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Finite-field chiral tetracritical behavior in a distorted triangular antiferromagnet
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The magnetic-field —temperature phase diagram of the antiferromagnetic planar model on a hexagonal
lattice with a small basal-plane distortion is studied within mean-field theory. The convergence of four
critical lines is shown to occur at a field H„)0 as a consequence of in-plane anisotropy of the form Es .
This is in contrast with the previously studied H =0 tetracritical behavior of the regular triangular lat-
tice, as realized in CsMnBr3 [B.D. Gaulin et al. , Phys. Rev. Lett. 62, 1380 (1989)]. The present system
also exhibits the same chiral degeneracy and should be relevant to the previously misidentified multicriti-
cal behavior of (CH3)4NMnC13.

Tetracritical behavior exhibited by the antiferromag-
netic planar model on a stacked triangular lattice is now
reasonably well understood' with experimental realiza-
tion found in CsMnBr3 (Refs. 5 and 6) [and possibly Ho
(Ref. 7)]. The magnetic-field tem—perature phase diagram
(with H in the basal plane) shows two critical lines merg-
ing at the Neel temperature. Mean-field analysis ' also
reveals two additional critical lines merging at this point
from the physically inaccessible region H &0. Thus,
only two of the four critical lines can be observed experi-
mentally in these systems. Additional interest in this be-
havior is due to the discrete chiral degeneracy associated
with the frustration-induced 120 helical spin structure at
H =0 and the suggestion of a new universality class.

In the present work, mean-field results are given for the
phase diagram associated with a slightly distorted
(stacked) triangular lattice, which show a chiral tetracrit-
ical point at a finite H &0 due to a small in-plane anis-
tropy Es„. Motivation for this study comes from the
known structural phase transition that occurs in the pla-
nar antiferromagnet (Ch3)4NMnC13, commonly referred
to as TMMC. A small monoclinic (P2i/b) distortion' of
the room-temperature hexagonal P6&/m structure takes
place at 128 K characterized by y=—59.5'. We suggest
here that the previous characterization of the multicriti-
cal point in this material as n =2 bicritical"' is not
correct because of the frustration of the (nearly) triangu-
lar lattice. In addition to the in-plane spin anistropy,
such a distortion also gives rise to an asymmetry of the
exchange interactions in the basal triangular plane. A
consequence of such asymmetry is the stabilization of an
incommensurate modulation with the interspin angle ap-
proximately 120 for small distortions. '

The magnetic properties of these distorted hexagonal
antiferromagnets are characterized by the Hamiltoni-
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where z~~c and D, E &0 with D &&E. We assume here
that the anisotropy coefficient D is sufficie}y large to en-

sure s„=0. The only difference between (1) and the
Hamiltonian that describes regular hexagonal crystals is
the in-plane anisotropy term E. The formulation of a
suitable Landau-type free energy follows from our previ-
ous work. ' ' To fourth order in the spin density

s( r ) =m+ Se '~'+ S*e (2)

the result can be expressed as
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where b=&3a/2, J, represents the interplane interac-
tion and the two intraplane couplings (J'=-J for small
distortions) are defined precisely as in Ref. 13. With
J, J,J') 0, a modulation characterized by simple antifer-
romagnetic order along the c axis (Q, =n/c) and an in-
commensurate [nearly 120', e.g. , Q„=4~/(3a), Q =0]
structure in the basal plane is stabilized. The inclusion of
a small nonlocal anisotropic interaction of the form

J,'s„s, would result in temperature and magnetic-
field dependence of the incommensurate wave vector.
Note that within a molecular-field treatment of the Harn-

where S =S S* and A&= (aT —T&). Landau-type sym-
metry arguments require that all coefficients be a priori
independent to give a phenomenlogical model. This free
energy can also be derived from the Hamiltonian (1)
within the molecular-field approximation, which yields
the relations

To= jJ&/a, A —= A„0=2j E, Ao= AQ=O

and 8; =b T, where a, b are related to the angular momen-
tum j through the Brillouin function. With only close-
neighbor interactions included, the Fourier transform of
the exchange integral is given by

J& =2J,cos(g, c )
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iltonian (1), anisotropy terms that are fourth order in the
spin density do not appear in the free energy (3). Some
effects of such terms on the magnetic phase diagram in
the case of purely hexagonal antiferromagnets are con-
sidered in Ref. 1. (From the analysis given below, it can
be seen that terms such as m and ~S

~

serve merely to
renormalize the coefficients of the existing isotropic terms
by a small amount. )

