
PHYSICAL REVIEW B VOLUME 45, NUMBER 21 1 JUNE 1992-I

Spiral-spin-density-wave states in fcc iron: Linear-muSn-tin-orbitals band-structure approach
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A method for electronic-structure calculations of noncollinear magnetic structures has been developed
based on the linear-mu%n-tin-orbitals approach. Calculations of total energies and magnetic moments
for various spiral-spin-density-wave states of fcc iron have been carried out. The results obtained show
that the ground state of fcc iron is the spiral-spin-density-wave state. With the increase of the number of
valence electrons (as in fcc Co) ferromagnetic ordering stabilizes essentially, whereas the decrease of that
(as in fcc Mn) results in the antiferromagnetic ordering of spin moments.

I. INTRODUCTION

The magnetic and electronic properties of fcc iron (y-
Fe) have been traditionally the subject of many experi-
rnental' and theoretical ' investigations. This interest
is connected both with the intermediate position of y-Fe
among the magnetic 3d metals and the known "Invar"
problem. Previous band-structure calculations ' took
into account atomic-magnetic-moment-value variations
only, and the collinear magnetic structures were con-
sidered. However, recent neutron diffraction experi-
ments lead to the conclusion that the ground state of y-
Fe is the spiral-spin-density-wave (SSDW). Hirai inves-
tigated magnetic structure of y-iron basing on the results
of unenhanced magnetic susceptibility calculations and
reached a similar conclusion. But direct band-structure
calculations of such states have not been carried out up
to now. In the present paper we develop a direct compu-
tational approach based on the linear-mu5n-tin-orbitals
(LMTO) method, which allows one to describe both con-
tinuous changes in magnetic moment value and orienta-
tion, i.e., to consider noncollinear magnetic systems with
SSDW states. The method suggested is applied for the
calculations of magnetic and electronic structure of
different spiral-spin-density waves in y-iron, in the range
of wave vector q=q(0, 0, 1), 8=~/2 between q=0 and 1

(in units of 2m/a where a is the lattice constant). Using
the results of these band-structure calculations we have
estimated also the parameters of exchange interactions in
the scope of the Heisenberg model. '

II. METHOD OF CALCULATIONS

In the atomic-sphere approximation the SSDW in the
crystal can be described by the following spin-density dis-
tribution m(r):

m(r) = g ri( fr —r, f ) fm( fr —r, f ) fe;,

A. Multiple scattering in the crystal with SSDW

The first of the problems mentioned above can be
solved in the scope of multiple scattering theory. '
Single-site scattering is determined by the scattering t
matrix, which in the SSDW case is not diagonal in spin
indexes. However, the t; '(E) matrix block correspond-
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sphere and zero outside the sphere. 0 is the angle be-
tween the atomic moment and the global z axis, e, is the
unit vector in the direction of ith atom magnetic mo-
ment, and q is the spin-spiral vector, which defines the
angle between the magnetic moments of neighboring lay-
ers. The arrangement of magnetic moments for some
particular q value is given in Fig. 1 as an example. Being
applied to the band-structure calculations, the distribu-
tion (1) leads to two problems: (a) the loss of translational
symmetry of the crystal; and (b) the SSDW state is the ex-
cited state and the usual density-functional (DF) ap-
proach, which has been constructed for the ground state
of the system of interacting electrons, is not directly appl-
icable here. We have overcome these problems in the fol-
lowing way.

e, =(sin0cos(q. r;), sinOsin(q. r, ), cosO},

where r,- is the radius vector of the ith atom and
g( fr —r,. f) is the function equal to 1 within the atomic

FIG. 1. Schematic picture of SSDW with q =q(0, 0, 1),
q=0. 5 (q is in units of 2n. /a), and 0=~/2 in fcc lattice.
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ing to the ith atom is diagonal in the local coordinate sys-
tem (LCS), where the spin quantization axis is parallel to
the atomic moment of the ith atom. In the global coordi-
nate system (GCS) of the whole crystal the r ' matrix for
the crystal with SSDW (1) can be defined by the relation

t =Ut 'U

where the U matrix is constructed from the spin- —,
' rota-

tion matrices U; connected with the ith atom. For the
spin-density distribution (1) U; is given by the relation

cos(8/2)exp(iq r, /2) sin(8/2)exp( i—q r, /2)
U(8, )= —sin(8/2)exp(iq r, /2) cos(8/2)exp( —iq. r /2)

and transforms the t,
' block from the LCS to the GCS

for the ith atom. Then the energy spectrum of the crystal
is defined by the usual secular equation:

(4)

where the structure constants S depend on the crystal
structure only. g is the scattering path operator. Using
Eq. (2), the secular equation (4) for crystals with SSDW
can be rewritten as follows:

detllg 'll=detll« 'U —Sll=detllr
(5)

S=U 'SU .

