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Influence of weak localization on the threshold of parametric excitation of magnons
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The influence of multiple elastic scat tering on the magnon parametric excitation in low-
dimensional magnets is studied. The multiple-scattering results in the strong backscattering of
magnons. This backscattering can interfere with the parametric excitation because both phenomena
involve pairs of magnons with opposite momenta. It is shown that the influence of the backscat-
tering on the threshold of parametric excitation in two-dimensional systems is proportional to the
logarithm of the size, even if it exceeds the inelastic mean free path. The possibilities of experimental
observation of the effect are discussed.

I. INTRODUCTION

It is well known that the backscattering of waves of
various nature on defects is anomalously strong in low-
dimensional media. The strong backscattering means
that the higher terms in the amplitude of the backscatter-
ing increase with the phase relaxation length ly. For a D-
dimensional system the additional term in the backscat-
tering amplitude is of order

the amplitude of the pumping field h exceeds a threshold
value ht-~ the quasiparticles number grows exponentially
until a nonlinear process fixes the growth. The threshold
amplitude depends critically on the inelastic relaxation
frequency. If there were no inelastic relaxation the quasi-
particles created by the pumping would never disappear,
so the threshold would be equal to zero. In general, for a
SD system with both inelastic and elastic scattering the
threshold value hing can be estimated as follows:

Here I'~ is the frequency of elastic scattering and l is the
mean free path due to the elastic scattering:

kg + k2: 0) Mk1 + ~kg: ~P (1.4)

It is clear that the quasiparticles have opposite momenta
kq ———kq and equal frequencies: ~k, = ~k, = uz/2. If

(1.2)

For a two-dimensional (2D) system this additional term
diverges logarithmically with ly ..

(I'k/krjk )in( p (1p/I) .

The phase relaxation length /y can be very large at low
temperature, so the additional terms in the backscatter-
ing amplitude are import, ant in spite of the small parame-
ter (I'k/vkk) in 1D and 2D systems. The strong backscat-
tering leads to a coupling of quasiparticles with opposite
momenta and suppresses the quasiparticle propagation.
The localization is called weak if the terms (1.1) or (1.3)
are relatively small.

There is another phenomenon in which pairs of quasi-
particles with opposite momenta are involved, that is
parametric excitation of quasiparticles by a homogeneous
ac field. This phenomenon has been found in vari-
ous media, and it has been studied in detail in mag-
nets, where magnons are excited. The homogeneous ac
field h exp( —icuzt), called pumping, can produce pairs of
quasiparticles with momenta k~ and k2 so that momen-
tum and energy conservation conditions are satisfied:

[h hl k~ [Pk(Tk + I k)]

where pp is the inelastic scattering frequency, V~ is the
coef5cient of coupling of the pumping field with the quasi-
particles, and a is a constant of order of 1.

It is obvious that both phenomena, localization and
parametric excitation, interfere in low-dimensional mag-
nets. In a homogeneous medium, without defects, the
pumping provides full correlation between amplitudes
and phases of parametrically excited magnons with oppo-
site momenta, so one can introduce new quasiparticles,
pairs, which are composed of the two initial magnons,
by analogy with BCS theory of superconductivity. In
particular, the threshold value is analogous to the crit-
ical temperature of a superconductor. However, there
is an essential difference in the influence of defects on
quasiparticles in a ferromagnet and in a superconduc-
tor. In a superconductor the amplitude of coupling is
isotropic and therefore there is almost no influence of
the scattering of quasiparticles on the critical tempera-
ture. In contrast, the amplitude of the magnon coupling
is highly anisotropic. This results in the strong depen-
dence of the threshold value on the frequency of scatter-
ing. In a medium with defects the correlation between
magnons with opposite momenta is weaker than in a ho-
mogeneous one, but it is also very important. A priori
it is not even clear what the character of the divergence
of the backscattering amplitude of the pairs in a low-
dimensional medium is. The purpose of this paper is to
study the influence of weak localization on the threshold
of magnon parametric excitation.

