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The kagome-lattice quantum Heisenberg antiferromagnet is studied by a large-N expansion based
upon groups with symplectic Sp(N) symmetry. Two distinct types of ground states are found. (i)
For large values of the "spin" the ground state has long-range magnetic order with the spins ordered
in a ~3 x ~3 structure with 9 sites per unit cell. Quantum fluctuations are explicitly shown to
select this structure from the large number of classically degenerate states. The only zero-energy
excitations about the magnetically ordered state are sho~n to be the physical, infinite-wavelength,
Goldstone spin waves; in contrast the naive semiclassical theory has zero-energy spin waves at all
wave vectors. (ii) For small values of the "spin, " the ordered moment disappears and we obtain a
quantum-disordered ground state with no broken symmetries. As in previous work on frustrated
square-lattice antiferromagnets, this state is argued to possess unconfined, spin-~, bosonic, spinon
excitations for all values of the underlying lattice spin. A similar, small-"spin" quantum-disordered
ground state with unconfined bosonic spinons is studied in the triangular-lattice quantum Heisenberg
antiferromagnet by extending earlier results. A large N, Sp(N) theory of the classical kagome
Heisenberg antiferromagnet at finite temperature is also presented: fluctuations of the ~3 x ~3
structure dominate, with a correlation length which diverges exponentially in the zero-temperature
limit. The significance of these results for experimental kagome-lattice systems is discussed.

I. INTRODUCTION

Recent years have seen a flurry of interest on the
properties of frustrated quantum Heisenberg antiferro-
magnets in two dimensions. The interest is moti-
vated partly by the search for quantum disordered ground
states and their possible relationship to high tempera-
ture superconductivity. Moreover, such ground states
are interesting in their own right, as they can display new
types of order and possess excitations with unusual quan-
tum numbers. The structure of the magnetically ordered
phases of such magnets (i.e. , phases in which the expecta-
tion of the single spin operators (S) is nonzero) can also
be nontrivial: in particular, the classical ground states of
many such magnets have "accidental" degeneracies which
are lifted by quantum fluctuations. The magnetic order-
ing is therefore induced by quantum fluctuationsrs ("or-
der from disorder" ).

The kagome-lattice quantum Heisenberg antiferromag-
net has remained a particularly perplexing, but also in-
teresting model. There are several reasons for this.

(i) The classical kagome Heisenberg antiferromagnet
has a macroscopic ground-state entropy. One source of
this entropy is the number of ways in which spins A, B,C
(Fig. 1) pointing to the vertices of an equilateral triangle
can be placed on the kagome lattice with no two nearest
neighbors pointing in the same direction. Furthermore,
the spins on every closed loop consisting only of, e.g. ,
B,C spins can be rotated freely about the axis defined
by the A spins with no change in the energy. It is ex-
pected that these degeneracies will be lifted by thermal

or quantum fluctuations. The semiclassical theory ex-
pands about a saddle point with this large degeneracy;
the nature of the expansion is therefore far from clear
and its structure remains to be unraveled.

(ii) The sites have a low coordination number of 4 and
the system is therefore an attractive candidate to display
a quantum disordered ground state for spin -'.

(iii) Two experimental realizations of the kagome anti-
ferromagnet have recently been proposed. These are the
second layer of He atoms on a graphite substrate
where the spin S = &, and the kagome nets of S =

2 Cr
moments in SrCrs Ga4+s Oig.

A recently developed large-N expansion of frustrated
quantum antiferromagnetss~ is particularly suited for
clarifying the physics of the kagome lattice antiferromag-
net. The main reasons for this are the following

(i) The ordering effects of quantum fluctuations are
included self-consistently in the large-N saddle point.
There are no accidental degeneracies in the mean-field

FIG. 1. The three spin directions A, B,C pointing toward
the vertices of an equilateral triangle.
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ni, ——2S for SU(2) . (1.2)

We will examine the Hamiltonian

HAF —— ) (g ~bt btp)(+~gab; b,'), (1.3)

where the sum over i, j extends over nearest neighbors
on the kagome lattice. The tensor J is the 2N x 2N
generalization of the s tensor of SU(2)=Sp(1):

theory of the magnetically ordered phases. A related
benefit is that fhe only zero modes in the 1/N Puctua-
tions about the magnetically ordered phases are the phys-
ical goldstone spin-eave modes whose energy vanishes

only in the long-wavelength limit. This should be con-
trasted with the semiclassical expansion which has exci-
tations with zero energy at all momenta; it is then
not clear, even in principle, of how a sensible semiclassical
expansion can be defined.

(ii) The antiferromagnet undergoes a zero temperature
phase transition at N = oo from a magnetically ordered
phase to a quantum disordered phase as the value of the
"spin" is varied. The "spin" appears as a parameter in
the N = oo mean-field theory. The structure and ex-
citations of the quantum disordered ground state, and
its relationship to the magnetically ordered phase can be
systematically studied.

We will now define the models studied and state the
main new results of this paper. Details will be presented
in the body of the paper. Readers not interested in how
the results were obtained should read this section and
then skip directly to Sec. VI, where we will compare our
theoretical results with those of others and discuss impli-
cations for experiments.

We introduce canonical Bose operators b; upon the
sites i of the kagome lattice, where the index o.

1, . . . , 2N transforms under the symplectic group Sp
(N).s 4 We will of course be interested finally in the group
SU(2) which is isomorphic to Sp(1). The constraint

bt b; =ng

is imposed on every site i of the lattice to fix the repre-
sentation of Sp(N) spin on every site. We have

familiar bilinear, nearest-neighbor, Heisenberg Hamilto-
nian plus constants. The large-N limit of HAF is taken
with3 4

A$
fixed .

N

For large values of K the system is magnetically ordered,
while the quantum disordered phases appear at small K.

An important property of the zero temperature, N =
oo mean-field theory is its behavior at large K. It has
been shown (Ref. 4 and Sec. II) that properties of the
single point N ~ oo at fixed z followed by ~ ~ oo, are
identical to the classical point which is ng ~ oo at fixed
N. However the region N ~ oo at fixed but large e
is quite diff'erent from the semiclassical region which is
ni, large and N fixed. One of the main points of this
paper is to demonstrate usefulness of the former region
in understanding ordering due to quantum Auctuations.

We are now ready to state the main new results of this
paper.

A. Quantum kagome antiferromagnet

The large-N kagome quantum Heisenberg antiferro-
magnet has two types of ground states.

f. Magnetically ordered ground state

This occurs for z & 0.53 at N = oo, with the ori-
entation of the spin-condensate shown in Fig. 2. The
spin arrangement forms a triangular lattice with a unit
cell of 9 sites. This state has been considered earlier in
Refs. 16 and 18 as the ground state of the semiclassi-
cal limit of the kagome lattice antiferromagnet with first
and second neighbor interactions; following them we will

refer to it as the ~3 x ~3 state. The "classical" limit

(z = oo) of this state has a huge degeneracy associated
with (i) rearrangement of the A, B,C spins among all the
ground states of the 3-state Potts antiferromagnet on the
kagome lattice and (ii) independent rotation of the two

spin species around any hexagon about the axis parallel
to the third spin species. In Sec. V we will explicitly cal-

(1.4)

For the special case of N = 1, it can be shown using
Eq. (1.1) that

(g b, b &)(g&pb, . b ). = —2S; . .S&.. + n&/2+ 6,&ni,

where S; = bJ 7.$b~/2, with v the Pauli matrices, are

the usual SU(2) spin operators. The HAF becomes the

FIG. 2. Spontaneous magnetization of the ground (~3 x
~3) state of the kagome-lattice quantum antiferromagnet.
There are 9 sites per unit cell. Suitably oriented spins can
be added to the center of every hexagon to yield the ground
state of the triangular lattice antiferromagnet. This state has
the link variables Qq = —Q2 (Sec. IV).
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culate the energy associated with these deformations of
the ground state at finite, but large a values: we find that
the energy is nonzero, positive, and of order N. Thus the
only remaining degeneracy of the y 3 x ~3 ground state
is that due to a single uniform global rotation.

We have also computed the staggered moment W in
the ground state as a function of e at N = oo; we find

0.53 t' 1 l
1 +

The first two terms are the complete result at N = oo,
and not an expansion in powers of I/e. All remaining
terms will involve subleading powers of 1/N. We empha-
size that this staggered moment does not include contri-
butions from quantum fiuctuations to the sectors associ-
ated with other states which are degenerate in the classi-
cal limit: quantum fiuctuations endow these states with
energy differences of order N and they can therefore be
neglected in the large-N limit. For finite N, tunneling be-
tween these classically degenerate states will presumably
lead to some reduction of the moment. For sufficiently
large N however, the moment is expected to remain finite
in the limit ~ -+ oo.