In the Bloch representation g
' has the form

gLa L p(k, k') = [&I.~' (E)5rl. 5~p Sl ~ I. p—]5(k k')—
Here L,L' are orbital and o, o'' spin indexes. The g
matrix appears to be diagonal over the wave-vector in-
dex. This rather nontrivial result is a consequence of
the generalized symmetry of the system and has been dis-
cussed by Sandratski. " We have obtained similar results
in the scope of multiple scattering theory. The difference
from Ref. 11, where general symmetry transformations of
local magnetic moments in a crystal with spiral magnetic
structure have been used, is that in the present paper we
have considered the model of spiral-spin-density waves
described by the spin-density distribution as defined by
Eq. (1).

E'[n, m]=E[n, m] —g H f dr [m(r) —m;]
1

C. Estimations of magnetic interaction parameters

The LMTO band-structure calculations for the system
with spiral-spin-density waves can be readily used for the
estimation of exchange integrals in the Heisenberg model:

H,s= —g JiS; S~ . (10)

The relevant expressions for exchange integrals J in the
ferromagnetic case are as follows: '

J,"=(1/4m) Q Im f deb', (E)T"t, (E)&', ,(E)T",(&),

EF
Joo = —(1/4m)f d. s {9,, ( )[eT t, (E)—T t (e))

Joo=XJo .

+ao(s) T~', (s)So(s)T~', (.)],
(12)

obtained in accordance with the condition of certain
magnitude of local moment m, in the ith sphere:

f drm(r)=m,

B. Density-functional formalism for longitudinal
and transversal magnetic fluctuations

In the scope of the atomic-sphere approximation
(ASA) model the spiral-spin-density wave defined by the
distribution (1) can be described as the ground state of
the system with the modified total energy functional

E*[n,m]=E[n, m]+ g f dr[h(r)[m(r) —e~m(r)~]] .
I

Here n and m are electron and spin densities and h(r) is
the Lagrange parameter, which has the meaning of the
field responsible for the fulfillment of the constraining
condition (1). v; is the voluine of the ith atomic sphere.
Longitudinal magnetic fluctuations may be considered in
a similar way making use of the following energy func-
tional:

D. SSDW in the LMTO representation:
computational details

In the scope of the LMTO approach' the secular
equation (5) can be rewritten in the form

det[(E HP=0— (14)

with the Hamiltonian H:

8, , (k)=v,.5„,5,+r,'g[g —s(k)], r,",', .

(15)

Here S; is the unit vector, which defines the direction
of ith magnetic moment. 5/(s) =PI'& (e)—P/i (s), where
P/ (s) are potential parameters of the LMTO method.
T', is the scattering path operator in the LMTO repre-
sentation.
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S are the structure constants of the LMTO-SS
method:

S, ,(k) =S,(k —q/2)
cos~(8/2) —

—,'sin8

—
—,
' sin8 sin (8/2)

+S,(k+ q/2 )

sin (8/2)

—,'sinO

—,'sinO

cos (8/2)

(16)

Here S,(k) are the structure constants of the usual

LMTO method, and I, Q, and V are the potential param-
eters. ' Recently similar expressions for S have been ob-
tained in the scope of the augmented-spherical-waves
(ASW) method. ' The other details of the self-consistent
LMTO-SS method, which we used in the present calcula-
tions, are described in detail elsewhere.

