cp

where C=mL /4vrA This .follows from expanding (27)
about cob(q ) to give

(56)

A (q, co) = [co cob(q)]—[ —2p exp(1/g )/(coq ) ] .

where f and g are the Fermi and Bose functions, respec-
tively, and we have made the transformation q =K+p.

As in the previous section, it is convenient to separate
the contributions from the bound state and the continu-
um of scattering states. This is easy to see in terms of the
spectral weight for the vertex part which can be written
as

VI. SELF ENERGY

We now turn to the question of how the bound states,
which are low-lying excitations for q near 2kF, affect the
single-particle self-energy. In particular, we want to see
if the quasiparticles are well defined or not.

The self-energy is obtained from the vertex part I by
joining two of the external legs, as shown in Fig. 11, and
is given by

X(p, ip„)= g —g G (kik ,)I „(p+k, ip„+ik„),
k ik„

(52)

where the free Green's function G (k,ik„)=(ik„
—Ek+ p,), and ip„and ik„are fermionic Matsubara fre-
quencies. Using the spectral representation

ds I"'(q, s)I qz=
S Z

(53)

we can evaluate the frequency sum in (52). Analytic con-
tinuation in the usual way then leads to the retarded self-
energy

X(p, co)

The second term in (55) comes from the continuum of
two-particle states above the bottom of the band co*.

First we consider the imaginary part of the retarded
self-energy X"(co) near the Fermi surface at T=O, which
is inversely proportional to the quasiparticle lifetime. At
the end of this section we discuss the real part and the
quasiparticle residue Z.

To second order in g, the continuum contribution,
denoted by a subscript c, to the scattering rate at T=0 is
well known to be

X,"(kF,~)-g'p(~/p)'ln( ~~~/p) (57)

as co~0 in two dimensions. The logarithmic correction
to the simple co result arises due to phase-space con-
siderations related to momentum conservation in 2D, as
has been pointed out in a golden-rule calculation by
Hodges, Smith, and Wilkins. ' Within a dilute-gas,
ladder approximation the above result was obtained by
Bloom. '

We now wish to see how this result is altered by the
bound states. Their contribution to the self-energy,
denoted by a subscript b, is obtained by retaining only the
5-function piece of I" in (54). Then, at T=O, using
f(x)=8( —x) andg(cob)= —1, since cob &0, we obtain

~
d, [f(s, ,—p, )+g (s)]I"'(q,s )

(54)
7T CO+ E,

q p JM S+ l'g

Rb(q)8(s, , p)—
Xb(p, co) = —g'

N+ s
& p cob(q )+1'g

(58)

where the sum is restricted to q & 2kF. Its imaginary part
is given by

X'b'(p, co)=mLJ Rb.(q)8(2kF —q)8[cob(q) —co]
(2n )

I

I + ~ ~ ~

Xi[co cob(q)+sq ~ p] —. —(59)

FIG. 11. Self-energy diagrams obtained by closing two of the
external lines in Fig. 2 with the same spin and momentum la-
bels.

We now have to evaluate this integral for p near kF
and ~co~ &&p. The step functions imply that the result is
nonzero only for co & cob(q) &0. Further, only values of q
just below 2kF contribute to the integral, so that we may
replace cob(q) by co* to obtain
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f dc,f dg(co') 8(co' —co)
2P 0 0

X 5( co —co'+ s + s~
—2+s~ s~cosP —p ) . (60)

We next introduce dimensionless variables P((1 and
~Q~ &&1 defined by ~p~=kF k—FP and co=co/p. With
x = co*/JM =s /2p —2, we can rewrite the above result as

—@exp( —1/g)8( —co)f dx fdPx 5[4+x+co 2P—4(—1+co/4 P)—c os/] .—l~l
(61)

The 5 function can be further simplified to give

5[cos(t —(1+col4+P/2)) l4= g 5(P —P;)/~4sin(()~,

where P; are the two solutions to cosg = 1 +co /4+ P /2.
These solutions exist only when ~co~ & 2P and are given by
sing+=++~co~ l2 P. T—he integrals can now be easily
done.