Another magnetically ordered state with an energy
close to, but higher than, the ~3 x ~3 state was found
and is shown in Fig. 3. The unit cell of the spins is the
same as that of the lattice: it is therefore referred to as
the k = 0 state. All the other spin configurations as-
sociated with the remaining ground states of the 3-state
Potts antiferromagnet have an energy intermediate be-
tween the y 3 x ~3 and the k = 0 states

8. Quuntum disordered ground state

For tc ( 0.53, the spin condensate disappears and
the Sp(N) symmetry is restored. The resulting state
also does not break any additional symmetries: parity,
time reversal, and lattice translational symmetries are
all preserved. It is therefore diferent from the quantum-
disordered ground states of models with collinear mag-
netically ordered states, »~7 which have spin-Peierls
order with a broken lattice translational symmetry. The
excitation spectrum has a gap. The low-lying excitations
are spin-z bosonic spinons which carry a unit charge of

FIG. 4. Momentum dependence of the energy, u(k) of
the lowest excited spinon state for the quantum-disordered
ground state (which has Qi ——-Q2) of the kagome-lattice
quantum antiferromagnet at z = 0.35. The energy is mea-
sured in units of J/2, and s is the nearest-neighbor spacing on
the kagome lattice. The minimum excitations are the spinons
at k = ki = (2s'/3a)(1, D) and k = kq ——(2x/3a)(-1, D) and
other points separated from k&, k2 by vectors of the reciprocal
lattice (here a is the nearest-neighbor spacing on the kagome
lattice).

an internal compact U(1) gauge force. We examine the
structure of the U(1) gauge theory and find, in a manner
similar to Refs. 3 and 4, that the condensation of charge-
2 Higgs scalars quenches the U(l) gauge force and the
spinons remain unconfined. These free spin-z spinons
occur for all values of the underlying spin nb Thus a.
system with integer "spin" nb/ 2= 1 can'possess spinor
excitations. The spectrum of the spinons is shown in

Fig. 4. With our particular gauge choice, the spinons
with minimum excitations are at k = ki —(2s/3a)(1, 0)
and k = kq ——(2w/3a)( —1, 0) and other points separated
from ki, kz by vectors of the reciprocal lattice (here a is
the nearest-neighbor spacing on the kagome lattice). The
nature of the spin correlations in the ground state can be
determined by examining the structure factor (the equal-
time spin-spin correlation function). The N = oo result
for the structure factor is shown in Fig. 5. The global
maxima of the structure factor are at six wave vectors
with magnitude 4n/(3a).

FIG. 3. Spontaneous magnetization of the k = 0 state of
the kagome-lattice quantum antiferromagnet at zero temper-
ature. Its energy is higher than the state in Fig. 2. This state
has the link variables Qi ——Q2 (Sec. IV).

FIG. 5. Zero-temperature structure factor, S(k) of the
quantum-disordered ground state (Qi = —Qq) of the ksgome=

lattice quantum antiferromagnet at z = 0.35 and W = oo.
The global maxima are at six wave vectors with magnitude
4ir/(3s). S(k) is computed from Eqs. (2.17) and (2.18).
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Following Refs. 3 and 4 we note that this quantum-
disordered ground state (and the quantum-disordered
ground states of frustrated antiferromagnets on the
square lattice with incommensurate spin correlations
found in Refs. 3 and 4) is an explicit counterexample
to Laughlin's "fractional quantization principal. "2~ This
principal asserts that the free spin-2 excitations of "spin-
fluid" states must obey fractional statistics. The present
quantum disordered state is evidently a spin fluid; it has
free spin-2 spinons which are bosons.

B. Quantum triangular antiferromagnet

034 t'1 )
Nlr, ~ gN) (1 8)

and

(b) a quantum-disordered ground state for K ( 0.34
which is very similar to the kagome lattice quantum-
disordered state: i.e. , it has massive, spin-2, unconfined,
bosonic spinons. The structure of this state clearly dis-
agrees with the Laughlin-Kalmeyer state on the tri-
angular lattice which was argued to possess semionic
spinons. As above, these results are also a counterex-
ample to Laughlin's fractional quantization principal.

C. Classical kagome antiferromagnet

Finally, the Sp(N) large-N approach was also used to
study thermal fluctuations in the clossi cat Heisenberg an-
tiferromagnet on a kagome lattice; details are presented
in the Appendix. Because this is a two-dimensional clas-
sical system with a non-Abelian continuous symmetry,
no long-range or quasi-long-range order can be present at
any nonzero temperature. However, we find that thermal
fluctuations select configurations which have short-range
order of the ~3 x ~3 structure (Fig. 2), in agreement
with the high-temperature expansion of Ref. 18. The
correlation length of the y 3 x ~3 structure diverges as
exp(c/T) as the temperature T —+ 0. We have also cal-
cuiated the structure factor of the classical antiferromag-
net in the large-N limit: the result is shown in Fig. 6.
Note that it is similar to the structure factor of quantum-
disordered ground state in Fig. 5 and has six peaks at
wave vectors with magnitude 4z./(3a). Recall that the
high-temperature expansion of this model had to include
terms of order 1/T before obtaining a qualitatively sim-
ilar momentum dependence in the structure factor; in
contrast, the momentum dependence is present in the
leading term of the symplectic large-N approach.

The outline of the rest of the paper is as follows. The
general structure of the Sp(N) large-N limit is reviewed

The present large-N method34 can also be applied to
the triangular-lattice quantum Heisenberg antiferromag-
net. A closely related mean-field theory has already been
studied. We will review and extend their results to ob-
tain the following.

(a) A magnetically ordered ground state with the usual
three-sublattice condensate polarization, which is stable
for K ) 0.34, and has a staggered moment

FIG. 6. Large-N result for the structure factor, S(k) of
the classical antiferromagnet on the kagome lattice at a tem-
perature T = 0.225J. The mean-field free-energy is min-
imized by link variables Qi = —Qz (see the Appendix).
The global maxima are at six wave vectors with magnitude
4ir/(3a). Notice that S(k) becomes negative at some values
of k; this is possible because the expression for the structure
factor [Eq. (2.18)] is positive definite only at N = 2.

in Sec. II. Readers not interested in technical details
may skip this section. The large-N theory is first ap-
plied to the triangular quantum lattice in Sec. III: this
allows us to display its general features without the ad-
ditional technical complications present in the kagome
lattice. The results are then extended to the kagome
lattice in Sec. IV: the magnetically ordered and quan-
tum disordered ground states discussed above are found.
The selection of the magnetically ordered ground state by
quantum fluctuations in the kagome lattice is studied in
greater detail in Sec. V. Finally the main results are reca-
pitulated and compared with previous theoretical investi-
gations in Sec. VI. Implications for the experiments
are also presented in Sec. VI. An appendix contains
results from the large-N theory of the thermal fluctu-
ations in the classical Heisenberg antiferromagnet on the
kagome lattice.

II. GENERAL FORMALISM

In this section we review the large-N expansion tech-
nique for an arbitrary quantum Heisenberg antiferromag-
net at zero temperature. Some of this has already been
presented in Ref. 4 and is repeated here for completeness.
We will consider a general Hamiltonian of the form

(2.1)

where the sum over i, j extends over the sites of an ar-
bitrary lattice. The constraint (1.1) is imposed on every
site of the lattice.

The large-N limit of HAp is taken with K fixed to an ar-
bitrary value. Depending upon the values of the J;z and
of z, the ground state of IIAI; may either break global
Sp(N) symmetry and possess magnetic long-range order
(LRO) or be Sp(N) invariant with only short-range or-
der (SRO) in the two-spin correlation function; the lat-
ter case does not exclude the possibility of other types
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lt'~Nz, i
(2.2)

We have introduced a natural double-index notation
n = (m, o) with m = 1, . . . , N and o =t', j, . The index
m = 2, . . . , N. The z~ field has been introduced to al-

of order associated with the breaking of lattice or time-
reversal symmetries. We will keep the discussion of the
large-N limit general by allowing for the possibility of
LRO. We begin by introducing the parametrization

low for a nonzero condensate (b~ ) = ~NSi z, ; we will

only consider models in which the condensate in the LRO
phase can be transformed by a uniform global Sp(N) ro-
tation into this form. %e will also not explicitly consider
the Quctuation of the rn = 1 component of b~ because
its contribution is much smaller than those from the re-
maining N —1 components for large N—see also the end
of Sec. II B. We insert (2.2) into IIAF, decouple the terms
quartic in b by Hubbard-Stratanovich fields Q;j ——Q&, ,

and enforce the constraints by the Largrange multipliers
A;. This yields

+ H.c.

(2.3)

The large-N limit is obtained by integrating over the
2(N —1) b fields. The resulting effective action, expressed
in terms of the Q;j, A;, and z~ fields, will have a prefac-
tor of N (and some terms of order 1 which are subdom-
inant) and is therefore well approximated by its saddle-
point value. The Q, A, z fields are expected to be time
independent at the saddle point and this is implicitly as-
sumed in the following. The functional integral over the
b requires knowledge of the eigenmodes of HMF. Let us
collect the terms in HMF dependent on the b and write
them in the compact form

I( v( 'll

&&„g)
(2 0)

with p = 1, . . . , N„which are related to 4' by the linear
transformation

(2.10)

MtDM =~, Mtr M = (2.11)

The F will satisfy the canonical commutation relations
(2.7), and also diagonalize IIMF provided

&MF = ) .@tDr. @.+ (2.4) where a is a diagonal matrix of the bosonic eigenenergies.
Equations (2.11) can be combined to yield

where the ellipses denote terms independent of the b, r DM=Mr~. (2.12)

(2.5)

the indices r, s run over the pair of site-spin indices (i, o'),
and D is a 2N, x 2N, (N, = number of sites in the
system) Hermitian matrix given by

In other words, the columns of M are the eigenvectors of
the non-Hermitian matrix r D and the diagonal elements
of r u are the corresponding eigenvalues. The special
form of D in Eq. (2.6) and the antisymmetry of Q;~ can
be used to show that the eigenvalues occur in pairs with
opposite signs (u&, —u&), where we choose u„& 0, and
that M has the form

(2 6) t'V-V 'rM=
I v p. (2.13)

where

(2.7)

We have also temporarily suppressed the index rn as all
the terms are diagonal in it. The @ operators satisfy the
commutation relations

where the U, V are N, x N, matrices. The u„are
clearly the spectrum of Bose-particlelike spinon excita-
tions above the ground state, and the U, V their wave
functions.