As is seen from Eqs. (15) and (16), the formation of
spiral-spin-density wave leads to the shift of spin-up
states by the SSDW vector q, relative to the spin-down
states, and to their hybridization. Thus, using the
LMTO-SS Hamiltonian (15) and Eqs. (7) and (8) for the
modified total energy functional, one can carry out the
self-consistent calculations of the total energy for the par-
ticular spin-density wave state. In the present paper, we
have carried out such calculations for Fe, Co, and Mn
making use of the von Barth —Hedin exchange-
correlation potential. '

III. RESULTS AND DISCUSSION

The total energies E(q) and local magnetic moments
m(q ) as functions of the modulus of spin-spiral vector q
calculated for a y-Fe crystal with different lattice param-
eters (the Wigner-Seitz radii S) are given in Figs. 2 —4.
For S=2.66, 2.69, and 2.72, the minimum of total energy
corresponds to the SSDW state with q=0. 6(0,0, 1) (Figs.
2 and 3). Figure 3 shows also the total energy of SSDW
with the other q vector: q=q(1, 1, 1). As is seen from
the comparison of Figs. 2(a) and 4, the decrease of local
magnetic moments for S=2.69 and 2.72 a.u. results in
the decrease of the total energy. Such a behavior cannot
be explained by a simple Stoner-like theory. The m(q)
dependence for S=2.66 a.u. differs greatly from the one
found for the other atomic volumes. Two magnetic states
exist for ferromagnetic (FM) (q=0) fcc iron, but only
one for antiferromagnetic (AFM) (q=1) configuration.
For all S values, except for S=2.66, the variation of q
from 0 to 1 results in continuous transformation of the
high-spin state for FM fcc iron into the most stable AFM
state. At the same time, for S=2.66 the spiral states
with 0 ~ q ~ 0.5 correspond obviously (Fig. 4) to the low-

spin state of FM iron. For q )0.5 the nature of the states
with the minimal total energy changes, and they are
counted now with the only magnetic state of AFM fcc
iron.

As is seen from Figs. 2 and 3 the most stable magnetic
configuration of fcc iron at the crystal volumes, corre-
sponding to S=2.66, 2.69, and 2.72 a.u. , is the spiral-
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FIG. 2. The total energy of spiral-spin-density-wave states

with q =q(0, 0, 1) for fcc Fe: (a) relative to that of ferromagnetic
state of the crystal with the same S; (b) relative to the total ener-

gy of ferromagnetic crystal with S=2.72 a.u. S is the Wigner-

Seitz radius for fcc lattice.

spin-density-wave state, which is consistent with the
data. Figure 2(b) shows that the decrease of crystal
volume results in the decrease of the SSDW energy. But
with the increase of S value, the tendency to the forma-
tion of a FM high-spin state becomes more pronounced
and for S=2.78 a.u. fcc iron is already ferromagnetic (as
is true for fcc Fe precipitates in Cu-Au alloys' ).

The dependence of E(q) minimum on the number of
valence electrons becomes obvious from Fig. 5, where the
results of similar calculations for fcc Co and Mn are
presented (obtained with the same Wigner-Seitz radius
value S=2. 69). An increase in the number of valence
electrons leads to the stabilization of ferromagnetic or-
dering (fcc Co), but a decrease tends to stabilize the anti-
ferromagnetic configuration (fcc Mn). Thus our results
show that for a fcc lattice Fe is located at the crossing
point between the ferromagnetic and antiferromagnetic
ordering and exists in the spiral-spin-density-wave state.

The exchange parameters estimated for fcc and bcc
iron making use of Eqs. (11) and (12) are given in Table I.
The Jo; values for five shells of the nearest neighbors to-
gether with the spin wave stiffness constants are present-
ed.



SPIRAL-SPIN-DENSITY-%PAVE STATES IN fcc IRON: . . . 12 333

p

8
-2-

4

15.0—

3.0—

-7
0 1 0

-3.0—

FIG. 3. The total energy of SSD%' q=q(0, 0, 1) and q(1, 1, 1)
relative to that of ferromagnetic fcc Fe. S=2.66 a.u. q is in
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The magnitude of spin-stiffness constant for bcc iron
calculated with the use of effective exchange integrals
given in Table I (Ref. 8) agrees rather well with the exper-
imental data available. As is seen, ferromagnetic interac-
tions prevail in bcc iron. The magnetic behavior of fcc
iron has a more complicated and long-range nature (see
Table I). In this case, effective exchange interaction pa-
rameter Jo, for the first coordination sphere is negative,
but Joz for the second sphere is positive. Such a behavior
of exchange interaction is one of the possible reasons for
the formation of noncollinear magnetic structure. ' How-
ever, for the itinerant magnetics a strong dependence of
exchange interactions on the particular magnetic
configuration is possible. ' ' The Jo; values in Table I
have been obtained for the ferromagnetic fcc iron. Nev-

