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Spin waves in a doped antiferromagnet
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Spin waves are studied in the t-J model for low dopant concentrations on the basis of a Green s-
function formalism in a slave-fermion Schwinger boson representation. The self-consistent Born approx-
imation is used to calculate the Green s function for holes. Both the coupling of spin waves to electron-
hole pair excitations and the scattering of spin waves by holes are taken into account in calculating the
Green s function for spin waves. The spin-wave velocity is evaluated for various values of J/t. For
small values of J/t, it is found to be strongly renormalized due to the creation of electron-hole pairs.

I. INTRODUCTION

There has been growing interest in systems with strong
electron correlations and nearly half-filled bands after the
discovery of the high-temperature superconductors. Un-
doped materials like La2Cu04 are Mott-Hubbard insula-
tors, and they are well described by an isotropic spin- —,

'

Heisenberg model on a square lattice. It is now believed
that the spin- —,

' Heisenberg antiferromagnet in two di-
mensions exhibits long-range Neel order at zero tempera-
ture, although the order parameter is considerably re-
duced by quantum spin fluctuation. The linear spin-wave
(LSW) theory' is known to give fairly good results for
quantum corrections to various physical quantities.

A small amount of hole doping destroys the antifer-
romagnet state (x -0.03 in La2 „Sr„Cu04), and eventu-
ally gives rise to a superconducting state (x ~ 0.06). Ac-
cordingly, it is very important to study the interplay be-
tween doping and antiferromagnetism for understanding
these materials. The essential aspects of the electronic
structure of the Cu02 plane may be described by a two-
dimensional t-J model with the Hamiltonian given by

H= t g (c; c —+H. c.)+J g S; S.—oli n

(ij ),e (ij )

Here S; is the electronic spin operator, n;=g c; c;,
and (i,j ) refers to pairs of nearest neighbors. This mod-
el, which is derived from the large-U limit of a single-
band Hubbard model, acts on the Hilbert space with
no doubly occupied sites.

The motion of a single hole in an antiferromagnetic
spin background has already been studied by several au-
thors on the basis of this model ' the motion of hole
generates spin disorder, but quantum spin fluctuations
repair a pair of disordered spins generated by the hole
motion, leading to a coherent motion of the hole on a
given sublat tice. Among various approximations, the
self-consistent Born approximation' ' ' is found to give
good results for a wide range of parameter values of J/t

by comparison with the results of the exact diagonaliza-
tion of H for small clusters. ' '

For finite, nonzero dopant concentrations 5, spin waves
are in return affected by the hole motion. A study of
these changes is a main purpose of this paper. The local
distortion of the spin configuration around static vacan-
cies has been considered by Nagaosa, Hatsugai, and Ima-
da and Bulunt et al. ,

' but the effects caused by the
hole motion have not been considered so far. We calcu-
late the Green's function for holes accurate to first order
in 5 by extending the self-consistent Born approximation.
The result is used to calculate the Green's function for
spin waves by considering the creation of electron-hole
pairs as well as scattering processes of spin waves by
holes. Not only the coherent part but also the incoherent
part of the Green's function for holes gives rise to impor-
tant contributions. We find that the spin-wave velocity is
strongly reduced by the presence of holes, and the reduc-
tion increases with decreasing ratios J/t. Recently Ko
has obtained a strong renormalization of the spin-wave
velocity by considering only the scattering process of spin
waves by holes, i.e., by disregarding the hopping term in
Eq. (1.1). We will show that a proper account of the
motion of holes decreases the contribution of the above
process, thus making the process of creating electron-
hole pairs more important. A strong renormalization of
the spin-wave velocity has been reported in a neutron
scattering experiment on YBa2Cu306+ by J. Rossat-
Mignod et al. , and it is probably connected with a
sharp drop of the Neel temperature as a function of the
dopant concentration.

In Sec. II, we describe the Hamiltonian in a slave-
fermion Schwinger boson representation. In Sec. III, we
calculate the Green's functions for holes and spin waves,
and show some numerical results. Section IV contains
the concluding remarks.