The most interesting low-dimensional medium where
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magnons can be parametrically excited is a thin ferrite
film. In some sense, such a film can be be considered a 2D
system. It is found that the infIuence of weak localization
on the threshold gives an additional logarithmic term to
the threshold value:

The parametric instability takes place if the increment pk
is positive at least for one pair of magnons (ak, a k). The
increment reaches its maximum for some wave vectors k
situated on the resonant surface:

ak + (pk + i~k) ak + i h exp (—iuz t) Vga& —0,

„+(pk —i~k)a k
—ihe px(iur&t) Vakk = 0.

The solution of this set of equations is

ak —exp( —ice„t/2) exp(pkt),

ak exp(iuzt/2) exp(pkt),

pk = —vk + [[hVk(' —(~k —~p/2)'j' '.
(1.8)

where A is the inelastic mean free path: A = vk jpk.
In contrast to electronic systems, the logarithmic term
grows with the size of a system I even if it exceeds the
inelastic mean free path A. The reason for such depen-
dence of the threshold on the size of a sample is that
there are two characteristic inelastic scattering times of
different natures in a system of parametrically excited
magnons. The first one is the usual inelastic scattering
time 7k ——y& due to inelastic scattering of magnons on
thermal magnons and other quasiparticles. The second
inelastic scattering time, eg ——b~&, is the correlation
time in the system of parametrically excited magnons.
The correlation frequency b~~ is due to scattering of
parametrically excited magnons on other parametrically
excited magnons. The inelastic scattering frequency yp
describes the damping of magnons in absence of para-
metric pumping. However, the parametric pumping cre-
ates new quasiparticles composed of magnons with op-
posite momenta, and the lifetime of these quasiparticles
is Ok, but not ~. The correlation frequency beak tends
to zero when the amplitude of the pumping field reaches
the threshold value because the number of parametrically
excited magnons tends to zero at that amplitude of the
pumping field. There are two characteristic lengths in
a system of parametrically excited magnons: the usual
inelastic mean free path A = vk~, and the correlation
length A = vkOk. The latter is the spatial scale to cut
oR' the divergent term caused by localization. The cor-
relation length of parametically excited magnons tends
to infinity at the threshold of parametric excitation be-
cause of exact compensation between magnon damping
and their creation by the parametric pumping; therefore
there is no inelastic cutoff at the threshold of parametric
excitation for the localization effect.

The fact that the correlation length tends to infinity at
the parametric excitation threshold can be easily under-
stood for a homogeneous system that does not contain de-

fects, i.e. , I'p ——0. The dynamical equations for the am-

plitudes of parametrically excited magnons ak and a
can be written in the linear approximation as foIlows:

The threshold value hth is the minimum value of the
pumping field amplitude h provided that the maximum
increment reaches the marginal value max pk ——0. Ac-
cording to (1.8) the amplitudes of parametrically excited

magnons, ag and a & are monochromatic in this case.
Therefore the correlation time is infinitely long at the
threshold, This statement remains correct for an inho-
mogeneous medium because the elastic scattering does
not change the frequency of magnons. The most unstable
modes are spatially inhomogeneous but monochromatic
in that case. ~

Probably, the threshold value ht, h is the most interest-
ing quantity to measure because the correlation length
A tends to infinity at the threshold; however it is finite
beyond the threshold. Therefore the influence of local-
ization is strongest at the threshold. The infiuence of the
localization could be significant in a dirty magnet at low

temperature and a small group velocity of magnons when
the term before the logarithm in (1.6) is large enough.

A consistent way to describe a nonequilibrium sys-
tem of parametrically excited quasiparticles scattered on
randomly positioned defects is to use a diagram tech-
nique. Such a technique was developed by Zakharov and
L'vov. They used Wyld's diagram technique originally
proposed to describe the problem of turbulence. The
technique is based on the dynamic equation for quasipar-
ticle amplitude and a procedure of averaging over thermal
fluctuations in a thermostat system interacting with the
nonequilibrium system.