Finally, we insert the bosonic eigenmodes into IIMF
and obtain the ground-state energy, EMF

(I 0 i(~ )'j =
I o —1 (2.8) EMF a ~ 5 J&jIQijI

We now attempt diagonalization of HMF by performing
a suitable linear transformation on O'. We introduce the
2N, operators r

+) &(l~;I' —1 —~)+).~&(Q, a). (2.14)
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cl+MF

OA;
(2.15)

are always satisfied. It is instructive to examine the equa-
tions obtained by demanding stationarity of EMF with
respect to z;:

In the last term we have emphasized that the ~„depend
upon Q, A. Finding the ground state of HAF in the large-
N limit is now reduced to the problem of minimizing EMF
with respect to the independent variables Q;~, z,. with
the A; chosen such that the constraints

rule. The discrepancies of factors of 2 which plagued ear-
lier mean-field theories have therefore been removed.
Finally, we can use the expressions in Eqs. (2.9), (2.10),
and ('2. 13) for the bosonic eignmodes of HMF to obtain
the N ~ oo limit of the T = 0 structure factor in a
quantum disordered phase:

(2.20)
~ ~ ~

~

2

(2.16)

This equation has two possible solutions.
(i) z, = 0: this gives the SRO in the two-spin correla-

tion function.
(ii) z, g 0: these are the phases with magnetic LRO

and occur for large values of K. Comparing Eq. (2.16)
with Eqs. (2.6) and (2.12) we see that this condition is
equivalent to demanding that at least one of the ~„=
0. These are the Goldstone modes associated with the
Sp(N) symmetry breaking.

A. Structure factor

An important experimental characterization of any
ground state of HAF is its structure factor S(k). For
the group SU(2) this is given by the equal-time spin-spin
correlation function

S(k) = ) (S, S, )
e'" &" "&

5 ~ ~

72

(2.17)

t g 4N2 t~ t gP

(2.18)

It is easy to show that structure factor satisfies the sum
rule

For Sp(N), we must replace the right-hand side (rhs)
by one of the infinite number of Sp(N) invariants which
reduce to S; S& at N = 1. To choose among them impose
the following criteria.

(i) The invariant must reduce to exactly S; Sz at N = 1
with no additional constants;

(ii) it has no disconnected component, i.e. , its expecta-
tion value must vanish exactly for all N as ~r; —

r& ~

~ oo
in a quantum disordered phase —a disconnected piece can
arise from the i, j independent term in Eq. (1.5), nB/2,
if suitable factors of 1/N are not inserted in the general-
ization to arbitrary N; and

(iii) the sum rule on P& S(k) is satisfied exactly by the
leading order term as N ~ oo. A little experimentation
shows that there is indeed a unique invariant satisfying
these criteria:

EMF
(2.21)

where E, is of order K2, and Ey is of order ~ and lower-
order terms have been omitted. From Eq. (2.14) we find
that E, is given by the minimization of

~ -, J
g IQu I' J

g Qu@c= g ~

san'z' z' + H c.
'2 2t)j

+) A;()z, )
—K) .

t

The minimization of F, with respect to Q;& is straight-
forward and yields Q,z

——Q;. where

(2.22)

C4 O' CT

EQQ Zt Sj s

Inserting this into Eq. (2.22) we obtain

(2.23)

B. Lart e-e limit

We now examine the large r = ni, /N limit of HMF at
zero temperature. Note that this limit corresponds to
studying HAF in the limit N ~ oo with K fixed, followed
subsequently with the limit ~ ~ oo. It is quite distinct
from the classical limit which is ni, ~ oo with N fixed.
Nevertheless, as we will show below, the structure of the
system at the limit point of N ~ oo followed by K ~ oo
is identical to the classical system obtained by nt, ~ oo.
In particular, any ground-state degeneracies present in
the classical system will also appear in the K ~ oo of
HMF. However the semiclassical, i.e. , large n~, fixed N,
properties of HAF will be quite distinct from those at
N —+ oo, large e. An advantage of the latter limit is
that the properties of HAF in the limit N ~ oo, i.e. ,

HMF can be determined to all orders in 1/lc. In addi-
tion, order-by-disorder eKects can be treated directly in
the mean-field description of HMF. In contrast, many of
these effects only appear at some high order in I/ni, in
the semiclassical limit.

I et us now obtain an expansion of the properties of
HMF in inverse powers of z. It is easy to show that for
large z, Q;z A; z while z; ~ic. The leading term
in EMF/N is therefore of order K~. We therefore write

1 ). ~(~+2)
(2.19)

As expected, there are no 1/N corrections to the sum (2.24)
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It should now be obvious that the minimization of E,
with respect to z; and A; is completely equivalent to de-
termining the classical ground states of the Hamiltonian
II~F for SU(2); by substituting Eq. (1.5) in Eq. (2.1)
the dependent variables become vectors of length ~. Of
particular interest in this paper are the cases where the
classical solution has degeneracies in addition to those in-
duced by globally uniform SU(2) rotations. Let z; ' and
A, represent one such solution. Then it is not difIicult to
show that the first quantum correction, Ei, fo EMp' lil
Eq. (2.21) is

Ei ——) ~„(Q', A') —) (2.25)

where Q' is determined by inserting z; = z; ' in
Eq. (2.23). In other words, the first quantum correc-
tion is simply given by the sum of the eigenfrequencies of
bosons hopping via the Q;~ determined by the classical
solution. We will find that this correction is usually suf-
ficient to break the accidental classical degeneracies and
select a particular ground state —an example of ordering
induced by quantum fluctuations.

An objection might be raised that this ordering ap-
pears to be entirely due to the quantum fluctuations
of the N —1 transverse modes and is therefore absent
for Sp(N = 1). However we may include the fluctua-
tion contribution from the rn = 1 component by writing
b,
'~ = z~'+b,'; the resulting action will begin with terms

AV

quadraticinthebi asz; =z;', Q; =Q;, and A; =A;
is a stationary point. Integrating out the b~~ we find a
quantum correction to the energy which is identical in
form to Eq. (2.25) and thus leads to the same ordering
effects. Thus, carrying out the analysis in this subsection
directly at N = 1 would have led to the same result for
Ei. Of course, the inclusion of the fluctuations of the
bi while neglecting the fluctuations of the Q;z and A;,
can only be justified by appealing to the large-N limit
considered here.

FIG. 7. Configurations of the q;i on the triangular lattice
with nearest-neighbor spacing a. There is only one indepen-
dent link variable q, with the sign positive in the direction of
the arrow. The A; = A on all sites.

where the momentum k ranges over the first Brillouin
zone of the triangular lattice and

kp ——k e„ (3.2)

with the e& being vectors of length a pointing to the
vertices of an equilateral triangle:

ei ——a( zi, ~3/2),
e2 —a(2, —v 3/2),
es ——a(—1, 0) .

(3.3)

The ground-state energy is determined from Eq. (2.14)
to be

3J) ~(k)+ —A(1+ a) .
8 8

(3 4)

The next step was a numerical minimization of EMF with
respect to Q subject to the condition

pendent of i, j; the Q;z can be chosen real, with signs
as shown in Fig. 7. Vfe also have A; = A independent
of i The. eigenvalue equation (2.12) can be solved by a
Fourier transform and we obtain the spectrum

~(k) = [A —J Q (sinki+sinkz+ sinks) ]

(3.1)

III. TRIANGULAR-LATTICE QUANTUM
ANTIF ERROMAC NET

~EMF
A

(3.5)

This section begins by reviewing the results of Yoshioka
and Miyazaki, and Kol and Read on the triangular-
lattice quantum Heisenberg antiferromagnet using the
notation of Sec. II. We will then systematically inves-
tigate the structure of the fluctuations about the mean-
field theory. This will also serve as a useful warm-up
for the more complex problem of the kagome lattice an-
tiferromagnet. We will begin in Sec. IIIA by studying
first the quantum-disordered ground state which occurs
at small values of z. The large-~ ground state, which has
magnetic long-range order will be examined in Sec. III B.

A. Quantum-disordered ground state

In this phase we have z; = 0. Thus our problem is
reduced to determining the best configuration of the Q;i
and A; which minimize EMF on the triangular lattice.
From Ref. 11 we anticipate that all the )Q;z~ = Q inde-

TABLE I. Triangular-lat tice quantum antiferromagnet:
mean-field ground-state energies, EMF/(JNN, /2) as a func-
tion of a = rin/N. The state has magnetic long-range order
for x & 0.34

0.1
0.2
0.3
0.4
0.5
0.75
1.00
1.25
1.50

EMF/( 1N N. /2)
—0.113
—0.257
—0.435
—0.656
—0.921
—1.782
—2.924
—4.347
—6.051

A stable quantum disordered phase, with no broken sym-
metries, was found for z & 0.34 and its energy is shown
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questions will be the fate of the spin-& bosonic spinon
excitations that were found above. The main result will
be that these excitations remain unconfined for all values
of the underlying spin n~. A previous mechanism for the
appearance of spin-Peierls order~ is ineffective here.

As in previous analyses, s 4 27 2s it is necessary to study
the dynamics of the gauge-field fluctuations. These fields
are associated with the compact U(l), lattice gauge sym-
metry of the action. In particular all physical results are
invariant under the transformations

b; ~ b, exp(ip;), Q;~ ~ Q;; exp[i(p;+ p, )] .

(3 6)

FIG. 8. Momentum dependence of the energy, u(k) of
the lowest excited spinon state for the quantum-disordered
ground state of the triangular-lattice quantum antiferromag-
net at z = 0.25. The minimum excitations are the spinons
at k = ki ——(4ir/3a)(1, 0) and k = k2 ——(4s/3a)( —1, 0) aud
other points separated from k&, kz by vectors of the reciprocal
lattice.

as a function of z in Table I.
The mean-field excited states are given by the bosonic

eigenfrequencies u(k); these are shown in Fig. 8 at rc =
0.25. The minimum-energy excitations are the spinons
at k = ki ——(4qr/3a)(1, 0) and k = k2 —(4qr/3a)( —1, 0)
and other points separated from k1, k2 by vectors of the
reciprocal lattice generated by C i —(4qr/~3a)(0, 1) and
G2 ——(4s/i/3a)(~3/2, —z). We have also computed the
spin structure factor, S(k) using Eq. (2.20): the result is
shown Figs. 9 at z = 0.35. The maxima of S(k) occur at
six wave vectors with magnitude 4n'/(3a) (Fig. 9).