The xy-spin free energy (3) has the same structure as
the one previously analyzed by us for the Heisenberg case
with axial anisotropy, ' and for the same reasons (frustra-
tion), two continuous transitions also occur at H =0 in
the present model system. At high temperatures (just
below the Neel point), where S is small, the polarization
of S is determined by the second-order anisotropy term
A„ to give a configuration S~~x. At lower temperatures,
the fourth-order term ~S S is minimized by a helical po-
larization, ' S S=O, for B2)0. This competition be-
tween these two terms then yields an elliptical
configuration of the spin density at low T. Following the
analysis of Ref. 14, the polarization vector can be written
as

S=S(x cosP+i y sinP)

and with H~~x, the free energy (3) becomes

F= AgS + 2BS +
2 Aom + &B3m +Bsm S —mH

+C&S cos P+282S cos P,
Cp=(A„+28iS 284m )(—4B~S ),

(6)

(7)

where Ao= Ao —A„o——a(T —To) and 8 =28i+82
This free energy is minimized by the following values of
the parameter, which characterizes the polarization vec-
tor: P=O (phase 6), linear with S~~x; P=n/2 (phase 5),
linear with S~~y; 0 (P (n/2 (phase .7), elliptical with Slz.
In addition, the paramagnetic state is described by S =0
(phase 1). (This numerical labeling of the phases follows
our notation of Ref. 1.) At H =0, the Neel temperature
(1-6 transition) is given by Tzi= T&+ A„/a. As the tern-
perature is lowered, a second transition (6-7) occurs to
the elliptical phase at T~2= T~, —A„B/(2aBi).

The schematic phase diagram for H
~ ~

x shown in Fig.
1(a) (based on calculations assuming 8; & 0) can be under-
stood with simple arguments. For sufficiently large field
strengths, the anisotropy coefficient C& can change sign
so that the linear phase 5 with SLH is stabilized. The
multicritical point occurs when the system becomes iso-
tropic, C&=0, at the critical value of temperature and
field ( T,H ) as given in Ref. 14 (with A, replaced by
A; note that the multicritical point of Ref. 14 is different
from the present case, involving a spin-fiop transition).
Analytic expressions for the 1-5 and 1-6 phase boundaries
are given by Eqs. (14) and (15), respectively, of Ref. 14.
No competition is induced by a field H~~y so that the
phase diagram as depicted in Fig. 1(b) occurs (with simi-
lar results for H~~z).

The multicritical point of Fig. 1(a) has precisely the
same symmetry and characteristics as the H =0 transi-
tion in CsMnBr3, ' and can thus be described as an
n =2 chiral tetracritical point. It occurs here at a finite

H„

FIG. 1. Schematic phase diagrams for H paralle1 (a) and per-
pendicular (b) to the easy in-plane axis showing the paramagnet-
ic phases 1, linear phases 5 and 6, and elliptical phase 7. All
lines represent continuous transitions. The solid circle in (a)
denotes the chiral tetracritical point.

field H )0 as a consequence of the in-plane anisotropy
A . An analogous situation can be found in the case of
the unfrustrated (bipartite) planar (or Heisenberg) antifer-
romagnet when anisotropy is added. Only linear phases
appear in this case since Q= —,'G (where G is a reciprocal
lattice vector} and the spin density is then independent of
Sz. In the absence of anisotropy, a bicritical point occurs
at H =0, r= T„ in the (H, T) phase diagram, where
SlH is stabilized at H & 0 and the configuration S~~H ap-
pears at H &0. The 8=0 axis is a spin-flop line. Add-
ing uniaxial anisotropy moves the multicritical point to a
finite field H &0 and familiar n =2 (n =3) bicritical be-
havior is the result. '

There has been tremendous effort over the past 20
years to understand the low-temperature magnetic prop-
erties of TMMC. "' This interest is largely due to the
quasi-one-dimensional nature of the exchange interac-
tions, J/J, —10 and the possibility for realistic quan-
titative comparison between experimental data and sim-
ple model calculations. The unusual magnetic-field
dependence of the Neel temperature as well as anomalous
spin excitations have been well explained by theories of
soliton dynamics. "' Of interest here is the cusplike be-
havior seen in the (H, T}phase diagram for the paramag-
netic boundary line with Hlc (see Fig. 2). This feature
phase has been attributed to the existence of a n =2 bi-
critical point" '2 due to the anisotropy E (where the mag-
nitude of E is about the same as the interchain exchange
interaction J}. The first-order spin-fiop line associated
with this previously anticipated bicritical behavior, how-
ever, has not been observed but there appears to have
been no systematic study of the phase diagram. Experi-
mental difficulties are a consequence of the relatively low
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FIG. 2. Phase diagram of TMMC for H along the easy axis
(solid circles form the data of Ref. 18 and solid lines from the
Atted theory) and H perpendicular to the easy axis (open circles
and dashed line). Experimental data is not available for temper-
atures below about 0.5 K. Phases are as indicated in Fig. 1.