The weak localization in an equilibrium system with-
out anomalous coupling can be described by means of
the summation of the series of the maximally crossed dia-
grams. For a nonequilibrium system one should take two
kinds of Green's functions, e.g. , retarded and distribu-
tive, into account. The former is the average response
of a quasiparticle amplitude to a small external force; the
latter is proportional to the pair-correlation function. For
a system with anomalous correlations, such as the sys-
tem of parametrically excited magnons, it is necessary to
introduce the anomalous Green's funct, ions in addition to
the normal ones. 2

In Sec. II the set of equations for the retarded Green's
functions and the pair-correlation functions in the maxi-
mally crossed diagram approximation is obtained. The
equation for the threshold amplitude as a condition for
existence of a nontrivial correlation function appears.
Section III is devoted to calculation of the threshold of
parametric excitation in a normally magnetized ferrite
film with defects. A possibility of experimental observa-
tion of the influence of the localization on the threshold of
magnon parametric excitation is discussed in Sec. IV. In
particular, it is shown that this influence can be observ-
able in dirty or porous ferrite films at low temperature
and small group velocity of magnons.
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II. WEAK LOCALIZATION
OF PARAMETRICALLY EXCITED MAGNONS

H: Hp+H&+H (2.1)

The dynamics of a system of parametrically excited
magnons can be described by the Hamiltonian H:

G++: (baq/bfq), G + = (bat/b fq),

G+- = (G-;+)' = (b, /bf,'),

= (G-,++) = (ba-,'/bf'q)

q = (k, ~), q = (—k, ~p —~).

(2.8)

Here Kp is the Hamiltonian of free magnons:

Ho = g.~kakakt

k
(2 2)

H~ = 1/2) [hexp( —i~„t)Vkaka k+ H.c.],
k

(2.3)

~k is the energy spectrum, ak and ak are the Bose oper-
ators of magnon creation and desruct, ion. Hz is the term
due to the pumping field:

Here the angular brackets indicate averaging over the
thermal fluctuations of the force fq, and the overbar indi-
cates averaging over the defect positions. The pumping
field forces the coupling of magnon amplitudes a& and a—;

therefore the anomalous Green's functions G+ and Gq
+

appear. One can represent the solution to the equation
(2.7) as a series in the powers of the scattering amplitude

gk, k and the pumping field:

aq = Gqf, + Gq pkfq + ) .Gqgk, ki rik k'fk', -~ + ' ' '
i

k/

gk, k' gk- k' akak'
k, k'

(2.4)

hVk is the coefBcient of coupling of quasiparticles with
opposite momenta. K„results in the elastic scattering
of magnons on defects: where G is the free magnon Green's function:

G = (ur —~k+ i')
and Pk is the pumping amplitude:

(2.9)

(2.10)

where gk ki is the amplitude of scattering on an isolated
defect and gk is the Fourier transform of the defect den-
sity, which is a random function.

In order to study the nonequilibrium behavior of a
magnon system one should introduce an interaction with
an external thermostat, a big system that is in a state
of the thermodynamic equilibrium. The Hamiltonian of
this interaction is

Pk ——h Vk (2.11)

Gq: Gq+ GqZqGq (2.12)

Direct averaging of the variational derivatives (2.8)
yields Dyson's equation for the matrix Green's function
G =G~(a P=+).

H' = ) (at fk+ ftak)
k

(2 5) t'G,' 0 & - &Z, 11,&

0'Go. I ~q =
I 11'~' I

The force fk is a result of the influence of all thermal
magnons with energies far from &u&/2, which do not inter-
act with the pumping field, phonons, and other quasipar-
ticles. According to the fluctuation-dissipation theorem
there is a dissipation with the rate yk in the magnon sys-
tem. The value yk is proportional to the pair correlation
function of the force fk

~k = (~/2) tanh(~k/T)((fkfk) + (fkfk)]. (2 6)

Here T is the thermostat temperature. Thus, the dynam-
ical equation for the magnon amplitude ak is

(d/dt + pk + i~k )ak + i h exp( —i~pt) Vk a

+ gk, k' gk-k'ak' = &fk ~ (2.7)

In order to describe statistical characteristics of the para-
metrically excited magnon system one should introduce
Green's functions. It is convenient to use Fourier trans-
forms. The retarded Green's functions, which are called
further Green's functions simply, are

fG++ G+- )
q

=
I G'-+G'--)~

(2.13)