ertheless, the decrease of the total energy for the low q
values (Fig. 2) can be explained by the Jo, and Joz values

obtained in the scope of a simple Heisenberg model. At
the same time the description of total energy minimum at

q =0.6 in the scope of such a simple model requires the
account of more distant interactions. In other words,

FIG. 5. The total energy of the SSDW states for fcc Co, Fe,
and Mn.

&&(q)=J(0)—J(q), (17)

the appearance of total energy minimum at q =0.6 can be
attributed to some definite electronic states, which are
rather localized in the k space. We have made their
analysis using the results of our calculations.

The band structure of nonmagnetic fcc iron (S=2.66
a.u. ), as calculated by the non-self-consistent LMTO-SS
method [with the spin-up states shifted relative to the
spin-down states by the vector q =0.6(0,0, 1)) is present-
ed in Fig. 6(a). Figure 6(b) shows the self-consistent
bands for the SSDW state. As is seen from their compar-
ison, the influence of exchange interactions (exchange
splitting and hybridization of up and down states) is the
most prominent near the I and I points. The detailed
structure of the states near the Fermi level for the I -X
direction is shown in Figs. 7(a} and 7(c), correspondingly.
The band structure of ferromagnetic fcc Fe (S=2.66)
with the o =%1 states shifted by kq/2, q=0.6(0,0, 1) is
shown in Fig. 7(b}.

When the atomic volume changes, three mechanisms
appear to be responsible for total energy changes. They
are as follows: (1) the shift of spin-up and spin-down
states relative to each other; (2) exchange splitting of
these states; and (3) hybridization of cr =+1 states. All of
them are illustrated in Fig. 7: Fig. 7(a) represents the first
mechanism, Fig. 7(b) corresponds to the second and first
mechanisms together, Fig. 7(c) shows the final result
when all three mechanisms are in effect.

The variation of crystal volume leads to the changes of
relevant contributions of different mechanisms. For
S=2.66 all three mechanisms are comparable and impor-
tant. For S=2.69 and 2.72 the third mechanism is much
less important as compared with the second and first ones
(due to the large spin splitting). In this case the Heisen-
berg model is a rather good approximation and the total
energy of SSDW relative to that of the ferromagnetic
state can be written as follows:

FIG. 4. Local magnetic moment in fcc Fe as a function of
spin-spiral vector q.

J(q)= g Jo, exp(iq r;) . (18)
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TABLE I. Effective parameters of exchange interactions Jo; in Fe (mRy) and spin wave stiffness con-
0 2

stant D'"'" (meV A ). The experimental value D'"~ is 330 (meV A ).

Crystal
structure

bcc, S=2.66
fcc, S=2.66
fcc, S=2.69
fcc, S=2.72
fcc, S=2.78

JOI

1.00
—0.19

0.09
0.48
0.82

Joe

0.60
0.13
0.027
0.41
0.39

—0.02
—0.03
—0.29
—0.27
—0.23

Jo4

0.10
0.59
0.41
0.30

Jos

—0.04
—0.06
—0.02
—0.02

10.69
—2.29
—0.80

5.05
9.21

D theor

Here Jo; is the exchange interaction parameter, which
may be calculated for the ferromagnetic state. ' Thus
for the high-spin state (S=2.69) the model of localized
magnetic moments reasonably describes the dependence
E(q). In the low-spin case (S=2.66) the itinerant
magnetism is revealed and leads to the strong J(q) depen-
dence. '

The decrease of the crystal volume (S & 2. 66) results in
the decrease of the third and second mechanism contri-
butions, as compared with the first one because of the
essential decrease of spin splitting. In the case (m «1)
total energy differences may be written as follows:

(19)
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FIG. 6. Band structure of fcc Fe as calculated by the
LMTO-SS method: (a) non-self-consistent calculation of non-
magnetic fcc iron; bands with o.=+1 are shifted by +q/2,
q=0. 6(0,0, 1). The Wigner-Seitz radius S=2.66 a.u. (b) Same
as for (a), but corresponding to the self-consistent SSDW calcu-
lation with the same q vector.