temperatures involved, since the Neel temperature is
0.83S K and the apparent multicritical occurs at about
0.S K. The effects of tripartite frustration have become
better understood in recent years and it is clear from the
analysis presented here that distorted hexagonal antifer-
romagnets described by the Hamiltonian (1), such as
thought to be the case with TMMC, should exhibit n =2
chiral tetracritical behavior and not a standard bicritical
point.

The relevance of tetracritical behavior for TMMC can
be further illustrated by the results of a crude fit of the
theory to available experimental data, ' in the spirit of
Ref. 14. Although there are a large number of parame-
ters [a, To, T&, A, 8, (where i =1—5)], some can be
determined independently and the phase diagram is quite
complicated. A comparison of paramagnetic susceptibili-
ty data' to the expression yo '=a(T —To) yields the es-
timates a—=68 (in cgs units per cm ) and To—= —90 K.
Extrapolation of the data of Ref. 18 for the 1 —S bound-
ary to H =0 gives T& —=0. 16 K and a fit to this data at
T=1.1 K then yields B5=——6.9. As with the quasi-
one-dimensional system of Ref. 14, a negative value for
B5 is responsible for the increase in temperature of the
high-field phase boundary with increasing H. These re-
sults can then be used to obtain A —=4S.9. With the as-
sumption that the multicritical pont occurs at T —=0.52
K and H =—1.1S T, the estimates B3=—24 and B4=—6.9
can be made. B, and Bz (which are relevant only to the
5-7 and 6-7 boundary lines) cannot be estimated by fitting
to the limited data available so the reasonable value (see
Ref. 14) of 5.0 was assigned to both of these parameters.

The resulting phase diagram is shown in Fig. 2 for both
H)~x and H ()y, along with the data of Ref. 18. The inabil-
ity of the present mean-field model to yield good quanti-

tative agreement is not surprising in view of its omission
of effects due to soliton dynamics. The results are of in-
terest, however, as they offer a possible explanation for
the experimental observation of only a single transition at
0=0 [compare with Fig. 1(a)], since a value Tzz&0 is
predicted here in the case of TMMC. In addition, they
provide some guidance for any future investigation of the
low-temperature region of the phase diagram.

Additional complicating factors may be relevant in the
case of TMMC regarding the existence of tetracritical be-
havior. Based on the assumption of a bipartite lattice, de
Groot and de Jongh" suggest that a consequence of
quasi-one-dimensional soliton dynamics may be the con-
tinuous reorientation of the spins (Si) as the field in-

creases (with no spin-flop transition). The manifestation
of this possibility for the real tripartite TMMC is likely
the elimination of any true linear phase (except at T=O)
so that only the elliptical phase 7 would occur as an or-
dered state. In this case, the multicritical point of Figs.
1(a) and 2 would be replaced by a simple indentation in
the paramagnetic boundary. Precisely this behavior
would occur within the present model if an interaction of
the form E'g; s;„s;, which is allowed by symmetry, were
added to the Hamiltonian. Because the hexagonal lattice
is only slightly distorted in TMMC, it can be expected
that E' is very small. Only further experimental investi-
gation can resolve these issues.

In conclusion, it has been demonstrated by this work
that a slight distortion of the (stacked) triangular xy anti-
ferromagnet moves the n =2 chiral tetracritical point to
a finite field H &0. In contrast with systems of regular
triangular symmetry (e.g. , CsMnBr3), the distortion al-
lows for the possibility to observe all four critical lines.
These results should be relevant to TMMC and isostruc-
tural (CH3)~NMnBr3 (TMMB, which has a much higher
Neel temperature at 2.54 K). The present study com-
pliments those of Ref. 9, which conclude that incom-
mensurate in-plane order should occur as a consequence
of such distortions. In spite of the strong interest in
TMMC in recent decades, there appears to have been no
neutron-diffraction determination of the magnetic struc-
ture in this material. It is of interest to note that chiral
tetracritical behavior also occurs in the generalized ver-
sion of Villain's fully frustrated XY model ' and that the
phase diagram of the hexagonal superconductor UPt3 ex-
hibits a structure similar to that depicted in Fig. 1(a) as a
consequence of coupling to long-range magnetic order.
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