Here E& is the mass operator matrix. It represents the
sum of the disconnected parts of Green's functions. The
set of Dyson's equations resembles that for a supercon-
ducting system. The reason for the similarity is in the
coupling of quasiparticles with opposite momenta in both
kinds of systems. In contrast to superconductivity, para-
metrically excited quasiparticles are bosons, there is no
parametric excitation of fermions. It should be noted
that the matrix retarded Green's function G& has noth-
ing in common with the matrix Green s function in the
Keldysh diagram technique for nonequilibrium systems.
The former is obtained from the normal and anomalous
retarded Green's functions, the latter is obtained from
the normal retarded and distributive Green's functions.
The solution to Eq. (2.12) is

G,++ = —(c+ ~, + il', )/A, ,

(2.14)
G;+ = 11",/~, ,
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(dan/2, &q: haik + ReEq —

(dan/2,

I'q ——ImEq,

=v +~ —2I ~ —c,
(2.15)

Eq —E +

Pk 0

(2.18)

(2.19)

In order to find the Green's functions it is necessary to ex-
press the mass operator matrix E~ in terms of the Green's
functions. It is convenient to introduce a diagrammatic
representation for the Green's functions and the ampli-
tude of scattering in order to obtain the mass operator
representation:

(2.16)

In a 3D system the first diagram in (2.18) is the largest
one. In low-dimensional systems the maximally crossed
diagrams are the greatest ones. The method of summa-
tion of the maximally crossed diagram series is based on
separation of the middle Green's funcion in a mass op-
erator diagram and on transformation of the maximally
crossed diagrams into ladder series. i 7 Consequently, the
mass operator can be represented as follows:

gk ki Ik kII = ~
E =E + ~ W Gkk'kk' k' & (2.20)

where I is the unit (2 x '2) matrix.
For small defect concentration one can neglect the

higher correlation function of the defect density and take
only the pair-correlation function into account:

where Wk 'k'k'k' is the sum of the ladder series:

(gki7k, ) = grab(k —k'). (2.17)

The mass operator for a system with defects can be drawn
as follows: Analytically Eq. (2.21) can be written as follows

(2.21)

Wi„'&,'z,'k4' ——cgk, k, gk, k, b(kx + ks —ks —kg)b~, »b~, ~,

) cgk, i„gi„i„Gi,' 'Gi, ' 'Wi, q q q b(ks+ ks —ks —k~).
ks ks a's n6

(2.22)

Here c is the defect concentration. It is assumed that the defects are positioned independently and randomly.
Consequently,

2

In the simplest case, when the defects are small compared with the wavelength and they scatter magnons isotropically
the amplitude of scattering gkk~ is a constant,

gkk =g, (2.24)

and the equations for the vertices flak'k'k'k' can be solved analytically. There are 16 equations for various sets
(ni, ng, n3 (14). They are grouped into four sets of four equations for each pair (as, nq). In general, the vertex

Wk, 'k,'„;k ' can be represented as folio~~:

Wi, 'i, 'i, i, ——ia ' '(Q&p, slnsn4)b(ki+k2 —ks —kq), (2.25)

where

Q = (ki + kq)/2, p = ki —k2, s = ks —k4.

I'or m ~(Q, p, sly, b) one can obtain from (2.22)

(2.26)

(Q, p, six, b) = clgl'b, bp~+ 2', clgl'G~+p, (,G~', ],ur '(gp'slurb)dp'. (2.27)

It is clear that for gi, i, i=const the vertex ia i depends only on the momentum Q but not on the momenta p and
s. The matrix elements

(4) = —
), clgl'Grv+p)2 g p(2

'p (2.28)
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can be found from the Green's functions (2.14). For a normally magnetized ferrite film the coefficient of coupling of
magnons V~ takes the form

Vi, ——V exp(2iyi, ), V = gpss j(2u&), (2.29)

where p~ is the polar angle of the wave vector k, g is the gyromagnetic ratio, p is the Bohr s magneton, and
cu = 4zgpM (M is the ferrite magnetization).

