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Magnetic order in three rare-earth elpasolite compounds Cs2NaRC16
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The apparently undistorted fcc rare-earth salts Cs2NaDyC16 and Cs2NaErC16 display susceptibilities
characteristic of dipolar ferromagnetism in the ordered state. This agrees with the predictions of both
classical and quantum-mechanical spin-wave theories. We do not observe a predicted quantum-
mechanical anisotropy due to zero-point motion of the spins. Cs2NaGdC16 behaves in a manner con-
sistent with a slight tetragonal distortion of its lattice, with a crystal containing many tetragonal
domains oriented randomly along the fourfold axes of the cubic phase, and exhibiting anisotropic dipo-
lar ferromagnetic order.

I. INTRODUCTION

Magnetic order due to the dipolar force is of continued
interest in the study of magnetism, because the dipolar
Hamiltonian is known exactly. A critical comparison be-
tween theory and experiment is possible if other interac-
tions are negligible. Because of the anisotropy and long-
range nature of the dipole interaction, theories generally
have tried only to predict the most stable type of order to
be expected, based on a calculation of the interaction en-
ergy of possible ordered arrays of dipoles at zero temper-
ature. Luttinger and Tisza treat the magnetic spins as
classical quantities. ' Subsequent generalizations of
their theory treat the spins quantum mechanically, with
qualitatively similar results. Another approach is the
quantum-mechanical spin-wave approximation technique
due to Cohen and Keffer.

The type of order predicted by these theories depends
in the most general case on the symmetry of the lattice in
which the magnetic ions are placed, and upon the anisot-
ropy of their moments, or g tensor. In the special case of
primitive cubic symmetry, these theories all make identi-
cal predictions, which are independent of the details of
particular materials. Simple cubic systems are found to
be invariably antiferromagnetic, while (assuming samples
are free to form domains) bcc and fcc systems are predict-
ed always to be ferromagnets, regardless of the magnetic
ion involved. Because these predictions depend only on
symmetry, they are particularly important to test.
Among cubic materials, results have been reported only
for nuclear dipolar systems with simple-cubic symme-
try, ' measured in the rotating frame of reference, and
for one electronic system with fcc symmetry.

In this paper we present a study of the magnetic order
found in several rare earth (R) elpasolite salts,
Cs2NaRC16. These materials were synthesized by Morss
et al. in 1970. At room temperature, they are fcc [space
group Fm3m (Ot, )], with perfect octahedral point sym-
metry at the rare earth site. The lattice constant is large,
about 10.8 A, with about 7 A separating the magnetic
rare earth ions. The path between these is of the form
R-Cl-Na CI-R, and bonding is primarily ionic, so the ex-
change interaction between rare earths should be small

relative to the dipole force. This was observed in a sus-
ceptibility study of the related Rb2NaRF6 series. ' Most,
if not all, of the Cs2NaRC16 salts containing the lighter
rare earths undergo a crystalline phase transition below
room temperature, and distort typically to tetragonal
symmetry. " ' Fortunately, several of the compounds
containing heavier lanthanides appear to retain cubic
symmetry to low temperature. Among these are the rare
earths with largest moments and highest magnetic order-
ing temperatures, providing particularly accessible sys-
tems to study.

II. EXPERIMENT

Single crystals of Cs2NaR C16 for R =Dy, Er, and Gd
were grown by the Bridgman technique. The magnetical-
ly ordered ground state was determined from the dc sus-
ceptibility. For these measurements, single crystal sam-
ples were cut to an ellipsoidal shape, with the long axis
oriented along (ill) or (100), as determined by x-ray
diffraction. A large body of data from other dipolar fer-
romagnets indicates that hysteresis in the ordered state is
negligible. ' When an external field is applied parallel to
the magnetization axis, domain walls move so that the
demagnetizing field just balances the externally applied
field. The internal field H;„,=H,„,—DM is then equal to
zero. The apparent susceptibility per unit volume in the
ordered state is thus M/H, „,=1/D, where D is the sam-
ple demagnetizing factor. Dipolar antiferromagnetic or-
der is typically characterized by a peak in the susceptibil-
ity in the vicinity of T„whose magnitude is well short of
1/D, followed by a decline at lower temperatures.