II. HAMILTONIAN IN A SLAVE-FERMION
SCH%'INGKR BOSON REPRESENTATION

We make use of a slave-fermion Schwinger boson rep-
resentation c, =f;b;, where the boson operator b,
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keeps track of the spins, and the slave-fermion operator
f; generates a hole at site i .Although the total number
of fermions and bosons on each site should be 2S, i.e.,
f; f;+g b, b; =2S, we relax this constraint by using a
1/S expansion b, tas. well as b

&
are replaced by v 2S

in Eq. (1.1), where the indices i and j refer to sites on the
a (up) and b (down) sublattice, respectively. Then the
Hamiltonian is expressed as

H = t &—2S g [f,f~ ( b; &
+ b~ &

) +H. c. ]
&i j )

+I g f;f; f& f&" [
—.S +S(b;I b;t+bjtbjt

(i,j)

2
bi$

2
1 N

' 1/2

1/2

g akexp(ik. r; },
k

g bkexp(ik r, ),
(2.3)

k kak™kp—k b —k kak ' kp —k (2.4)

where

and furthermore the Bogoliubov transformation of boson
operators,

+b;}bjt+bI b&t )],
(2.1) lk

1/2

mk=-
2ck 2Ck

1/2

(2.5)

2f=
N g f'ekpx(i kr, ),

k

where f,f; f&f& in the second term accounts for a loss of
magnetic energy due to doping. In low concentrations,
we may replace f;f; fjf, =(1 f; f; )(1 —fjfj ) —by
1 ftf, —ftf . —We introduce the Fourier transforms of
operators in the reduced Brillouin zone (half of the first
Brillouin zone),

1/2

&k=(1—yk)', yk= —,'(cosk, +cosk ), (2.6)

and X is the number of lattice sites. In the following, we
consider a square lattice, and measure momenta in units
of a ' with a being the lattice constant. In terms of
these variables we rewrite the Hamiltonian as

2f =
N

1/2

g ftexp(ik rj ),
k

(2.2) H =Ho+H1+H2+

where

(2.7)

H0 g ~k( akak+ pkpk ) ~k JSz Ek
k

' 1/2

(2.8)

I =t&2Sz—2
1

2

k, p, q

g fk j'ksgn(yk q) [(lqyk ~+ mqyk)a&+ (mqyk q+ l~yk)P q]+ H. c. ,
k, q

(2.9)

(2. 10)

with

lplq + lpm q~q+ m plq~p+ mpm q~p

Cpq lplqpq+ lpmq+mplqppq+mpmqZp

(2.11a)

(2.11b)

III. GREEN'S FUNCTIONS
FOR HOLES AND SPIN WAVES

Let us introduce the Green's function for holes,

G„„(k,t) = t ( 5(f(k(—t)fk (0) ) ), 'p, v =a or b,
(2.11c) and the Green's function for spin waves,

(3.1)

We have neglected unimportant terms. The momentum
sum is taken over the reduced Brillouin zone, and z ( =4)
is the number of nearest neighbors. The part Ho
represents the spin-wave energy in LSW approximation,
and H1 represents the interaction between holes and spin
waves. This expression for Ko+H, has been used for
studying the motion of a single hole in an antiferromag-
netic spin background. ' ' ' ' The H2 represents the
scattering of spin waves by holes. Note that Cpp 0.