Setting P =0 on the Fermi surface, we obtain the
bound-state contribution to the self-energy

Xb'(kF, co)=—
3

exp( —I/g)@~co/JLc~ 8( —co), (62)

for small co. Since the bound state consists of two holes,
it affects X" only for co(0, i.e., external hole propaga-
tion. The essential singularity in g is characteristic of the
bound-state contribution. The singular energy depen-
dence arises from a combination of the limited phase
space available for scattering into these states, and of the
small spectral weight in the bound pole at low energies.

We see right away that the bound-state contribution is
subdominant to the continuum contribution (57) as
co~0. Thus, the quasiparticle lifetimes are sufficiently
long as one approaches the Fermi surface and these are
well-defined excitations of the system.

We conclude this section with a brief discussion of the
quasiparticle residue Z which is given by (1—ar /dco)
evaluated at p =kF, co=0. To compute this quantity for
the dilute gas, one can begin with the real part of the
self-energy (54) which involves rather more complicated
integrals than the analysis of the imaginary part. Since
we are only interested in whether Z is nonzero or not, we
confine ourselves to some qualitative remarks.

It is clear from (54) that the retarded self-energy has no
singularities in the upper half of the co plane, and thus its
real and imaginary parts are related via the Kramers-
Kronig relations. It is then easy to see that, for
2"-co lnco, Z is nonvanishing.

It may be of some interest to establish the connec-
tion ' between Z and the two-body phase shift 5(q, co).
Using 5= —tan '(B/A) and c)A/c)(g ')=1, we find
the identity B/(A +B2)=c)5/c)(g '). Using (55), this
allows us to relate the phase shift to the spectral weight
in (54).

We note that this relationship between Z and the two-
body phase shift in the dilute Fermi gas is not analogous
to what is found in the x-ray edge problem. In the
latter, the overlap matrix element between the ground
states of the noninteracting system in the presence and
absence of the impurity potential is proportional to
exp[ —[5(sF)/m] lnN]. Thus, a nonzero Fermi-surface

phase shift (for impurity scattering) leads to a vanishing
overlap in the thermodynamic limit. While there are
some analogous features to the impurity phase shift and
the two-particle shift, which we have discussed in the
previous section and in the Appendix, this analogy can-
not be apparently carried over to Z.

VII. COMMENTS AND IMPLICATIONS

As explained in the Introduction, the motivation for
undertaking this detailed analysis was the possibility of
the breakdown in Fermi-liquid theory in two dimensions
in view of the anomalous normal-state properties of the
high-temperature superconductors. In a regime of low
densities where a controlled calculation could be done,
we found a negative answer, i.e., that Fermi-liquid theory
is resilient.

In this section we comment on the implications of our
results and its connections with related work. We first
contrast our results with the 1D case, where the break-
down of Fermi-liquid theory is well known. We then
turn to a discussion of the normal state of 2D Fermi sys-
tems with attractive interactions, where bound states
were argued to lead to deviations in i e';.ii-liquid behav-
ior.

A. One dimension

It is well known that the 1D case is special in that any
interaction leads to a state which is qualitatively different
from a Fermi liquid. It has been suggested ' that the
same may be true of 2D.

Our conclusion is that if there is a violation of Fermi-
liquid theory in 2D, it is much more subtle than the 1D
case; dimensionality alone does not lead to a breakdown
of Fermi-liquid behavior in 2D, as it does in 1D.

While a variety of powerful tools have been brought to
bear upon the 1D Fermi gas, the only point we wish to
discuss here is how the breakdown of Fermi-liquid theory
manifests itself in a simple perturbative calculation of the
sort presented in this paper.

Consider a second-order perturbation theory calcula-
tion of the scattering rate; in terms of self-energy dia-
grams this corresponds to single particle-hole bubble
dressing the propagator, or equivalently the second-order
term of Fig. 11. It is easy to show that, in 1D,
X (kF,co)-co. Phase-space restrictions are responsible
for this rather different result from the ones obtained in
higher dimensions (co in 3D and co lnco in 2D). We
should emphasize that this answer is wrong. In 1D,
both the particle-particle (p-p) and the particle-hole (p-h)
channels have logarithms, and a consistent perturbative
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calculation requires summing the parquet diagrams.
However, even though second-order perturbation theory
gives the wrong answer in 1D, it does point to its own
inadequacy by showing that the quasiparticles are not
well defined.