As lq is increased, the excitation energy u(k) vanishes
at some k values at a critical value of K. For larger values
of iq the system will have magnetic LRO; these states are
discussed below.

X. Electeations

We now examine the structure of the I/N quantum
fluctuations about the N = oo theory. One of the crucial

The p; is an arbitrary real lattice field generating the
U(1) gauge symmetry. For simplicity we have focused
on time-independent gauge transformations; time depen-
dence can be included and does not lead to any new
structure.

After integrating out the b quanta the resulting effec-
tive action will be expressed in terms of the deviations of
Q;z and A; from their mean-field values. The gauge fields
arise from the phases of the Q;z,

~s we will therefore ig-
nore other fluctuations and parametrize:

Q', '+, = Q', '+, e"p('Op) (3.7)

where p = 1, 2, 3, the vectors ep were defined in Eq. (3.3),
Q is the mean-field value, and Op is a real phase. The
effective action for the 0& must be invariant under

Op ep+ pq+ p+ „. (3.8)

Upon performing a Fourier transform, with the link vari-
ables O„places on the center of the links, the gauge in-
variance takes the form

O„(k) ~ O„(k) + 2p(k) cos(kp/2) . (3.9)

The momentum k takes values in the first Brillouin zone
of the triangular lattice. This invariance implies that the
effective action for the O„can only be a function of the
following gauge-invariant combinations:

Ipq 2 cos(kq/2)Op(k) 2 cos(kp/2)Oq(k) (3 10)

We now wish to take the continuum limit at points in
the Brillouin zone where the action involves only gradi-
ents of the Op fields and thus has the possibility of gapless
excitations. However it is not difFicult to see that only
two of the three values of cos(kp/2) can vanish at any
point of the Brillouin zone. One such point is the wave
vector

(3.11)

where

FIG. 9. Zero-temperature structure factor, S(k), of the
quantum-disordered ground state of the triangular lattice
quantum antiferromagnet. The result is obtained at N = oo,
with the "spin" e = 0.25. The global maxima are at six
wave vectors with magnitude 4s /(3a). S(k) is computed from
Eqs. (2.17) aud (2.18).

gal —+ 1 ga2 — + 1 Pa3 —0 ~ (3.12)

Taking the continuum limit with the fields varying with
momenta with close to g, we find that the Ipq depend
only upon gradients of 01 and 82. Under gauge trans-
formations near the momentum ga, the bosons 6; carry
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charges exp(ig, .r;). It can be verified that these charges
only take the values +1 on the lattice sites. VVe have
therefore imposed a certain "staggering" of the charge
assignments of the bosons which is quite analogous to
that in the square-lattice antiferromagnets. It is also
helpful to parametrize the 0& in the following suggestive
manner:

8q(r) = iA, q(r)e'z '
82(r) = —iA, g(r)e'z '
8 (r) = C (r)e'z ' (3.13)

It can be verified that the condition for the reality of
8z is equivalent to demanding that Aal, A, z, 4, be real.
We will now take the continuum limit with Aal, A, z, 4,
varying slowly on the scale of the lattice spacing. It is
then not diScult to show that the invariants Izq then
reduce to (after a Fourier transformation)

a magnetically ordered phase with collinear spins; the
magnetically ordered phase for the triangular lattice is
studied below and will be shown to have noncollinear
spin s.

B. Magnetically ordered ground state

As was noted in Sec. II, this phase occurs at larger
values of x and the bosonic eigenrnodes have at least one
zero eigenvalue. Moreover, the condensates z~ must be
linear combinations of the eigenvectors associated with
this zero mode. The condensate appears for z ) 0.34
and its energy is shown in Table I as a function of ~.
The structure of the condensate can be determined by
examining the zero eigenmodes of r3D. The zero eigen-
values of r D are at k = kq and k = kq ———kq. The
existence of these zero modes, or equivalently the sta-
tionarity condition (2.16), fixes

Iqq ——eq VA, q
—eq VA, q,

Isg ——eg V4 —2A, g, (3.14)
A = 3v3JQ/2. (3.16)

Isz = e2 VC'a 2Aaz

Thus the A, q, A, z are the components of the connection
of a gauge symmetry denoted U (1); the components are
taken along an "oblique" coordinate system defined by
the axes e~, e~. The field C, transforms as the phase of
a charge-2 Higgs field under U (1).

A very similar analysis can be carried out near the two
other points in the Brillouin zone where the other pairs
of values of cos(k&/2) vanish. These are the points

2~ &~3 il 2~ &-~3
~gg (2' 2)

' '
~gg 2 '

2

(3.i5)

which introduce the continuum symmetries Vb(1) and

U, (l), respectively. The O„now reduce in the continuum
limit to fields C b, Ab2, Abs, and A, q, @„A,s, respectively.
Thus in the continuum limit the lattice U(1) gauge sym-
metry has been replaced by a V, (1)x Ub(1) x U, (1) gauge
symmetry. The three gauge symmetries correspond to
the three different ways the triangular lattice can be dis-
torted into a rectangular lattice with diagonal bonds: the
phases on the horizontal and vertical bonds behave like
gauge connections while the phases on the diagonal bonds
become charge-2 Higgs fields. The system also possesses
spin-& Bose excitations which carry charges +1 of all
three symmetries.

The condensation of all of the Higgs fields is implicit,
and there are therefore no low-lying physical gauge ex-
citations. Following the reasoning of Refs. 3 and 4 we
conclude that the instantons are quenched and that
unit charges are expected to be unconfined; in particu-
lar the spin- ~ Bose quanta, which carry the U (1) charges
exp(ig .r;), and analogous Ub(l) and V, (1) charges, will
remain unconfined. The quenching of the instantons also
rules out a previous mechanism for the appearance of
spin-Peierls order. This can be viewed as another ex-
ample of the result of Refs. 3 and 4 that spin-Peierls or-
dering is necessarily induced only in models which have

fz&'t t'cg ic, & ( e'" '
~t)l =

l(icz c) )~ I ie ~a~ r)l (3.17)

The 2 x 2 matrix formed by the cq, cz is an SU(2) matrix
and performs global spin rotations. Up to such rotations,
the condensate is therefore given by the spinors on the
rhs of Eq. (3.17). Working out the spin orientations we
find that it is of the form of the familiar classical ground
state shown in Fig. 10.

The magnitude of the staggered moment ~ can be
computed by examining the difference between nb and
the value of (bJ b~) from quantum fluctuations; we find

1 1 . A &11
Nlr, z N z „u(k) LN)

(3.18)

The constraint (3.16) leads to a cancellation in the de-
pendence of the sum over k upon Q which is therefore
also independent of e. The sum over k is a pure number
and we find

Pf 0.34 (1 &
(3.19)

C A

FIG. 10. Spontaneous magnetization of the ground state
of the triangular lattice.

The condensate is an arbitrary linear combination of the
two zero eigenvectors of rsT: this introduces two com-

plex numbers cq, cq, with only the value of (cq( + (cq~

fixed by the saddle-point equations. The final result for
the condensate can be easily shown to be
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IV. KAGOME LATTICE
QUANTUM ANTIFERROMAGNET

In this section we will finally apply the formalism
developed in Sec. II to the nearest-neighbor quantum
Heisenberg antiferromagnet at T = 0 on the kagome lat-
tice. The procedure will be very similar to that of Sec. III.

A. Quantum-disordered phases

t b„-&(k) )
bm1(k)
b~1 (k)

(k) = bt ( k)
bt 1(—k)

t bt 1( k))—
(4.1)

Our experience with other latticess 4'i suggests that
configurations in which the Q;& and A; on every site are
equivalent, will include the global minimum of EMp. We
will therefore directly specialize to such states. Some of
our calculations in subsequent sections will involve much
larger unit cells, and will provide independent confirma-
tion of our assertion that allowing inequivalent configu-
rations at the sites does not lower the energy.

Simple considerations show that having chosen A; = A

independent of i, there are only two independent val-
ues of Q;&, which are labeled Qi, Qq in Fig. 11. The
kagome lattice with nearest-neighbor spacing a has three
sites, u, n, tu (Fig. 11), per unit cell of the triangular Bra-
vais lattice with spacing 2a. We may therefore introduce
Fourier-transformed Bose operators bt (k), bt (k), and
bt (k) where the momentum k ranges over the first Bril-
louin zone of the triangular lattice. We now introduce the
operator

The index rn = 1, . . . , N and will not be explicitly dis-
played any more. Its chief role is to provide a prefactor
N when the bosons are integrated out. The mean-field
Hamiltonian now takes the form

) 4 t(k) D(k) iI (k)
k

+-, (IQil'+ IQ21') —~(l+ ~),

where the 6 x 6 matrix D(k) has the form

(4.2)

t' ~11 P(k)&,
I, Pt(k) All

(4.3)

with X the 3 x 3 unit matrix and P given by

FIG. 11. Configurations of the Q;~ chosen on the kagome
lattice with nearest-neighbor spacing a. %'e allow for only
two independent link variables Qi, Qq, the links with single
arrows have Q;~ = Qi, while the links with double arrows
have Q;~ = Qq. The A; = A on all sites. Also shown are three
sites u, v, m which form the unit cell of the triangular Bravais
lattice with spacing 2a.