D (k, t)= i ( V'(ak(t—)a„(0))),
D g( k, t }= i ( V'( a—(kt ) p „(0)) ),
Dz (k, t)= i(T( p„(—t)a„(0))),

DPg(k, t)= i ( (7~P„(t)P—k(0) ) ),

(3.2a)

(3.2b}

(3.2c)

(3.2d)

where T is the time-ordering operator, and ( )
represents an average over the ground state. Their
Fourier transforms are defined by
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G„(k,co) =f dt G„,(k, t)exp(icot) . (3.3)

The Green's functions satisfy matrix Dyson's equations:

G„(k,co) = G„,(k, co)

+g G„(k,co)X s(k, co)Gs„(k,co),

D„„(k,co) = D„,(k, co)

+g D„(k,co)II (k, co)D „(k,co),

(3.4a)

(3.4b)

where G„„(k,co) and D„,(k, co) are unperturbed Green's
functions. For the antiferromagnetic ground state, the
following relations hold:

b: k —q, co —qo

FIG. 1. Diagram for the self-energy X„(k,co) in the self-
consistent Born approximation. The solid line represents the
dressed Green's function for holes G»(k —q, co —qo). The bro-
ken line represents the unperturbed Green's function for spin
waves. In finite concentrations, not only D (q, qo) but also

D~p(q, qo ) contribute to X„(k,co).

X„(k,co) =Xbb(k, co),

X,b(k, co) =Xb, (k, co) =0 .
(3.5) This is called the self-consistent Born approximation.

Explicitly the self-energy satisfies an integral equation
In addition, since the Harniltonian is invariant with
respect to the interchanging of (az,f f, ) and (Pz,ft ), the
following relations hold:

II&p(k, co)=II (
—k, —co),

11,.(k, ~)=11.,(
—k, —~) .

(3.6)

A. The Green's function for holes

We first discuss the motion of a single hole in an anti-
ferromagnetic background within the self-consistent Born
approximation, and extend the calculation to the case of
finite dopant concentrations 5 by including all corrections
to first order in 5.

When the problem of a single hole is considered, the
unperturbed Green's functions corresponding to Ho may
be used. They are given by

Note that a spiral modulation in the spin order gives rise
to a nonzero off-diagonal self-energy in the Green's func-
tion for holes, i.e., X,b(k, co)%0. This leads to a splitting
of the quasihole band and eventually to a stable spiral
phase. For a detailed discussion on the possible spiral
phase see Ref. 27. In this paper, we confine ourselves to a
discussion of the Green's function for the antiferromag-
netic phase. Numerical calculations are done for S =

—,'.

X„(k,co)= t z (2S)—2

t

G„(k,co)= I dco'
N CO +l'g

with

(3.10a)

p(k, co) =a (k)5(co—E„)+ . (3.10b)

The quasihole energy Eb and the residue a (k) are given

by

M (k, q) (3 9)
co —

coq
—X„(k—q, co —co )+i'

where M (k, q) = lqy„~+ mqyz. Recently Marsiglio
et al. ' and Martinez and Horsch' have solved numeri-
cally the integral equation for a 16X16 cluster with
S =

—,'. We expect that vertex corrections neglected in the
equation are not important, since the energy dispersion
Ek of the hole which follows from the numerical solution
for the self-consistent equation agrees well with the re-
sults of exact diagonalizations for small clusters in a wide
range of values of J/t '' The . solution has a well-
defined quasihole pole due to the coherent motion and in
addition a continuous incoherent spectrum, i.e.,

G„(k,co) =Gbb(k, co)= 1

N+l'g
(3.7a)

E&=X„(k,E&), a(k)= 1

1 —BX„k,E„)/c)co
(3.11)

G,b(k, co) =Gb, (k, co)=0,

with g=O+ for the hole and by

D (q, qo)=(qo co +ig)—
D p(q, qo)=Dg (q, qo)=0,

Dtjtt(q, qo ) = ( —qo coq+i rt)—

(3.7b)

(3.8a)

(3.8b)

(3.8c)

for the spin waves. We consider the diagram for the self-
energy X„(k,co) shown in Fig. 1, where the solid line
represents a dressed Green's function Gbb(k —q, co —qo)
=[co—

qo
—Xbb(k —q, co —qo)+ig] ' and the broken line

represents an unperturbed Green's function D (q, qo).

Note that Ez has minima at k, =(+m/2, +n /2). In the
vicinity of these minima it can be expanded as

1 2 1
Ek —Ek,. + kll+ kl+

2m~~ 2m,
(3.12)

where k~I and k~ are the components of k —k,- in (1,—1)
and (1,1) directions when k; =(m. /2, n./2).