In contrast, in 2D going to all orders in the p-p chan-
nel does not lead to a breakdown of the quasiparticle con-
cept. (The p-h channel does not have a logarithm in the
absence of nesting; this allowed us to focus on the p-p
channel alone and formulate a consistent low-density ex-
pansion. )

B. Attractive Fermi systems

We next turn to a completely different problem: a 2D
Fermi system with manifestly attractive interactions.
Randeria, Duan, and Shieh (RDS) showed that the ex-
istence of a bound state in the two-body problem is a
necessary and sufficient condition' ' for an s-wave pair-
ing instability in a 2D Fermi gas. Thus, the two-body
bound states must persist in the normal state; the key
question is whether they lead to deviations from Fermi-
liquid behavior.

Schmitt-Rink, Varma, and Ruckenstein (SVR) further
analyzed the attractive Fermi gas at finite temperatures
and showed that bound resonances occur for all center-
of-mass momenta q )2kF. There is a mathematical simi-
larity between these bound pairs of particles and the
bound hole pairs with q & 2kF discussed in this paper; the
change in the sign of the inequality being closely related
to the change in the sign of the coupling constant g from
attractive to repulsive. It should, however, be pointed
out that, for sufficiently large q, the SVR bound states are
simply those of the two-body problem, and thus persist as
kF ~0. In contrast, the bound states discussed in this pa-
per are collective in that they require kFWO.

The nature of the normal state of the attractive model
at intermediate coupling has not yet been satisfactorily
understood in our opinion. In addition to the problem of
doing an inherently finite-temperature calculation which
appears to require numerics, even the validity of the
ladder approximation, for the attractive case, has been
questioned. ' ' While the mere existence of bound
pairs cannot be used as evidence for the breakdown of
Fermi-liquid theory, as the calculations in this paper
clearly show, the case of attractive interactions differs in
an essential way from the one analyzed here.

As pointed out by RDS in the strong-coupling limit of
the problem, which can be addressed within the low-
density approximation, the normal state is a Bose liquid.
Below T, short coherence length superconductors with

kF$0 —l —a striking characteristic of the high-T,
superconductors —are in an intermediate regime' ' be-
tween the limit of large, overlapping Cooper pairs and
the opposite limit of tightly bound composite bosons.
Thus, the normal state of such a short coherence length
superconductor must, in some sense, be intermediate be-
tween the normal states of the two limits, one of which is
a Fermi liquid and the other a Bose liquid. The devia-
tions from Fermi-liquid behavior, presumably coming

from the existence of some bound pairs in the normal
state, have yet to be quantified.

VIII. SUMMARY AND CONCLUSIONS

In this paper we have studied a low-density expansion
for the repulsive Fermi gas in 2D. We found an unusual
nonperturbative bound-state pole in the particle-particle
channel for each center-of-mass momentum q & 2kF.
This bound state is characteristic of 2D with a nonzero
density of states at the bottom of the two-particle band
(in the relative coordinate). It is collective in nature in
the sense that it exists only for k~%0, and not in the
two-body problem. We have argued that it can be inter-
preted as an antibound state, or a bound excitation of two
holes.

At first sight one might expect such a state to signal
the breakdown of Fermi-liquid theory. However, we find
this not to be the case. These bound states do not lead to
an instability. Furthermore, by studying the imaginary
part of the self-energy and the quasiparticle residue, we
conclude that the quasiparticle excitations are well
defined even in the presence of these bound states. Else-
where' we show that the scattering amplitudes, or the
residual interactions between the quasiparticles, are also
nonsingular. A controlled calculation within the dilute
approximation thus leads to the conclusion that two-
dimensionality alone is not sufficient to lead to a break-
down of Fermi-liquid theory.

The effect of the unusual two-hole bound states found
in this paper on finite-temperature thermodynamic and
transport properties deserves further investigation. From
an experimental point of view the most interesting system
in which to study these effects would be films of He with
a low density of He atoms.
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APPENDIX

In this appendix we discuss some properties of the
phase shift 5(q, co), which describes two-particle scatter-
ing in the low-density Fermi gas. We emphasize the anal-

ogy of this phase shift with its more familiar counterpart
in ordinary potential scattering theory. We establish a
connection between the phase shift and bound states by
proving the analogue of Levinson's theorem (or the
Friedel sum rule).