Samples were cooled inside the mixing chamber of a di-
lution refrigerator, in trapped fields of 0.5 and 0.05 mT.
DC susceptibilities were measured using Auxgate magne-
tometers. ' All of these compounds were measured in
powdered form as well, to provide better thermal contact
and a more accurate determination of T, . Temperature
was measured with a powdered CMN thermometer, also
inside the mixing chamber, in close proximity to the sam-
ples. It was calibrated against the superconducting tran-
sitions of In, Al, Zn, Cd, AuIn2, and Ir.

45 12 337 1992 The American Physical Society



12 338 ROSER, XU, WHITE, AND CORRUCCINI 45

III. DATA AND ANALYSIS 0.4

A. Cs2NaDyC16 and Cs2NaErC16

Optical absorption and emission measurements on
these compounds are consistent with the retention of cu-
bic symmetry down to at least 10 K (to 4.2 K in the case
of Er +). ' ' We have obtained x-ray powder diffraction
spectra down to 10 K on these materials, and single-
crystal magnetization measurements of CszNaDyC16
along three mutually orthogonal axes from 1 to 4 K,
which also showed no observable deviation from cubic
symmetry.

The susceptibility per unit volume below 1 K for
Cs2NaDyC16 and Cs2NaErC16 is shown in Figs. 1 and 2.
Both follow a Curie-Weiss law above approximately 0.5
K, and both display a kink in the susceptibility below 0.1

K, below which there is very little further change. In the
case of Cs2NaDyC16, thermal contact to single crystal
samples became poor below -20 mK, and so powdered
samples were investigated as well ~ From the kink in the
powdered sample data, we infer a magnetic ordering tem-
perature of -21 mK for Cs2NaDyC16. Below T„ the
temperature independent susceptibility per unit volume
of the single crystal sample (Fig. 1) is equal to 0.312, very
close to the calculated value of 1/D for this sample,
0.308. We conclude that the order is ferromagnetic, as
predicted by theory. The susceptibility of a spherical
sample of Cs2NaErC16 is qualitatively similar, but with a

much higher ferromagnetic transition at —50 mK. The
limiting susceptibility of this material is 0.217, close to
the calculated D '=(4~/3) '=0.239. The difference is

within the combined uncertainties of the magnetometer
(+10%)and the demagnetizing factor (+10%).
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Above 0.2 K, a Curie-Weiss fit to the susceptibilities
yields the experimental Curie constants, g factors, and
Weiss constants shown in Table I. Also shown are g fac-
tors previously determined using EPR, ' Curie con-
stants predicted from these values, and Weiss constants b
due to the dipolar interaction alone:

FIG. 2. DC susceptibility of single crystal (111) and
powdered samples of Cs2NaErC16. 1/D for the single crystal, a
sphere, is indicated by the dotted line. The behavior below -50
mK is consistent with ferromagnetism.
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FIG. 1. DC volumetric susceptibility of single crystal (111)
and powdered samples of Cs2NaDyC16. At the lowest tempera-
tures the single crystal susceptibility is temperature independent
and very close to 1/D, consistent with ferromagnetic order.
From the kink in g of the powder sample we infer a T, of —21
mK.

Here C is the Curie constant per unit volume, D is the
sample demagnetizing factor, and p is a dipolar lattice
summation, equal to zero for cubic symmetry. Octahe-
dral Dy + has a doublet I 6 ground state, with a unique
isotropic theoretical g factor of —", , rather close to that
observed. Er + in this structure has been found to have a
I 8 quartet ground state; Table I shows the matrix ele-

ments P and Q, in Ayant's notation, determined by
EPR. The g factors associated with individual transitions
in this quartet are not isotropic, but the Curie constant '

2k~

is, since the x, y, and z axes are equivalent under Oz. In
this formula, gJ is the Lande g factor. The inverse sus-

ceptibilities of both these compounds show curvature
above 2 K, indicative of small crystal-field splittings be-
tween the ion's ground state and first excited state. Be-
cause of this, their Weiss constants in Table I are prob-
ably not as accurate as that for Cs2NaGdC16, described
more fully in Sec. III B. The Weiss constant for
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TABLE I. Measured Curie constants and derived g factors, Weiss constants, and approximate criti-
cal temperatures inferred from the susceptibility of three Cs2NaR C16 salts. Spectroscopic splitting fac-
tors obtained from EPR experiments, derived Curie constants, values of the dipolar Weiss constant b
calculated from Eq. (1), mean-field critical temperatures, and Luttinger-Tisza ground-state energies Eo
are shown for comparison.