For finite hole concentrations, we assume that there ex-
ists a Fermi surface, inside of which the number of states
equals the number of holes. In the low concentration
limit, changes in the quasihole band are negligible, and
therefore we define the Fermi sphere I and the chemical
potential p by
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F. ~—1/2k2+ 1/2k2 (k 2 (3.13)

p=E~ + kI;, (3.14)

where k~=vr5, a=m~~/m~) 1, and m =(m~~m~)' (see
Fig. 2). On the other hand, the Green's function changes
through the coupling to spin waves in a complicated way
to first order in 5. In order to calculate such change, we
consider the self-energy given by the diagram in Fig. 1,
which now turns out to consist of two terms:

X„(k,co) =X',",'(k, co)+X';,'(k, co), (3.15)

where the retarded part X,'",' arises from processes of
creating an "a" spin wave in the intermediate state
[D (q, qo)], and the advanced part X,", arises from pro-
cesses of absorbing a "P" spin wave [D&&(q,qo) ]. Explic-
itly these two functions are given by

X,'",'(k, co) =t z (2S)—g M (k, q)
2

q

X GGf + p'+'(k —q, E)

0 N Nq E P+l'g

a(k;)5(E+p E&—) for kEF,
p' '(k, e)= .

0 for k~F,
(3.18a)

(3.18b)

where k s are the four wave vectors at which Ek has its
minima. Next inserting Eqs. (3.18) into Eq. (3.16b), and
using the relation p' '(k, E)=(1/n)ImG„(k, p+E), we

(a) k=O

1/t = 0.3

&(
—) [k

2.0

0.64

the solution p(k, co) of the single-hole problem for
p'+ '(k, e } by introducing the chemical potential.
Neglecting irrelevant energy shifts of order 6, we evaluate
p' '(k, E)[—:po '(k, E)+pI '(k, E)+ ] in an iterative
way as follows. First we set

X';,'(k, co)=t z (2S)—gM (k, q)
2

q

(3.16a) 0.50 10

p
' '(k —q, E}

X dE,
CO+ COq E P

(3.16b)

where M(k, q) =mqyk q+ lqyz. We have introduced the
spectral representation

—2.0 —1.0 0.0

,~+~(k, E)G„(k,co) = dc,
0 CO E, P+ l Yj

0 p' '(k E)
~

~dE
CO E, P 1 7f

(3.17)

(b) k = ky ——3~/8

J/t = O.3

p(-)(k, .)/g
-- 2.0

Our aim is to calculate the Green's function for spin
waves to first order in 5, and, for this purpose, we need to
know p' '(k, e) to first order in 5, but we may simply use

0.78

10

0.14
0.21

—2.0 —1.0 0.0

FIG. 2. Schematic plot for the Fermi surface in the reduced
Brillouin zone. Regions with slanting lines represent the inside
of the Fermi sphere.

FIG. 3. p', '(k, c, )/5 and p& '(k, c)/5 for a 16X16 cluster
with J/t =0.3: (a) k=0, (b) k =k =3~/8. The vertical bars
represent 5 function of p& '(k, c.), and the histograms represent

p& '(k, c). The numbers attached to the 6 functions and histo-
grams represent intensities integrated with respect to c.
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obtain p'i '(k, e) to first order in 5:

5t z (2S)a(k;)yi,
p', '(k, e)=

[p+ E —X,'",'(k, p+ E ) ) 4

Xg lq q5(s+coi, i, ), (3.19}

p(
—)(k s)— t'z'(2S) 2

[p+ s —X',",'(k, p+ s) ]

XQM2(k, q) f ds'pI '(k —q, s')
q

X 5(E+coq
—s') .