P(k) = — —Qie'"' —Qge '"' 0 Qie '"' + Qqe'"'

I, Qie '"' + Qqe'"' —Qie'"' —Q2e '"' 0 j
(4.4)

Pt(k)P(k)p„(k) = p„(k)p„(k), (4 5)

where p„, p = 1, 2, 3 are the eigenvalues and p„(k) the
eigenvectors, we find

~„(k) = [A —p„(k)]'~ (4.6)

Finally the ground-state energy can be determined to be

The k& were defined in Eqs. (3.2) and (3.3).
To determine the eigenmodes of HMF we need to diag-

onalize 7 D. For the special case where A; are indepen-
dent of i, the problem can be further simplified. It is not
diflicult to show that the eigenvalues [cu&(k), —cu„(k)] of
r D can be expressed in terms of the eigenvalues of Pt P.
In particular, with

~~ = ~ ).~~(k)+ 2(IQil'+IQ21')-&(I+~)
NN, N,

iP

(4 7)

We numerically minimized EMF with respect to the
complex numbers Qi and Q~ subject to the condition
(3.5). For values of a small enough to prevent magnetic
LRO (discussed below), two locally stable solutions were
found. In a suitable gauge Qi and Q~ could be made real
for both solutions, showing that time-reversal symmetry
remains unbroken in the quantum disordered phase. The
solutions were (a) Qi ——Q2 and (b) Qi = Q2. These
two states are physically distinct and cannot be trans-
formed into one another by gauge transformations. Their
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TABLE II. Kagome-lattice quantum antiferromagnet:
mean-field energies for the Qi —Q2 and Qi ———Q2 states
at T = 0 as a function of tc = n~/N T. abulated are the
values of EMF/(JNN, /2) The Qi ——Q2 state has magnetic
LRO for a & 0.50, while the Qi ———Qq state has magnetic
LRO for a & 0.53. The Qi ———Q2 state is always lower in
energy.

0.1
0.2
0.3
0.4
0.5
0.75
1.00
1.25
1.50

Qi = -Q2
—0.109 04
—0.2374
—0.3871
—0.560
—0.760
—1.388
—2.203
—3.205
—4.395

—0.108 98
—0.2370
—0.3860
—0.558
—0.757
—1.384
—2.198
—3.199
—4.389

FIG. 13. Zero-temperature structure factor, S(k), for the

Qi ——Qs state of the kagome-lattice quantum antiferromag-
net at z = 0.35. S(k) is computed from Eqs. (2.17) and (2.18),
and has local maxima at six wave vectors with magnitude

4n/(3a). Notice however the ridges going into, e.g. , (0, 2ir/a);
the true maxima in fact occur at (0, 2s'/a) and points related
to it by symmetry.

energies as a function of e are shown in Table II. Notice
that the first solution Qi ———Qs is always the lower in

energy for all values of ~, including those with long-range
magnetic order.

We also have available in u&(k) the excitation spec-
trum of these states. We show in Figs. 4 and 12 the mo-
mentum dependence of the energy of the lowest excited
spinon state at a = 0.35. Notice first that both states
have a finite energy gap at this value of ~. The mini-
mum energy excitations of the Qt ———Qs ground state
are the spinons at k = kq —(2s/Sa)(1, 0) and k = ks ——

(2s'/Sa)( —1,0) and other points separated from ki, k2
by vectors of the reciprocal lattice generated by G~ ——

(2s/~Sa)(0, 1) and C2 ——(2s/~Sa)(~3/2, —1/2). The
minimum excitations above the ground state Qi ——Q2 is
the spinon at k = 0 and other points separated from it by
vectors of the reciprocal lattice. The spin structure fac-
tor, S(k) of both states was computed using Eq. (2.20):
the results are shown in Figs. 5 and 13 for the quan-

turn disordered states at z = 0.35. The maxima of S(k)
for the Qt ———Q2 ground state occur at six wave vec-
tors with magnitude 4s/(Sa) (Fig. 5). The metastable
Qt ——Q2 state also has local maxima at 4s/(Sa). Notice
however the ridges in Fig. 13 going into, e.g. , (2s/a, 0);
the true maxima in fact occur at (2s'/a, 0) and points
related to it by symmetry. These ridges may therefore
serve as an experimentally distinguishing feature of the
two states. The ridges will probably by wiped out in a
powder average: it is therefore necessary to study single-
crystal samples. Further information on the nature of the
spin correlations in the two states will appear when we
discuss the associated phases with magnetic LRO below.

f. Electeations

The analysis of the 1/N fluctuations about the above
quantum disordered states closely follows parallels that
of Sec. IIIA I for the triangular lattice. There are ad-
ditional complications due to the presence of a larger
number of sites in the unit cell, but the essential features
will be shown to remain unchanged. Thus we will find
that the lattice U(1) gauge symmetry is replaced in the
continuum limit by a U, (1) x Uq(1) x U, (1) gauge sym-
metry; condensation of charge-2 Higgs fields will quench
the gauge forces and the spin-

&
spinon excitations will re-

main unconfined. Spin-Peierls order is also not expected
to appear.

Os w

FIG. 12. Momentum dependence of the energy, u(k) of
the lowest excited spinon state of the kagome-lattice quantum
antiferromagnet for the Qi ——Q2 state at a = 0.35. The mini-
mum excitation energy is the spinon at k = 0 and other points
separated from it by vectors of the reciprocal lattice generated
by Ci = (2s/~3a)(D, 1) and Cz = (2ir/~3a)(~3/2, —1/2).

FIG. 14. Labeling of the three sublattices u, v, m and the
six links of a unit cell of the kagome lattice for Sec. IV A 1.



12 388 SUBIR SACHDEV 45

Ol ~Ol

03 ~03

04 ~04
05~Os
8s 86

+ 2p, cos(kl/2) —2i(pk —p, ) sin(kl/2),
+ 2p, cos(kl /2) + 2i(pk —p, ) sin(kl/2),
+ 2p, cos(k2/2) —2i(p, —pk) sin(k2/2),

(4.10)

+ 2p~ cos(k2/2) + 2i(p, —pk) sin(k2/2),
+ 2Pk cos(ks/2) —2i(P —P, ) sin(ks/2),
+ 2pk cos(ks/2) + 2i(p —p, ) sin(ks/2) .

The unit cell of the kagome lattice is large enough that
the continuum limit can be taken at k = 0. We therefore
introduce the decompositions

Ol —~ + ~bi ~o1

03 ——Ca + A, 2 —Ab2 )

05 ——4b+ A,3 —A 3,

02 ——4, —Akl+ A, i,
84 —C, —A,2+ Ab2,

06 = C'b —A,3+ A,3 )

(4.11)

where all the fields on the rhs are assumed to be slowly
varying on the scale of the lattice spacing. From these
decompositions and the continuum limit of Eq. (4.10) we
obtain the fields associated with U, (1)

Aal ~ Aa1 el ' VPa ) Aa3 ~ Aa3 e3 VPa
4 ~4 —2p, (4.12a)

with Vk(1)

Ab2 ~ Ab2 —e2 - Vpb, Abl ~ Abl —el - Vpb,
4'b ~ 4b 2pb ) (4.12b)

The kagome lattice has three sites, and t,herefore six
links per unit cell. We number the links as shown in
Fig. 14, and leading to six phase variables Ol 6 associ-
ated with the phases of the Q,& [see Eq. (3.7)]. It is also
necessary to have three fields p„, p, , p which generate
gauge transformations. After a Fourier transform, the
efI'ective action for the 0& must be invariant under the
transformations (this is the analog of Eq. [3.9)]:

Q Q + —Iky/2 + p
eiki/2

O O + ik1/2 + —ik1/2

O ~ 8 + p e-akim/2 + p caky/2

(4 8)

8 ~ 8 + p c' '/ + p e '"'/'

Q5 ~ Q5 + p
e-ik, /2 + p

e~'k, /2

O ~ O + p
eikg/2 + p c

—ikg/2

A little experimentation shows that; the structure of these
equations becomes evident upon the following decompo-
sition of the field generating the gauge transformations

P~ =Pb+P~ —Pa, P. =P~+Pa Pb ) Par Pa+Pb Pc ~

(4.9)

The fields p„pb, p, will be shown below to generate the
U, (1), Uk(1), V, (1) gauge transformations in the contin-
uum limit. From Eq. (4.9) we therefore deduce that the
bosons on the u, v, m sublattices carry charges —1, +1,+1
under U, (1), +1, —1, +1 under Uk(1), and +1,+1,—1 un-
der U, (1). Inserting (4.9) in (4.8) we obtain

We have thus obtained connections and phases of charge-

2 Higgs fields for V~(1), U&(1), and U, (1). The dynamics
of the gauge fields must be controlled by an action which

is invariant under the above transformations.
The subsequent reasoning is identical to that at the

end of Sec. III A 1 and leads to the same conclusions. The
spinons are liberated by the condensation of the charge-

2 Higgs scalars and spin-Peierls order is not expected to
appear.

B. Magnetically ordered phases

We will consider the LRO phases associated with the
two SRO phases in turn.

f. Ql ———Q2

The condensate appears for z & 0.53. The energy of
this state is shown in Table II as a function of e. The
structure of the condensate can be determined by exam-
ining the zero eigenmodes of 7sD The ze.ro eigenvalues
of r D are at k = k~ and k = k2 ———ky, which were
defined in Sec. IVA. The existence of these zero modes
now fixes

(4.13)

Both eigenvalues are nondegenerate and the associated
eigenvectors are

42 —(—i, i, i, 1, —1, 1)e—
(4.14)

We take a condensate of the form cl4l + c24'2, where
only ~cl) + )c2[ will be determined by the saddle-point
conditions. Working out the orientation of the conden-
sate at every lattice site we find that it can be written in
the form

(
ieikg r )
e

& & ie'" ' &

/z~l ~ cl —ic2 \

—2C2 Cy

/'Z&1 t' cl ic2—
kz. )
/'z& l cl —lc2&
I Zt

P
—2C2 Cl

(4.15)

The 2 x 2 matrix formed by the cl, c2 is again an SU(2)
matrix and performs global spin rotations. Working out
the spin orientations we find that it is of the form shown
in Fig. 2. The spin arrangement forms a triangular lat-
tice with a i/3 x ~3 unit cell of 9 sites. Moreover, suit-
ably oriented spins can be added to the center of every
hexagon to yield the ground state of the antiferromagnet
on a triangular lattice of spacing a.