Cs,NaR C16

C, cm K/mol
gexpt

g EPR

CEpR cm' K/rnol
S,„p, (mK)
~calc~ m
T„rnK
TMF mK

E0, rnK

R =Dy

4.1

6.6

6.563'

4.04
10+20
20.6
21
92

—45.3

R =Er

7.0

P =5.12
Q=1.50

7.69
—46+40

96
50

159

—161

R =Gd

7.2

1.91

1 995
7.84

—80+40
~0
35

—22.8
to —203

'Reference 18.
Reference 19.

Cs2NaDyC16 agrees within experimental error with 5 cal-
culated from Eq. (1), while that for Cs2NaErCls indicates
an antiferromagnetic Weiss constant O,„~,

=0—6, due to
exchange alone, of order —100 mK.

Also shown in Table I are ground-state energies calcu-
lated according to the Luttinger-Tisza theory, and mean-
field critical temperatures calculated from the relation
T, =C(p+4m. l3), assuming purely dipolar interactions.
For a ferromagnet, under the assumption that the crystal
is free to minimize its energy by breaking into domains,
the ground-state energy per spin is

1 4
F. = ———mM (p )=F

2 3 eff

where p,z is the effective moment per ion and a is the lat-
tice constant. The values in Table I were calculated from
the EPR splitting factors. The magnitude of Eo scales
approximately with the observed ferromagnetic transition
temperatures. The mean-field transition temperatures
behave in a qualitatively similar fashion, but are several
times too large.

The quantum spin-wave theory of Cohen and Keffer
predicts the existence of anisotropy in the ferromagnetic
state due to zero point motion of the spins. In classical
theories of ordering, there is no anisotropy for cubic crys-
tals. The zero point motion prevents complete alignment
of the spins, and anisotropy results from the dipolar in-
teraction carried to second order. The anisotropy ener-

gy for an fcc lattice is minimized along (111). Above T„
it is negligible in comparison with the magnetic energy
H.M; below T, it should be observable immediately for
internal fields H; & 8/M =0. 1 mT, where 6' is the anisot-
ropy energy and M is magnetization. At T=0, the tem-
perature independent, demagnetization limited suscepti-
bility should be reduced from 1/D by a factor cos 0 for a
single crystal, where 0 is the angle between H,„, and
(111). We have investigated these predictions in a single
crystal sample of CszNaErC16, oriented with its (100) axis

B. Cs2NaGdC16

This material behaves quite differently from the
preceding two. The susceptibilities of single crystal (111)
and powdered samples of Cs2NaGdC16 are shown in Figs.
3 and 4. They are very nearly identical, but unlike
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FIG. 3. Single crystal (111)and powdered sample dc suscep-
tibilities of Cs2NaGdC16. For the single crystal sample
D =2.26.

parallel to the external field to produce the maximum
effect (cos 8=—,'). In external field as low as 0.05 m T, and

temperature as low as 0.15T„we have observed no
reduction in susceptibility below T, . Within experimen-
tal error, the susceptibility below T, was everywhere
equal to 1/D. The absence of observable anisotropy
agrees with similar measurements. performed on the relat-
ed dipolar fcc ferromagnets Cs2NaR (NO&)6.
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FIG. 4. An expanded view of the data of Fig. 3 from

T=O—100 mK. The susceptibility drops rapidly below —35
mK, and is temperature independent below -20 mK.

FIG. 5. Observed cubic to tetragonal lattice phase transition
temperatures for the series Cs&NaR C16.

Cs2NaDyC16 and Cs2NaErC16, both show an abrupt de-
crease below a peak at -35 mK. In the powdered sam-
ple the susceptibility levels out to a temperature indepen-
dent value below about 22 mK, with a magnitude equal
to 0.63 of the peak value. In the single crystal sample it
reaches a constant value below approximately 20 mK.
The value of y(T =0) is somewhat shape dependent in
single crystal samples. It varies from 45% of the peak
value when D=1.63 to 75% when D=6.62. The value
of y '(T=O) —y „'k, which should be shape independent
if the internal magnetization is uniform, is fairly con-
sistent at 3.2+0.6. Because the easy axis for dipolar fer-
romagnetic order in a fcc lattice is predicted to be (111),
the reduction in y below T, is presumably not due to an-

isotropy caused by zero point motion. Within experi-
mental error, the susceptibility did not depend on lattice
orientation in the field.