We obtain p3 '(k, s) by replacing p', '(k —q, s ) in Eq.
(3.20) by p~2 )(k —q, s'). Note that p' '(k, E) determined
this way satisfies the sum rule

where the sum over i indicates an average over four hole
pockets. Next inserting p', '(k, s) into Eq. (3.16b), we ob-
tain

small imaginary part to frequency. Once we obtain
p'+ '(k, c ) [or X',",'(k, s ) ], we can obtain p', '(k, E ),

p2 '(k, E), and p~z '(k, E) by evaluating Eqs. (3.19) and
(3.20). Figure 3 shows p', '(k, c) and p2' '(k, E) thus eval-

uated for J/t =0.3. The iteration is rapidly convergent
for J/t ~0.3: I/5 evaluated up to p3 '(k, e} is equal to
0.94 for J/t =0.3. [The contribution from p'i '(k, s),
p2 '(k, c), and p~3 '(k, s) is, respectively, 0.41, 0.20, and
0.05.] The values for I/5 evaluated up to p3 '(k, s) are
shown for various values of J/t in Table I. (Several other
quantities are also listed for later use. ) The convergence
is not rapid for J/t =0.1.

B. The Green's function for spin ~aves

We consider the diagrams shown in Fig. 4 for the self-
energy of the spin-wave Green's function. Thereby the
Green's functions for holes are the dressed ones evaluated
in the preceding subsection. The diagrams shown in Fig.
4(a) represent the second-order processes with respect to
H, . They give rise to the self-energy

I=—g f p' '(k, s)ds=5 .=2
k

(3.21)
II"'(q, qc) =t'z'(2S) —g M'(k, q)P„(q, qo),

2

k

(3.22a)

We refer to Appendix A for the proof of Eq. (3.21). Also
note that the coherent peak po '(k, s) alone does not
satisfy the sum rule, since a (k; ) & l.

We solve numerically the integral equation (3.9) for a
16X16 cluster, by dividing the frequency space into
meshes with their size 0.01t and by averaging the Green's
function over each mesh size without introducing the

t

dN
Pi, (q, qo) = . G„(k,co)G»(k q, co qp—)—

27Tl

II"ti(q, qo) =t z (2S)—g M(k, q)M(k, q)P), (q, qo),
k

(3.22b)

where

p'+'(k, s')p' '(k —q, s) p' '(k, s)p'+'(k —q, E')
—cc 0 Q'p+E C'+ig qp+C' —

C
—iq

(3.23)

The contribution from the coherent part in Eq. (3.23) is
singular and anisotropic with respect to direction of q, as
discussed before in a different context. We evaluate the
contribution by taking ~q~~0 with qo/~q~ fixed in Eq.
(3.23) with the help of the effective-mass approximation
for E), [Eq. (3.12)]. For q=(q/v'2, q/v'2), we obtain

= —t z (2S)[a (k, )] 2 / q—

X 1—
(&2 1)I/2

for x ) 1, (3.24a)

II'"(q,qc)= t z (2S)[a(k,—) 2 q
—for x &1,

TABLE I. Quasihole residue a(k;), ' effective mass m (4t), '
anisotropy a =m

~~
/m&, ' and spectral intensity I evaluated up to

p(
—

)(l &)

II'&(q, q )= —II'"(q, q ),
where

~y4 m &px=a
kF q

(3.24b)

(3.25)

0.10
0.30
0.50
0.80

a (~/2, n./2)

0.13
0.28
0.39
0.50

m (4t)

36.0
15.3
11.6
9.9

5.3
5.9
6.1

5.5

0.85
0.94
0.98
0.98

'These values are equivalent to those calculated by Martinez
and Horsch (Ref. 17).