The magnitude of the staggered moment JH is com-
puted as in Sec. IIIB to be

and with U, (1)

A,3~A,3 —e3 Vp A 2 ~Ag2 e2 Vp. ,

4, ~4, —2p, . (4.12c)
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0.53 t' 1 l
gN)

(4.16)

The 1/N Huctuations of this state will involve consid-
eration of the Auctuations in Q;z, A;, and z; . Note that
because b bosons were integrated over, order-by-disorder
effects are already included in the saddle point. Thus
the propagators of the z~ will only carry zero energy
at k = 0 and there will be no modes which are zero
at all wave vectors (such modes occur in the semiclassi-
cal expansioni ). It is only in the limit ~ = oo that
the propagators become singular over the entire Brillouin
zone. We will explicitly demonstrate the nonsingular na-
ture of the z~ propagators by examining the energy as-
sociated with space-dependent deformations of the z~ in
Sec. V.

8. Qi ——Qz

t'zT 'i (cr —cz l
z) kcz c', )

(zT'i (c, —czar

E .) I'z '»
(z& l (cr —cz&

E
l)1=ii',. )

I' I l

E-~3) '

(—2)
0)

(4.18)

Up to global rotations the spin orientations are of the
form shown in Fig. 3, where A, B,C are spins pointing
toward the vertices of an equilateral triangle (Fig. 1).
The unit cell of the spin arrangement is the same as the
unit cell of the lattice and this is therefore a k = 0 state.

The magnitude of the staggered moment can be com-
puted as above to yield

0.50
N~ ~ N) (4.19)

The condensate appears for e & 0.50. The energy is
shown in Table II and is higher than that of the Qi ——

—Qz state. The zero eigenvalue of r D is at k = 0. The
condition (2.16) leads again to the restriction (4.13) on
the value of A. The zero mode is found to be doubly
degenerate. The two eigenvectors are

e, =(1,1, -2, ~s, -~s, o),
(4.17)

ez = (-~3, ~3, 0, 1, 1, -2) .

The condensate is therefore of the form cq@i + cd@2,
where only scil + lczlz will be determined by the saddle-
point equations. Working out the orientation of the con-
densate at every lattice site, we find that it can be written
in the form

space of degenerate ground states that appear in the clas-
sical limit. A complete self-consistent mean-field analy-
sis which does this would be computationally prohibitive.
However, substantial progress can be made in the large-
r limit discussed in Sec. II B; we shall find that physics
of ordering by quantum fluctuations becomes especially
clear in this limit. The basic procedure we shall follow is
this: choose any one of the classical ground states of the
kagome lattice and compute the first quantum correction
Ei [Eqs. (2.21) and (2.25)] to its energy. We shall provide
a convincing demonstration in this section that the quan-
turn fluctuations lift the degeneracy between the classical
ground states down to that associated with a single, uni-
form, global rotation of the spins. The true quantum
ground state on the kagorne lattice will continue to be
the Qi ———Qz state of Sec. IV and Fig. 2. All of the
analysis in this section refers implicitly to the kagome-
lattice quantum Heisenberg antiferromagnet at T = 0.

We shall study the lifting of the classical degeneracy in
twosteps. We will begin in Sec. VA by considering all the
classical ground states in which the spins are coplanar.
The spins will therefore be restricted to point in the three
directions A, B,C (Fig. 1), with no two nearest-neighbor
pairs having the same orientation. Quantum fluctuations
will select a particular arrangement of the spins. Then
in Sec. V B we will consider classical ground states with
noncoplanar spins; quantum fluctuations will raise their
energy over the coplanar states for the infinite lattice.

A. Coplanar spins

Restricting the spins to point in one of the three copla-
nar directions A, B,C (Fig. 1) still leaves the classical
kagome Heisenberg antiferromagnet with a finite ground-
state entropy. Any state in which no two nearest neigh-
bors have the same orientation is a classical ground state.
The number of such states increases exponentially with
the system size, and are in one-to-one correspondence
with the ground states of the 3-state Potts antiferromag-
net on the kagome lattice.

We will restrict our attention to the infinite-lattice
classical states which are periodic with the 27-site unit
cell shown in Fig. 15. A simple calculation shows that
there are a total of 120 distinct coplanar states which
have this periodicity. Three of these states are shown in
Fig. 15. The state in Fig. 15(a) was asserted to be the
ground state in Sec. IV B.

We have computed the first quantum correction, Ei
[Eq. (2.'21)] for all the 120 classical states described
above. Each classical spin orientation determines the
z;' up to a gauge transformation. We then determined

Q,'. , A; for each classical spin orientation from Eqs. (2.22)
and (2.23) and found

V. ORDERING BY QUANTUM FLUCTUATIONS Q;~ = kv3~/2, A; = 3~J/2. (5 1)

A limitation of the kagome lattice mean-field analysis
of Sec. IV is that the energy was minimized over a rather
limited set of variational parameters. The parameters
were certainly not general enough to explore the large

All of the information on the location of the A, B,C spins
is carried in the sign of the Q;&. The eigenenergies were
determined by solving Eq. (2.12), and Ei evaluated from
Eq. (2.25).
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—0.635 324
= &

—0.631406
Fig. 15(a)
Fig. 15(b)
Fig. 15(c).

The values of E~ for the states in Fig. 15 were

(5.2)

Quantum fluctuations have therefore been shown to in-
duce order among the manifold of ground states of the
classical 3-state Potts antiferromagnet. The states se-
lected have the ordering of Fig. 2 with a ~3 x ~3 unit
cell of 9 sites.

The state in Fig. 15(a), and 5 others related to it by
lattice symmetries, were found to have the lowest energy.
The values of E~ of all other 115 states were higher, with
the highest energy being carried by the state in Fig. 15(b)
and its 5 symmetry-related partners.

C B A C B A C

(a)

B C

B. Noncoplanar spins

Consider the planar state selected in Sec. V A. If we
allow for noncoplanar spins, this state (and all other clas-
sical states) has some remarkable additional classical de-
generacies. For example, the B and C~ spins around a
given hexagon can be rotated about the axis defined by
the A spin with no change in the classical energy —the
angle of rotation can be different on each hexagon of B
and C spins. We will show in this subsection that this de-
generacy is reduced to a single global rotation once the
finite-z quantum fluctuations have been included. We
will compute the quantum correction Eq for a large num-
ber of noncoplanar spin arrangements. The method of
the calculation is identical to that described in Sec. V A.
The end result will be that quantum fluctuations in the
infinite kagome lattice endow coplanar states with a lower
energy.

Let us orient all the A spins in Fig. 2 or Fig. 15(a) along
the z axis. The B,C spins around each hexagon define a
plane which is perpendicular to the zy plane. Let P be
the angle between this plane and the zz plane. Clearly,
the angle P can take an arbitrary value in each hexagon
of 8, C spins in the classical limit. We have therefore

S~ —K(0, 0, 1),

S~ = K cosP, sinP, ——
2)

& as ~s .Sc ——tc — cos P, — sin p, ——
2 2 2)

(5 3)

C A C B C B C

The associated values of the spinor condensates z' are

fl& 1/2
0

(5.4)
1/2

-(/&/&) ~")
The values of the link variables Q,' can now be deter-
mined from Eq. (2.23). We find

Q;, =+(v3~/2)e '~ (5.5)

FIG. 15. Coplanar spin arrangements which are periodic
with the shown 27-site unit cells. There are 120 such ar-
rangements of which 3 are shown. The configuration in (a)
is found to have the lowest quantum-corrected energy, while
that in (b) has the highest.

All of the information on the orientation of the B,C
hexagons is carried in the phases of the Q,'. . The "clas-
sical" energy F, = —P, ~Q;.

~
is independent of the P

values and therefore of the orientation of the hexagons.
Finally, the Lagrange multipliers A,. can be determined
by solving Eq. (2.16). The answers again turn out to
be independent of the P values. They depend only upon
whether i is in the bulk or on the boundary of the various
clusters that we consider below:
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A

A

FIG. 16. The 12-site hexagram. The A spins point along
the z axis. The plane defined by the B,C spins is perpendic-
ular to the xy plane and makes an angle P with the 2:z plane.

FIG. 18. Three of the hexagrams of Fig. 16 forming a 33-
site cluster. The quantum corrections minimize the energy at
Pi ——2r/3 and Pg = 4s/3. The spin condensates are therefore
not coplanar but truly three dimensional.

3&J/2 for i in the bulk
3aJ/4 for i on the boundary. (5.6) 8. Three hexagrams

We now study the manner in which the classical local
degeneracy is lifted by the first quantum correction Ei
[Eqs. (2.21) and (2.25)]. We will consider various finite
and infinite clusters made out of the basic unit shown in
Fig. 16: 12 sites arranged in a "hexagram"; the boundary
spins are in the A direction, while the spins around the
hexagon are in the 8 and C directions. There will be
an angle P associated with the B,C hexagon in every
hexagram. Clearly the energy of a single hexagram is
independent of its P, as changes in P are global rotations
of spins on the cluster.

We now consider various combinations of the hexa-
grams.

Two hezagrams

These form a 23-site cluster (Fig. 17), with the two hex-
agrams sharing a common A site. We can use global spin
rotation invariance to choose P = 0 on one hexagram.
Let P = Pi on the second hexagram. We now evaluate
E~ by determining the boson spectrum and then using
Eq. (2.25); we find that Ei is independent of Pi. Evi-
dently the single common site does not lead to quantum
interference between motion of the bosons on the two
hexagrams. We have verified that the energy remains
independent of Pi to all orders in I/a.

This 33-site cluster is shown in Fig. 18. The energy Ey
is now dependent on Pi and P2. It is a minimum at Pi ——

2s'/3 and P2 ——4s'/3. The optimum spin arrangement of
this finite cluster is therefore truly noncoplanar. No part
of the infinite lattice ground state in Sec. IV B has such
a structure.