The low temperature crystalline symmetry of
CszNaGdC16 is not known from independent rneasure-
ments. Our x-ray powder diffraction measurements at 10
K are consistent with undistorted fcc symmetry, within a
precision of perhaps five parts in a thousand. There is,
however, circumstantial evidence suggesting that it may
not be cubic on a finer scale. Figure 5 shows the known
cubic to tetragonal phase transition temperatures for a
number of the Cs2NaRC16 series, including those which
are believed to remain cubic at -4 K." ' ' . The tran-
sition temperatures drop fairly smoothly as atomic num-
ber increases, an effect which is thought to be geometri-
cal, due to the decreasing radius of the R + ion. The
immediate neighbors of Gd in the lanthanide series, Eu
and Tb'+, show tetragonal distortion in this structure
below 95 K (Ref. 17) and 20 K, ' respectively. Distortion
has not been observed in the compounds containing
Dy + or heavier lanthanides, with the possible exception
of Tm +. ' It would therefore not be surprising if
Cs2NaGdC16 exhibited distortion at a temperature above

4 K. In the Ce, Pr, and Nd compounds, where the distor-
tion has been studied by neutron diffraction, the lattice
shows a tetragonal elongation along the c axis, decreasing
in magnitude as R grows heavier. NMR and EPR mea-
surements suggest that a crystal divides into many tetrag-
onal domains, oriented randomly along the fourfold axes
of the cubic phase. "'

In an effort to understand the susceptibility of
Cs2NaGdC16, we have performed Luttinger-Tisza calcu-
lations of the dipolar ground-state energy of the body-
centered tetragonal (bct) lattice, the Bravais lattice for a
face-centered-tetragonal (fct) structure. We find that a
tetragonally compressed lattice generally leads to an axial
ferromagnetic ground state along the c axis, while a
tetragonally elongated lattice can lead to a variety of pla-
nar magnetic structures, which depend upon the c/a ra-
tio and the anisotropy of the magnetic ion's g factor. If
we assume, as in the related hexagonal case, that order
occurs only along the c axis or in the a-b plane, the
ground-state energy Eo will have the general form

where g~ and
g~~

are g factors perpendicular and parallel
to the tetragonal e axis and E~ and E~~ are eigenvalues
which depend on sublattice configuration and c/a ratio.
Crossover between axial and planar order will occur
when g~E~ =g~~E~~~, or

2

crit

Figure 6 shows g as a function of c/a for the bct lattice.
Also shown is the type of order expected for arbitrary
g~/g~~ as a function of c/a. The Luttinger-Tisza theory
predicts isotropic ferromagnetism for c /a = 1 and
c/a =&2, where g=1, corresponding to bcc and fcc
symmetries. If we assume that a small tetragonal elonga-
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where the y; are direction cosines for the three tetragonal
axes with respect to H, and D, is a suitable average over
grains. For the planar ferromagnetic case, the analogous
result is g=2/3D, where D is an averaged planar
demagnetizing factor of the grains. In either case, if
magnetic anisotropy sets in only with magnetic order, as
would be expected if the moments of the Gd + ions
remain isotropic, it might be sufficient to cause a drop in
the susceptibility below T, to the values above. This
reasoning is also consistent with the temperature in-
dependence of the observed susceptibility below 22 mK,
or approximately 0.6T„(Fig. 4). The magnetization and
field within a bulk sample will be nonuniform, so these
ideas are qualitative at best. If we approximate the bulk
magnetization as uniform, then the experimental suscep-
tibility is related to the internal susceptibility above by
I/y, „,= I/y;„, +D, where D is the sample demagnetiz-
ing factor, or

c/a
FIG. 6. Luttinger-Tisza magnetic ground states of the body-

centered-tetragonal (bct) lattice, as a function of c/a and

g gg /g
II
. The solid line denotes crossover between axial and

planar order.

tion exists in Cs2NaGdC16, as in the Ce, Pr, and Nd com-
pounds, the classical theory predicts that this material
will be either a planar or an axial ferromagnet, depending
on gJ /gII.