—[(
—I/2+ i/2)/2] —i/2

kF q
(3.26)

We expand Eqs. (3.24) in powers of I /x, and use the lead-

For q=(q, 0), the same forms are obtained for the self-
energy as Eqs. (3.24) but with a slightly different
definition of x:
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T 3

(3.27)

ak ak

ak
bk

o.q Pq

v k+q —p

FIG. 4. Diagrams for the self-energies II„"„'(q,qp), II„'„'(q,qp),
and II„"„'(q,qp). The solid lines represent the dressed Green's
functions G»(k, ~) with @=aor b. The broken lines represent
the unperturbed Green's functions for spin waves D„„(p,pp)
with v=a or P.

ing term by setting qo =co, since for low hole concentra-
tions the spin-wave velocity is much larger than that of
quasiholes near the Fermi surface. As a result we obtain
for the self-energy II"' and q=(q/&2, q/&2) (S =

—,
'

)

II' '(q, qo)= —JSz —g f ie' "[C"'G„(k,co)

+Cqq'Gbb ( k, co ) ]

(3.28a)25COq,

II.",'(q, q, ) =O . (3.28b)

Equation (3.28b) results from C~qq'=O. The diagrams in
Fig. 4(c) represent the second-order processes with
respect to H2, and contribute to the self-energy

where m*=m(4t). For q=(q, O), a ~~ in Eq. (3.27) is re-
placed by (u' +a ' )/2. The numerical values of
II' "/5cok (:—A,",h ) for various values of J/t are shown in
Table II. Note that the self-energy H"' is positive. The
situation differs from the one encountered in the
electron-phonon problem where the sound velocity is
smaller than the velocity of electrons at the Fermi sur-
face.

On the other hand, the other contributions to H'" are
not singular for q —+0, qo~O. Since the matrix elements
M (k, q) and M(k, q)M(k, q) are proportional to IqI for
small q (see Appendix B), we may replace p' —'(k —q, e) by
p' +—'(k, e), and set qo=0 in the denominator of Eq. (3.23)
in order to pick up terms to lowest order for small wave
vector q. In the numerical evaluation of Eq. (3.23), we
assume that only k =k; is inside the Fermi sphere among
the discrete values of k, and take account of p' '(k, e) up
to p'3 '(k, c, ). The numerical values of II"'/5coz (:—A';„',I)
thus evaluated are shown in Table II for various values of
J /t. They are negative, and their absolute values in-
crease with decreasing ratios J/t.

The diagram in Fig. 4(b) represents the first-order pro-
cesses with respect to H2, and gives rise to the self-energy

'2

II (q o) =(JS ) g d "d ' (IC'" I'+ IC"'I')
N „— o q~ ~ qo+e e' co —+ir—tk, p

—(Ic"'I'+ Ic"'I')
qo+ c' —c.+ co —I g

(3.29a)

TABLE II. Self-energies divided by 5co~ for small q in (1,1) and (1,0) directions: A":—H" /Gal)q.

The values A';„",, A "', and A"' are independent of direction of q.

0.10 (1,1)
(1,0)

(&) aA„h

2.19
1.30

(1)A inc

—28.99

A (2) A (3)

—0.12

Total

—28.92
—29.81

0.30 (1,1)
(1,0)

0.95
0.55

—8.14 —0.30 —9.49
—9.89

0.50 (1,1)
(1,0)

0.51
0.30

—4.21 —0.46 —6.16
—6.37

0.80 (1,1)

(1,0)
0.24
0.14

—1.97 —0.62 —4.35
—4.45

'Values evaluated from Eq. (3.27).
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2

k, p

p'+'(k+q —p, s')p' '(k, e) p' '(k+q —p, e)p'+'(k, e')

Qp + 'E E' COp+ l Yf gp +6 C +COp l 7f
(3.29b)

Since the matrix elements C~ are proportional to
l q l

' for small
l q (see Appendix B), we replace

p' +—'(k+q —p, s) by p' +—'(k —p, e), and set q0=0 in the
denominators in Eqs. (3.29) in order to pick up terms of
lowest order for small q. The numerical values of
II' )/5cok (=—A' ') thus evaluated are shown in Table II
for various values of J/t The. y are negative, and their
absolute values increase with increasing ratios J/t, but
are much smaller than A,'„",.