8. Seven hezagrams

The 72-site cluster in Fig. 19 is a still larger chunk of
the infinite kagome lattice. The energy Ei is dependent
on all the P's and has its minimum at Pi ——P2 ——Ps ——

/4 ——Ps ——Ps ——0. This arrangement is planar and
compatible with the infinite-lattice i/3 x i/3 ground state.

Three hezagrams: periodic boundary conditions

We consider next the 27-site cluster obtained by iden-
tifying opposite edges of the rhombus in Fig. 20. All
the sites are equivalent and the cluster retains all the ro-
tational symmetries of the infinite kagome lattice. The

FIG. 17. Two of the hexagrams of Fig. 16 forming a 23-
site cluster. The full quantum energy is found to be indepen-
dent of Pi.

FIG. 19. Seven of the hexagrams of Fig. 16 forming a 72-
site cluster. The quantum corrections minimize the energy at

$3 Ijl4 $5 ljls = 0. The spin condensates are
therefore coplanar.
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o

FIG. 20. Identifying the opposite edges of this rhombus
yields a 27-site cluster with three hexagrams and the full rota-
tional symmetry of the kagome lattice; the orientation of the
spins around each hexagram is as in Fig. 16. The minimum
energy is found at Pi ——2ir/3 and Pq = 4ir/3. We may also
treat this cluster as the 27-site unit cell of an infinite lattice.
In this case the quantum corrections lower the energy most
at Pi = itg = 0.

oo

FIG. 22. As in Fig. 21 but for the infinite kagome lattice
with the 27-site rhombus in Fig. 20 treated as a unit cell
(Sec. VB5). We find now Ei,„/(N, Jr/2) = —0.635324 at
0i =42 =o

minimum energy state is found to be the same as that
of the three-hexagram configuration with open boundary
conditions (Fig. 18): Pi —2n/3 and P2 —4x/3. The val-
ues of Ei/JK as a function of Pi, Pq are shown in Fig. 21.

5. Three hezag-ram unit cell of infinite lattice

Finally, we use the 27-site configuration of Fig. 20 as
a unit cell of the infinite kagome lattice. The z con-
densates are obtained by repeating the arrangement in
Fig. 20 periodically: the final configuration forms a tri-
angular lattice with a 27-site unit cell. The bosons are
free to move on this infinite lattice and their spectrum
differs from that in the cluster in Sec. V B4. We find that
Ei now has a minimum at Pi —0, Ps —0. The values
of Et/Jir, as a function of Pt, Pq are shown in Fig. 22.

This lowest energy state is therefore fully consistent with
the ~3 x ~S ground state studied in Sec. IV B and pro-
vides additional evidence supporting our assertion that
the configuration of Fig. 11 with q& ———qq, or equiva-
lently the ordered state of Fig. 2 or Fig. 15(a), is in fact
global minimum of the energy.

6. Discussion

A remarkable feature of the above results is that small
clusters with periodic or free boundary conditions ac-
tually prefer noncoplanar spin arrangements. It was
only when quite large (Sec. VB3) or infinite lattices
(Sec. VB5) were considered that the planar configura-
tions eventually won out. This suggests that the effec-
tive Hamiltonian for the "rotor" variables associated with
each 8, f hexagon is quite nonlocal and is dominated by
many-rotor interactions.

VI. CONCLUSIONS

This paper has presented a systematic large-N analy-
sis of Heisenberg antiferromagnets on the kagome and
triangular lattices. We will recapitulate the main re-
sults on zero temperature, quantum-disordered phases
in Sec. VIA; this will be followed by a comparison with
other theoretical results on such phases. The same will

be done for the magnetically ordered phases of the quan-
tum antiferromagnets in Sec. VIB and for the classical
antiferromagnet in Sec. VI C. Finally in Sec. VI D we will
discuss implications for experiments.

oo

FIG. 21. The first quantum correction to the energy
Ei/Jr as a function of the angles Pi and ~tip for the 27-site
finite cluster obtained by identifying the opposite edges of the
rhombus in Fig. 20 (Sec. V B4). The vertical axis is EEi =
2 x 10 x (Ei —Ei~;„)/(N, JK). We find Ei~,„/(N, Jr/2) =
—0.673943 at Pi = 2ir/3, Pq ——4ir/3 and vice versa.

A. Quantum-disordered phases

For small values of the "spin" on each site, the
quantum antiferromagnets on both lattices displayed
quantum-disordered ground states which are very sim-
ilar in structure. These ground states do not break any
symmetry. They possess a gap and the low-lying exci-
tations are unconfined, bosonic, spin-2 spinons. These
free spin-- excitations exist for all values of the on-site

2
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spin. The spinons also carry charges +1 of a contin-
uum U, (1) x Ug(l) x U, (l) gauge symmetry, which is
the remnant of a single lattice U(1) internal gauge in-
variance. All three continuum U(1)'s are in a Higgs
phase due to the condensation of charge +2 scalars.
This quenches the confinement of unit charges and the
spinons remain free. It also disables a previous mech-
anism for the introduction of spin-Peierls order in un-
frustrated antiferromagnets. Note that both these spin-
fluid ground states manifestly contradict Laughlin's frac-
tional quantization principle which asserts that spin-z
spinons must be semions.

Quantum-disordered states on the kagome lattice were
also studied by Marston and Zeng by an alternative
large-N method which involved the use of fermionic vari-
ables. They found spin-Peierls ordering in their ground
state. The fermionic large-N limit they used gener-
ically leads to dimerization and is properly consid-
ered an "extreme quantum" limit. ~7 The approach of
this paper allows one to approach the classically ordered
phasez and is expected to more accurately describe the
nearby quantum-disordered phases. An alternative test
for the appearance of spin-Peierls order is to examine a
quantum-dimersz model on the kagome lattice; natural
off-diagonal terms in the dimer model are interchanges of
dimers around hexagons and other non-self-intersecting
loops. The relationship between gauge theories derived
from Sp(N) models and dual versions of the quantum
dimer modelss s4 suggests that a dual version of the
kagome lattice model should be similar to the gauge the-
ories of Sec. IVA1. A natural conjecture then is that
this quantum-dimer model has a spin-fIuid ground state.

Zeng and Elser have presented exact numerical diag-
onalizations of finite clusters of the kagome lattice which
indicate that the spin-zi, SU(2) antiferromagnet has a
quantum-disordered ground state. The specific heat of
the model also displayed a double-peak structure as a
function of temperature. The first peak at T = 0.75J
was identified with quenching of the spin fluctuations
into the subspace of near-neighbor singlet bonds (dimers)
and it was suggested that the second peak could possibly
be associated with the appearance of spin-Peierls order.
However it is not necessary for true long-range order to
appear to obtain a peak in the specific heat. Further in-
vestigations involving the measurement of the appropri-
ate correlation functions and susceptibilities is necessary
before any firm conclusion on the absence of spin-Peierls
order can be drawn.

Recently, Ritchey et a/. have suggested that the
ground state of the quantum SU(2) antiferromagnet re-
tains the degeneracy of the 3-state Potts antiferromagnet
on the kagome lattice. However, as we demonstrated ex-
plicitly in Sec. VA, quantum fluctuations break the de-
generacy between these states. Moreover, it is reasonable
to expect that higher-order corrections in a semiclassical
theory will also lead to a splitting of the degeneracy be-
tween these states. Ritchey et a/. focused solely on the
tunneling between the Potts-like states and ignored the
possibility of diagonal shifts in the energy. It is unlikely
that their ground state will survive the inclusion of these
eRects.

B. Magnetically ordered phases

First, we review the large-N results of this paper on
the zero temperature quantum Heisenberg antiferromag-
nets. For large values of the "spin" we obtained mag-
netically ordered states. The ordering on the triangular
lattice was the usual classical three-sublattice state. The
kagome lattice ardering had a y5 x ~3 unit cell with 9
sites. We demonstrated explicitly the quantum fluctua-
tion induced selection of this structure from among the
huge manifold of classically degenerate states. The only
low-lying excitations were shown to be long-wavelength
spin-wave modes; there were no spin-wave modes with a
vanishing energy at all wave vectors that appear in the
classical limit.

Harris et al. is have performed a large-S expansion for
the ground state of a kagome lattice antiferromagnet with
first-, second-, and third-neighbor interactions. They
found regimes in which bath the /3 x +3 and the k = 0
states were the ground states.

Zeng and Elseris have discussed a large-S spin-wave
calculation which interpolates between the kagome and
triangular lattices and finds a quantum-disordered state
on the kagome lattice for all S. This result therefore dif-
fers from the large-N result of this paper that the ground
state is magnetically ordered at large values of K. How-
ever, the structure of the semiclassical expansion about
the classically degenerate manifold has not yet been fully
worked out, and the reliability of the prediction of the ab-
sence of magnetic order at large S is questionable. A sim-
ilar discrepancy also existed between the square lattice
antiferromagnet with first- (Ji) and second- (J2) neigh-
bor interactions at the classical disorder point Jz —Ji/2.
The initial large-S calculationss5 predicted disorder up
to S = oo, while the large-N methods found quantum
fluctuation induced order; a subsequent reanalysis of the
semiclassical theory by Chubukovs in fact showed the
presence of long-range order, consistent with the large-N
approach. A complete understanding of the semiclassical
theory for the kagome lattice is clearly called for: it is
clear that a partial resummation of the large-S series is
necessary.