Thus, the nonzero matrix elements M~~~'(Q) are

M++++ = M---- = 1+glIIl', M-+-+ = M+-+- = 1 —g(r'+ ') M+--+ = M-++- = -glIIl'.

Here I',
~ is the frequency of elastic scattering

(2.30)

VO

(2z)~
clgl'S(~ —~„)d'Z, r = &

—1m', ~ = (r' —lIIl')'~', g = v' 4v'+ v' (2.31)

and v is the group velocity. The nonzero solutions of the system of linear equations (2.27) have the form

Ql++) = (

clgl'[I —&(I'+ &')j~' (Ql+-) = ~ '(Ql —+) =, 2((„,+,,)+4(,1,...
+ (Ql —+) = +(@I+—) =

I 2((F, +,,)+4(,F,,,
(2.32)

Substituting the solution (2.32) into the equation for
the mass operator (2.20) one can obtain the mass opera-
tor and consequently the Green's functions. The Green's
functions are found in Sec. III.

In order to obtain the threshold of parametric ex-
citation of magnons it is necessary to study the pair-
correlation functions:

Nq— (2.37)

4q ——

one can obtain the diagram series for the distributive
mass operator:

nq — aqaq ) aq — aqaq
t (2.33)

(2.38)

o—' nq)
(2.34)

Wyld's equations for the correlation functions can be
written in the matrix form:

The equations for the pair correlation functions can be
derived by averaging the products of series for aq and
aqt or aq (2.7) over the random force fq and the random
defect positions. Each term of the series for the normal
correlation function nq begins from Go and ends at Go*.
Each term for the anomalous correlation fnction oq be-
gins from G and ends at G-. It is convenient to introduce
the matrix of the pair-correlation functions:

The diagrams for the distributive mass operator 4q (2.38)
difFer from those for the mass operator Eq only by all
possible substitutions of one of the Green's functions in
each diagram by a pair-correlation function. The sum
of maximally crossed diagrams for the distributive mass
operator (2.38) consist of three groups of diagrams: (i)
the diagrams with the double line (pair-correlation func-
tion) in the middle of a diagram, (ii) the diagrams with
the double line in the left part of a diagram, and (iii)
the diagrams with the double line in the right part of a
diagram.

The sum of the first group of diagrams can be repre-
sented the same way as the sum for the mass operator
Zq.

Nq ——Gq4qt t, (2.35)

where Gt is the hermitian conjugate Green's function

matrix, and 4q is the distributive mass operator matrix.
It can be written as follows:

t'c, e, ~

q q)
(2.36)

where Cl'q and 4q are the sums of disconnected diagrams
contained in the normal and anomalous correlation func-
tions. Introducing a diagrammatic representation for the
matrix Nq,

@q
—

2 Uki, Ni, d k',(i)
2z. 2 (2.39)

where Ukk is the sum of a series of ladder diagrams that
can be drawn using the same ladder diagram series as
(2.21). The difference of the series for the vertex U in
the distributive mass operator from that for the mass
operator W consists in the substitution of the Green's
function matrix Gq in the lower line by Gt. The vertices
U&'&'k'&' can be obtained the same way as the vertices
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U„'P„'„' = u ' '(Qlasc14)b(k&+ kz —ks —k&),

(2.40)

where the nonzero matrix elements u ' '(Qlnso. 4) are

"(Ql++) = (Ql —-) =,
(2.41)

the Green's and pair-correlation functions.
Thus, the full system of equations to describe the in-

fluence of the localization on the parametric excitation
of magnons has been obtained. The solution of the equa-
tions (2.14), (2.20), and (2.32) yields the Green's function

6&. If the Green's functions are known, one can find the
vertices U ' '(Qlcrsn4) (2.40). Wyld's equation (2.35)
and the expressions for the distributive mass operator
(2.39) and (2.42), where

u +(Ql+ —) = u' (QI —+) =
1

C (~) + C (~) + C (3) (2.44)

u+ (Ql+ —) = U +(Ql —+) clgl'(I+(IHI')
1 —2t, llllz

(2.42)

C (2)— + +

The second group of diagrams for the distributive mass
operator 4& can be represented as follows:

represent the full set of equations for the pair-correlation
function N&.