Thus the simplest explanation of this data, namely,
that Cs2NaGdC16 is an antiferromagnet, is difficult to
reconcile with theory. Alternatively, if the ordered mag-
netic state is ferromagnetism with anisotropy of some
sort, and if this material is in fact composed of tetragonal
domains, then the interpretation of the susceptibility is
difficult because the samples are, in effect, polycrystalline.
A qualitative explanation in this case can be given by
considering the sample to be composed of dispersed,
noninteracting crystalline domains, something like a di-
lute powder. In the axial ferromagnetic case, H;„, will be
zero below T, along the c axis of each grain:

H cos8 —D,M=O,

where 0 is the angle between H and c, and D, is the axial
demagnetizing factor of the grain. The susceptibility of
the grain will be

Mz M cos 8cos0=
D,

and the susceptibility of a large assembly of such grains,
oriented orthogonally to each other along cubic axes, will
be

1X=
3 (Xi+X2+X3)

1 Xl+rz+r 3

3 D, 3D,

axial 1 planar 1
+exPt D+3D ~ +exPt D+ 3D

a 2 P

The observed susceptibility of Cs2NaGdC16 is qualitative-
ly consistent with either planar or axial ferromagnetism,
so that a microscopic probe such as neutron scattering or
NMR will be necessary to determine the type of order
with certainty.

From EPR studies of Gd + doped CszNaYC16, the
crystal field ground state of the Gd + ion in an undistort-
ed octahedral site is expected to be a I 6 doublet, with a
unique g factor of ——", . A I 8 quartet with P= —

—,',
Q= ——", lies -36 mK above it, and a I'7 doublet with
g=6 lies highest, -86.5 mK above the ground state.
Assuming the tetragonal distortion in Cs2NaGdC16 to be
quite small, and the Gd +

g factors to be unchanged from
these values, we obtain a Luttinger-Tisza ground-state
energy of Eo ———22. 8 rnK for this salt, if the order takes
place in I 6 alone. When compared with T, =35 mK, this
value is low relative to those of Cs2NaDyC16 and
CszNaErC16. Because the crystal-field splittings in this
material are comparable in magnitude to T„magnetic
order may involve the excited states of the Gd + ion as
well. This is similar to the case of CszNaGd(NO2)6. If
we treat the ground and first excited states as degenerate,
we obtain Eo= —203 mK; this is also the value for the
free ion (all three states degenerate).

Well above T, the paramagnetic susceptibility of
Cs2NaGdC16 follows a Curie-Weiss law with a measured

g factor of 1.91, equal to the free ion value of 2.0 within
experimental error. For single crystals of this material,
we are able to obtain a more accurate value of the Weiss
constant by extending susceptibility measurements up to
50 K on a Quantum Design MPMS SQUID magnetome-
ter, since there are no complications from crystal-field
splittings. We obtain O,x,= —80 mK for a spherical
sample, for which the dipolar Weiss constant 5 is equal
to zero. In common with Cs2NaErC16, and probably also
Cs2NaDyC16, exchange is antiferromagnetic. In these
materials, therefore, exchange is not negligible. The be-
havior of all three salts in the ordered state is consistent,
however, with an ordering process dominated by the di-
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polar interaction. It is possible that this is related to the
fact that nearest-neighbor antiferromagnetic exchange is
expected to lead to frustration in the fcc lattice.

IV. CONCLUSIONS

The apparently undistorted fcc salts Cs2NaDyC16 and
Cs2NaErC16 behave as ideal, isotropic dipolar ferromag-
nets, as predicted by classical theory, within the range of
our measurements. Predicted quantum-mechanical an-
isotropy is not observed in the ferromagnetic state, indi-
cating that it is weaker than expected. Cs2NaGdC16

behaves in a manner consistent with the assumption of a
slight tetragonal distortion of its lattice, with a crystal
containing many tetragonal domains oriented randomly
a1ong the three fourfold axes of the cubic phase. Its sus-
ceptibility is consistent with anisotropic ferromagnetic
order.
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