FICz. 7. Energy bands for fcc iron near the Fermi level: (a)
Nonmagnetic crystal. The bands with o.=+1 are shifted as in

Fig. 6(a) ~ (b) Ferromagnetic fcc iron with the states o.=+1
shifted by q =0.6(0,0, 1). (c) Spiral-spin-density state of fcc Fe
with SSDW q =0.6(0,0, 1) (self-consistent calculation).
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FIG. 8. Total energy of fcc Fe (S=2.66 a.u. ) as a function of
magnetic moment M and SSDW vector q=q(0, 0, 1) as com-
pared with that of nonmagnetic state calculated by the LMTO-
SS method for the same q: (a) Ferromagneticlike SSDW states
with q =0,0. 1,0.2,0.3,0.4; zero point is the total energy of non-
magnetic state with q =0. (b) Antiferrornagneticlike SSDW
states with q=1.0,0.8,0.6. Zero point is the total energy of
nonmagnetic state with q = 1.

in agreement with the neutron experiment results. But
the ASW calculations' give an idea of the shallow total
energy minimum at q=(1,0.3,0). However, two of these
possible states q =0.6(0,0, 1 ) and q = ( 1,0.3,0) are so
close in energy that they cannot be resolved basing on the
ASW calculations. It is worth noting that the experimen-
tally found magnetic state [SSDW with q=(1,0. 123,0))
apparently has rather small magnetic moment and the
SSDW state is defined by the peculiarities of the electron-
ic structure of the nonmagnetic state. As is known, the
Invar properties of y-Fe-based alloys can be connected
with rather complicated dependence of the total energy
on the value and directions of magnetic moments in y-
Fe. The dependence of the total energy changes (rela-
tive to that of the nonmagnetic state) on the local mag-
netic moment value for the different spin-density waves
(ferromagneticlike for q=0. 0,0. 1,0.2, 0.3,0.4 and anti-
ferromagneticlike for q =1.0, 0.8,0.6) is given in Fig. 8.
As is obvious, even for the SSDW with small q values the
local minima corresponding to the different magnetic
states at q=0 disappear. We have performed the self-
consistent total energy calculations for fcc iron taking
into account the possibilities of both transversal (q depen-
dent) and longitudinal (M dependent) fiuctuations of spin
density. Such calculations imply minimization of the
modified total energy functional (7) and (8) with an addi-
tional (other than the electroneutrality of the unit cell)
condition for fixed magnetic moment in the atomic
sphere. The fixed magnetic moment procedure used was
similar to that for collinear magnetics. The magnetic
field H in the modified functional (8) was calculated in
the self-consistent way. Figures 8(a) and 8(b) show the to-
tal energies relative to those of the nonmagnetic state for
the same q value. The differences in total energy for non-
magnetic fcc Fe calculated for different q are due to zero
net moment, but nonzero spin density. The shift of de-
generate in nonmagnetic state bands for the different q
values may lead to some different accuracies in the band
structure and spin-density calculations. The global total
energy minimum is located near the point
(q=0. 6(0,0, 1),M=1.8). Taking that into considera-
tion, the Invar properties of y-Fe-Ni alloys can be more
reasonably explained making use of the suggestion on the
antiferromagnetic nature of y-Fe, ' but in order to make
such an explanation more reliable noncollinear antifer-
romagnetism of y-Fe should be considered.

The results obtained are promising and show that
quantitative band-structure calculations of noncollinear
magnetic systems may well be in the scope of the ap-
proaches similar to the one developed in the present pa-
per.

Here I is the effective intra-atomic Coulomb integral
and y(q) is an unenhanced spin susceptibility. Thus, as is
seen, any conclusions based on the calculations of
unenhanced spin susceptibility are accurate only for
small crystal volumes. As has been shown in Ref. 5, the
susceptibility has the maximum at q =(1,—,,0), which is
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