III. THE THRESHOLD
OF PARAMETRIC

EXCITATION OF MAGNONS
IN A FERRITE FILM

(2.43)

Here the central Green's function connects the upper and
lower lines of the Green's functions. So two vertices, W
and U, appear. The first results in summation of the
diagrams with the Green's functions in both, the upper
and the lower, lines. The second is a result of summa-
tion of the maximally crossed diagrams with the Green's
functions in one line and the conjugate Green's functions
in another. The diagrams for the t, hird part of the dis-

tributive mass operator C& can be obtained from the
series (2.42) by the exchange of lower and upper lines of

I

The first step to calculate the parametric excitation
threshold is to find the normal and anomalous mass oper-
ators E and II. This yields the retarded Green's function
matrix G. In the case of the strong elastic scattering,
when the elastic scattering frequency I',

~
is greater than

the frequency of inelastic scattering p,

I'e) )& 7)

the effective pumping amplitude is of order

IIII - (vr.~)
'".

According to (2.32) one can obtain from (2.20):

vp 2 1 r
(2 )' 1+&IIII'" +"

1 —g(r'+ ~') ll, ~
2((r2 + ,2) + 4(2rg, 2

(3.2)

(3.4)

g( )
k

The term 4k is equal to zero because ak exp(2ip~). The terms 4& and 4k can be represented as follows:(~) ~ (2) (2)

+' ' = l~o/(2~)']' dQdk'(clgl')'» G-k+g ( G- +a[1 —&(r'+ ~')] '

The equation for the magnon distribution function Nk can also be obtained. In order to derive that equation in
a consistent form one has to express the distributive mass operators 4r, and 4'r, in terms of the retarded Green's
functions and pair-correlation functions. It was shown in the preceeding section that they can be represented as sums
of three parts of different structure. For the symmetric parts of the distributive mass operators, where graphs contain
the pair-correlation function in the center, one can obtain

(,) 1 (IIII
(2vr)~ 1 —((r2+ v~) 1 —2(llll2)

, 1+(IIII'
2(IHI20' „+q (3.5)

e„'"= [.,~(2~)']'

+(IIII'G'„&[1—2((r'+ ')+4('r' '] '},

"Qdk'(clgl ) L—k+c1G k+~nk.

x ([1 —g(r'+ ~')][1 —2g(r'+ ~') + 4('r'~']-'(I+ gllll')(I —2gllll')-'

(3.6)

(3.7)
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As far as parts 4k and 4 k are concerned, they are(3) (3)

represented by symmetric diagrams to that for 4k and

. Consequently,(2)

the equation yields

n = (r,ir2/vs)n. (3.i5)

C,(3) @(2)~ y(3) q, (2)
k k i k k (3.8)

A nontrivial solution of the equation exists if

(3.16)
Thus the full set of equations has been derived. In or-
der to find the influence of the weak localization on the
threshold it is necessary to obtain the threshold neglect-
ing the localization. This means that all the processes
of multiple scattering with small momentum diA'erence

Q should be neglected. Formally it can be done setting

( = 0. In this approximation one can obtain, from (3.2)—
(3 8):

This is the relation sought. The solution of the set of
equations for the threshold in a 2D medium, (3.9), (3.10),
and (3.16), in the case of strong elastic scattering (r,~ &&

p) is

II hl'I = llll = (vr ~)"'
(3.17)

r = &+r„r/~,
IIg ——h Vk,

27r 2

(3 9)
(3.10)

(3.11)

(3.12)

~=r., +&, r=r„+3~/2.
Substituting these relations (3.17) into vertices ('2.32)
and ('2.40) one can estimate the influence of the backscat-
tering. In the small Q limit, i.e. , for almost exact
backscattering, the denominators in the vertices are

The parametric magnon distribution function nk is

r'+ IIII'+ ~g

(~2 + ~2)2
(3.13)

Vp
k (3.14)