C. Classical kagome antiferromagnet

Next we turn to the classical kagome Heisenberg anti-
ferromagnet. Our large-N expansion for this model (see
the Appendix) found no broken symmetries and short-
range correlations of the i/3 x ~3 state (Fig. 2) at all
finite temperatures. This agrees with the high temper-
ature expansion of Harris et al. which also found that
the ~3 x i/3 structure dominated the fluctuations. In
the present large-N calculation, the correlation length of
the ~3 x ~3 structure diverges as exp(c/T) as T ~ 0.
Chalker et a/. have examined the classical kagome an-
tiferromagnet at low temperatures by analytical and nu-
merical techniques. Their finite-temperature results have
no long-range order and presumably have short-range
correlations similar to those in the present large-N the-
ory. They also suggested from Monte Carlo results that
nematic order appears as T ~ 0 in the classical model.
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Such ordering is implicit in the ~3 x ~3 ordering ob-
tained as T ~ 0 in the large-N limit. Monte Carlo mea-
surements of spin-correlation functions which distinguish
between nematic and Neel-type ordering require much
longer to equilibrate, and were not directly examined
in Ref. 19.

D. Implications for experiments

1. Helium jilms

Elser~ has argued that a partially filled second layer
of He on graphite can be well described by a spin-

&
kagome antiferromagnet; there are however other in-

terpretations of the experimental data. The numerical
calculations of the specific heat were consistent with
experimental results. Experimental tests for the absence
of spin-Peierls ordering would be of great interest.

8. Layered oxides

The experiments on SrCrs Ga4+ Oig (Refs. 23—25)
probe a spin-& kagome lattice antiferromagnet. Inter-
pretation of the experiments is however complicated by
the presence of disorder. The powder average neutron
scattering shows a broad maximum around k = 4ir/3a,
consistent with short-range order of the ~3 x ~3 type.
However, despite the presence of substantial elastic scat-
tering indicating a static moment, the correlation length,
as defined by the width of the peak at k = 4ir/3a, satu-
rates at low temperature. In particular it does not have
the exp(c/T) increase expected of two-dimensional long-
range-ordered states. This suggest that the static mo-
ment is random, and the ordering infIuenced strongly by
the presence of disorder. This scenario is also supported
by a large enhancement in the measured nonlinear sus-

ceptibility.
One is then left with the puzzle of understanding the

low temperature behavior of the specific heat C T2 and
the dynamic neutron scattering. The low-lying modes in
a spin glass are expected to be spin waves with a dis-

persion spectrum ck. This leads naturally to a specific
heat T2 in two dimensions. To determine the neutron
scattering spectrum, let us consider the nature of the
long-wavelength, low energy action describing the sys-
tem. These will be dominated by slow distortions of a
reference ground state Srg(r):

where the "gap" b (T) —+ 0 as T ~ 0. In a system with
a large moment at T = 0 we expect 6 exp( —c/T); the
kagome lattice system has a small moment and therefore
may be dominated by quantum critical fluctuations, in
which case b, ~ T (Refs. 40 and 42) over a significant
range of intermediate temperatures. In either case, this
implies that as T -+ 0 the local response function, yIi(u)
has the form

yI)(~) lim d k Im
~

n & (—(u+ iil)g+ c~k~ j
sgn(~) . (6.3)
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This is roughly consistent with the experimental results.
A possible objection to the above scenario is that the

Halperin-Saslow spin-wave modes have not been observed
in conventional 3D spin glasses because they are com-
pletely dominated by low-lying, short-wavelength excita-
tions which have a constant density of states at low en-

ergy. Why, then, do they dominate the thermodynamics
here? There are two possible reasons for this.

(i) In 3D, the specific heat from the long-wavelength
modes would be T and is thus more likely to be
swamped by local excitations;

(ii) the kagome spin glass is very close to a quantum-
disordered phase with a gap. This reduces the density of
particularly the short-wavelength but low energy excita-
tions, allowing the long-wavelength modes to dominate
the thermodynamics.

A careful theoretical analysis of random quantum an-
tiferromagnets on the kagome net is necessary before the
above scenario can be subjected to quantitative tests.

Sr(r, r) = Rr (r, r)S (r), (6.1)
APPENDIX: CLASSICAL KAGOME

HEISENBERG ANTIFERROMAGNET

where E', m = 1, 2, 3 are spin indices, R is a slowly vary-
ing rotation matrix, and r is the imaginary time. We
expect the action controlling 0 to be a nonlinear sigma
model. On general grounds) the long-wavelength,
long-time fluctuations can be well described by the fol-
lowing disorder-averaged correlation function at low tem-
peratures:

(R(k, ~„)R(—k, —~„))— 1

In this appendix we shall show how the Sp(N), large-N
approach can be applied to the classical antiferromagnet
on a kagome lattice. The classical antiferromagnet is
defined by the partition function

Z = 'VOexp

(A1)

(6 2)
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where n, P, y, b = 1, . . . ,2¹The functional integral over
the spin 0 is restricted to the manifold 4

Sp(N)
Sp(N —1) x U(1)

(A2)

on every site i; there is no time dependence. The dimen-
sion of Sp(N) is 2N2 + N, so the dimension of the man-
ifold of 0 can be determined from (A2) to be 4N —2. A
simple way to realize this manifold is to introduce the 2N
complex numbers z~ [which transform as Sp(N) spinors]
and restrict

n~ = z:z~, ) ~"~' = N, (A3)

on every site of the lattice. As 0 is invariant under the
gauge transformation z~ ~ e'~z~, the dimension of the
manifold so realized is also 4N —2.

The large-N expansion of the classical antiferromagnet
can be obtained directly from the expressions (Al): the
analysis parallels that of Sec. II but with the operators
b; replaced by the complex numbers z . However, it
is quicker, and also instructive, to extend the quantum
theory of Sec. IV to finite T and take the limit of large z:
identical results are obtained. Since the energies increase
as tc~ for large e it is necessary to scale T by z~ in taking
this limit.

Generalizing the expression (4.7) to finite temperature,
we obtain the following large-N result for free energy of
the kagome-lattice quantum antiferromagnet at a finite
temperature T:

+MF

NN, ) [u„(k) + 2T ln(1 —e "~"1 )]"k,p

+-(IQiI'+ IQ2I') —~(1+ K)
2

F (Q, A) 2 ) In[a)„(k, Q, A)]
8 8

)P

+ J (IQ I'+IQ.I')-~ (A6)

We have explicitly displayed the dependence of ~„on
the variational parameters Q, A. This result can also be
obtained by a direct large-N analysis on the partition
function in Eq. (Al). As expected, dependence on K has
now disappeared, and all results depend only on the value
of T/J.

We numerically minimized I", with respect to the com-
plex numbers Qi and Qq, subject to the constraint

where the eigenfrequencies ~&(k) are given by Eqs. (4.4),
(4.5), and (4.6). We take the classical limit of this result
by first performing the following rescalings:

T~K T ) Q~2KTQ/J, A~KTA, id@ ~KT&dp

(A5)

and then taking the large-K limit. The leading term in
the quantum free energy FMF is the classical result F, :

As in Sec. IV A, the optimum configuration always sat-
isfied Qi ——Q2. This indicates the presence of short-
range correlations with the structure of the ~3x ~3 state
(Fig. 2); the correlation length diverges as exp(c/T) as
T ~ 0. All other values of Q lead to states with higher
energies.

The structure factor of the Qi ——Qz classical state
was determined by taking the classical limit of Eq. (2.18),
and the result is shown in Fig. 6 for T/J = 0.225. We
have rescaled the spin variables by a factor 2/K, and from
Eq. (2.19) the structure factor therefore satisfies the sum
rule

) S(k) = 1 .
k

(A8)

Finally we examine the nature of the zero-temperature
limit T ~ 0. From the minimization of Eq. (A6) it is not
difBcult to show that

A(T 0)=, iQ(T 0)i =3J ~3J
(A9)

where the second equation is satisfied by the Q,~ on all
links. The spin-correlation length ( obeys

(-'(T ~ 0) - T(A —2V3(QI) - exp( —cJ/T) (A10)

for some constant c. The zero-temperature limit of the
free energy can be obtained by inserting the above results
into (A6) and by using the homogeneous, linear depen-
dence of u& on Q and A:

~„(k,zQ, zA) = nu„(k, Q, A) .

The result is

(A11)

p
lim

o NN, T + 2 ln(3 J/2T)
3J

+ ) In(~„[k, +1/(2%3), 1]}.
k, p

(A12)

In the last term we evaluate u& from Eqs. (2.6) and (2.12)
or equivalently from Eqs. (4.4)—(4.6) with A = 1, Qi ——

Q2 and IQil = IQzl = I/(2V3)
In a very similar manner we could have examined

the zero-temperature limit of the free energy of thermal
fluctuations around any of the coplanar configurations
considered in Sec. VA. The only difference from the
abave analysis would have been that instead of choosing
Qi ———Qz, the link variables Q;~ would all be equal in
magnitude but differ in their signs; the manner in which
each state of the Potts antiferramagnet can be associated
with a particular set of assignments of the signs of the
Q;z was discussed in Sec. VA. The eigenfrequencies ~„
would be determined by solving Eqs. (2.6) and (2.12).
The zero-temperature limit of the free energy of any of
these configurations is given by an expression identical ta
Eq. (A12); the first two terms in (A12) are identical for



12 396 SUBIR SACHDEV

all the states but the last term involving the sum over the
bosonic eigenmodes breaks the degeneracy. Thus the free
energy, F,/T, of these states will differ by a term of order
N, but independent of T, as T —+ 0. We have evaluated
the zero-temperature limit of the free energy, F,/T, of
all configurations associated with the 120 ground states
of the Potts antiferromagnet which are periodic with the
unit cell of Fig. 15; this calculation is quite analogous
to that in Sec. V A. We found that the ~3 x ~3 struc-
ture of Fig. 15(a) had the lowest free energy. As the

free energy has a prefactor N, the partition function will
therefore be completely dominated by the contribution
of the Qq = —Qq state and the T ~ 0 limit will possess
the correlations of the y 3 x y 3 structure in Figs. 15(a)
or 2.

It is interesting that this state selection is quite sim-
ilar to that due to quantum Auctuations discussed in
Sec. V A. The only difference is that while quantum fluc-
tuations broke the degeneracy by the term Q& ~„(k),k, p P
classical fluctuations do so by P& „in[~„(k)].
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