1. Alternative definition of phase shifts

In the text of the paper we have defined the phase shift
as the argument of the retarded vertex part:
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I (ap+iri)=~I (co)~exp[i5(co)] . (A 1)

Here and below we take the center-of-mass momentum q
to have some fixed value and omit it below wherever it is
not essential, to simplify the notation.

In analogy with potential scattering theory, we can
write down an alternative definition of the phase shift in
terms of the two-particle excitation spectrum in a finite
box where all states are discrete. We thus define the
"scattering phase shift" by

along the real axis. For z away from the branch cut, the
logarithm in (A7) can be expanded to find

T

5„(co')
I (z)= Wexp —f,

q
7T z co

(A8)

Finally, we compute the retarded vertex part with the
usual analytic continuation z ~co+i g. We thus obtain

I"(co+i q )

(~ ~(0) )
5„(co,)= n. —

( .(CO+i N; )
(A2)

da)' 5sc(~= %exp —Pf, , exp[i 5„(co)],
GP 6) CO

(A9)

where the co', 's are the two-particle excitation energies of
the noninteracting system, and co,. 's those of the interact-
ing system within the ladder approximation. The minus
sign ensures that the phase shift is negative for repulsive
interactions.

To establish the equivalence of these two definitions,
consider the vertex part in the particle-particle channel
which is of the form

lI (z)=
1/g —X(z)

(A3)

1 =0.
~(~(0) )

(A5)

We study the analytic structure of I (z) in the complex z
plane for a system enclosed in a finite box.

I (z) has a series of discrete poles on the real z axis
whose locations co; are given by solutions of

g(co;)=1/g .

Thus, ro s are the two-particle excitation energies of the
interacting system within a ladder approximation. In ad-
dition, I (z) has a series of zeros on the real axis whose lo-
cations co'; ' are given by poles of y, namely,

where P denotes the principal part. Comparing (A9) and
(A 1), we immediately obtain the equivalence of the
scattering phase shift (A2) and the argument of the vertex
part (Al).

Z. Levinson's theorem

The analogy with potentia1 scattering theory suggests
that there must be a connection between the phase shift
at the bottom of the two-particle band (at e~, corre-
sponding to zero relative momentum for a given q), and
the number of bound states n peeled off the continuum.
We prove that

5(q, ~ )~=n, m, n =0, 1,2, . . . .

To prove this result, consider the integral

f dz lnI (q, z) .
1 d

2~i |. dz

(A 10)

(A 1 1)

The contour C is a circle of infinite radius in the complex
z plane which has been deformed to circumvent the
branch cut on the real axis from co* to infinity (see Fig.
12). The contribution from the circle at infinity vanishes
and we obtain

The co',. 's are clearly the two-particle excitation energies
of the noninteracting system. It is easy to see that the
poles and zeros of I form an alternating chain along the
real axis (see Fig. 2), which, in the infinite volume limit,
becomes a branch cut representing the continuum of
scattering states.

We can then write the vertex part (still working in a
finite box) as

(A6)

where 8'is a real constant. This form will now allow us
to use the standard tricks of the Fredholm theory of
scattering.

Using the scattering phase shift (A2), one can rewrite
(A6) as

I (z) = W exp g ln 1—5 (co; ) (co;+i co;

vr (z —co; )
(A7)

Taking the thermodynamic limit, one obtains a branch
cut from the bottom of the two-particle band coq to co

FIG. 12. The contour C used in the proof of Levinson's
theorem. In the complex m plane, the vertex part I has a
branch cut along the real axis starting at co~, for each q, and
also an isolated pole at co&(q }for q & 2kF.
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1
„dco [1nI (q, co+iri) —lnI (q, co —irl) j .

27Tl co d CO

(A12)

Since I'(q, co+i'd) = ~I ~exp(+i 5) above and below the
branch cut, we obtain

2= —6(q, coq )/~, (A13)

where we have used 5(q, co) =0 as co~ oo.

By deforming the contour in (Al 1) it is easy to see that

2 counts the number of zeros (located at two-particle ex-
citation energies in the noninteracting system) minus the
number of poles (located at two-particle excitation ener-
gies in the interacting system) of I (q, z) enclosed within
C. The only two-particle states outside the continuum
are bound states below the band, if they exist. (We are
assuming here that there is no instability which would
give rise to poles off the real axis. ) The contribution of
these isolated poles gives 2= n—~, which together with
(A13) leads to the result (A10).
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