This equation was obtained by Zakharov and L'vov. 2 In
order to find the relation between the effective pumping
II and the elastic-scattering frequency one should make
the integration in Eq. (3.13). For the integral number of
parametric magnons n,

v'q'l
i —((r'+ ') =—

'2 (r, ) 4r~) )
'

v2Q2
1 —2((r +v )+4( I' v sr„r2,

(3.18)

(3.19)

The term independent of Q in the second expression
equals zero. This provides the logarithmic divergence of
the renormalized pumping II (3.3) and some terms in the
distributive mass operators. Only these most divergent
terms should be taken into account among the terms of
order of (r,~/kv). The equation for the pair-correlation
function can be written in this approximation as follows:

r'+ lIIl'+ '„f —T 4r, ) lIIl
ni, =, , clgl ni, dk' — 22Re (clgl ) n 'z

~ G'i, +qdQ (3.20)

( Q )'-h'r. ) = ill!'. (3.21)

The equation for the integral number of parametric mag-
nons n can be obtained from (3.20):

Here L is the characteristic size of a sample and Q is
the maximum value Q provided that t,he approximation
(3.19) is valid. Comparing (3.19) with the terms of order
of (vq/v)~ on can find that

( 4r„
n(q L)

xl 1—2rz," ln(Q I) (pr, ))sykv )

1 — " 1n(yr, L /v ) (pr, )).z.pkv
'

)
(3.24)

t'r„r' 2r„'
ln(Q L) = 0. (3.22)

lIIl = I', y — " In(Q L), ( 2r2,
z.kv

(3.23)

The solution of the equation for the threshold (3.22) is

The additional term in (3.24) is due to the influence of
weak localization. This term is essential at low temper-
ature, when I', i && p, and for magnons with small group
velocity V. It should be noted that the frequency of elas-
tic scattering r, ~ is inversely proportional to the group
velocity.

IV. CQNCLUSIQN

Finally, the threshold can be found from the relation be-
tween renormalized pumping II and the pumping field 6
(3 3):

Any ferrite film is, of course, three dimensional. In
a film of thickness d there are many two-dimensional
magnon modes with different transverse projections of
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the wave vector: z„= em/d, where n is a natural num-
ber. The gap of the second transverse mode is of the
order of

~q & ~z/2 & u2 (4.3)

is satisfied, only first mode magnons are involved in the
process of parametric excitation. This means that such
a thin film can be considered as a 2D system.

Usually, high-quality films are in use for experimen-
tal studies. To observe the effect of the localization a
dirty film in contrast is preferable. For a thin quality
film a characteristic value of 7/(kv) is of order of 10
For grained and porous ferrite samples the parametric
excitation threshold is 10—30 times higher than for ho-
mogeneous ones. This means that the elastic scatter-
ing frequency is 10 —10 greater than the damping p ac-

(4.1)

where ~~ is the gap of the first mode, ~« is the magnon
stiffness, and a is the lattice constant. If the frequency
of the second mode is higher than the frequency of para-
metrically excited magnons

(4.2)

then the parametric excitation of the second mode mag-
nons is forbidden because of the energy and momentum
conservation conditions (1.4). The second mode magnons
cannot be excited as a result of the elastic scattering,
either. Thus, if the condition

cording to the formula (1.5). Consequently, the term

&' In(Q~L) is of order of 0.03—0.3. So the influence of
the localization can be observable.

As far as quasi-one-dimensional and quasi- two-

dimensional ferromagnets that consist of well-separated
chains or layers of magnetic ions are concerned, they are
hardly treated as low-dimensional systems in the frame-
work of problems related to parametric excitation. The
reason is that the parametric excitation is caused by the
long-ranged magnetic dipole interaction. This interac-
tion makes the chains or layers of separated spins cou-

pled, and the magnon specrum is highly anisotropic but
three-dimensional in such magnets.

It should be noted that the localization effect is due
to time reversibility of the elastic scattering process.
Magnetic moment is a pseudovector: M( —t) = —M(t).
Therefore the influence of weak localization can be sup-
pressed by any scalar or vector field. In particular, the
localization must be sensitive to deformation. A rough
estimate of the cutoff scale for the wave vector Q is

Q;„/k ~V'u~, where u is the deformation.
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