Since the self-energy for small q is expressed as
II =II&&= A5coq, II &=IIt( =85coq, the Green's func-

tion is given by

85co

—
q()

—(1+A 5)(oq

(3.30)

The renormalized spin-wave energy co is determined
from the condition detD(q, toq) '=0 and therefore given

by

spin-wave velocity is found to be strongly renormalized
by the former process, and the reduction rate increases
with decreasing ratios J/t. The strong renormalization
with J/t +0—suggests the instability of the antifer-
romagnetism in this limit, and reminds us of Nagaoka's
ferromagnetic state. Our result is qualitatively in agree-
ment with neutron scattering experiments.

In this paper, we have assumed an antiferromagnetic
spin configuration. As was discussed by Shraiman and
Siggia, Eder, and the present authors, no matter
how small the dopant concentration is, the antiferromag-
netic state is always unstable against formation of a
spiral. The discussions in this paper can be applied to the
spiral phase with a slight modification, leading to a renor-
malization of the spin-wave velocity. ' The doping
dependence of the stiffness constant and related problems
are presently also under investigation by applying projec-
tion techniques. The results obtained so far are similar
to ours.

Note added in proof. A value of the same order of mag-
nitude as 5, was also obtained in Ref. 33.

toq=[(1+ A5) —B 5 ]' (oq=(1+A5)toq . (3.31)
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By using the values for A listed in Table II we can deter-
mine the critical dopant concentration 5, at which the
spin-wave velocity becomes zero. We expect that for
5)5, (for example, =0.11 at J/t =0.3) antiferromagne-
tism is destroyed by the holes.

IV. CONCLUDING REMARKS

We have studied the renormalization of spin waves for
low dopant concentrations 5 in the t-J model, by using a
large-S approximation to the slave-fermion Schwinger
boson representation. We have calculated the Green's
function for holes to first order in 5, on the basis of the
self-consistent Born approximation. We expect that this
procedure works well at low dopant concentrations in
view of its success in describing the motion of a single
hole. ' ' With the help of this result, we have calculated
the self-energy for the spin-wave Green's function by tak-
ing account of the processes in which electron-hole pairs
are created and spin waves are scattered by holes. The
incoherent part of the Green's function for holes gives
rise to important contributions to the self-energy. The
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APPENDIX A: PROOF OF A SUM RULE

LetI; be

I; =—g f dip'; '(k, s) .
k

(Al)

Substituting Eqs. (3.18)—(3.20) into Eq. (Al), we obtain

I()=5a (k, ),
I, = 5a (k; )t z (2S)—2

(A2)

klk k
2 2

xg
k IP ~k,. —k ~aa ki~P ~k, —k ]

(A3)

and so on. On the other hand, since the retarded part of
the self-energy satisfies Eq. (3.9), its derivative must satis-
fy a relation

—~'(k, q)[ 1 —()&(".)(k—q, ro —
~0, )/~rol. =„]

X(,",'(k, co)l „=t z (2S)—g ~

( )
(A4)
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We notice that the first term in Eq. (A4) for k=k, is
equal to I—, /[5a (k; ) ]. Applying a similar procedure to
the derivative of the self-energy in the second term of Eq.
(A4), we obtain a term equivalent to I2—/[5a(k, )]. In
this way we can prove the following relation step by step:

I +I,+I + =5a(k;)[1—BX(k;,a))/Ba)~ =„]
(A5)

APPENDIX B:
MATRIX ELEMENTS FOR SMALL MOMENTUM

We summarize the matrix elements expanded for
small q:

Cw(1) =C~(1) =B)(p)ql/2 mph(p q)

C(2) —C(2) B ( )
) n+ l

C~ =B)(p)q'~ +m tI)(p, q),
C"'=B~(p)q'" —l,~(p q»
M(k, q)=2 3~ q(~ y~+b(k, q),
M(k, q) =2 q' y&

—h(k, q),
where

B,(p)=(1 +m y )/2

Bz(p)=(l y&+m )/2 ~

b(p, q)=(q„sinp, +q sinp )/(2 q't ) .
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