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Effect of impurities on the magnetic ordering in chromium
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It is well known that impurities profoundly alter the magnetic properties of chromium. For example,

doping with as little as 0.2% vanadium changes the phase transition from weakly first order in pure
chromium to second order. While vanadium impurities suppress the Neel temperature T&, doping with

manganese dramatically enhances T&. Impurities also change the wave vector of the spin-density wave,
which has the order parameter g. According to the theory of Young and Sokoloff (YS), the first-order
transition in pure chromium is caused by a charge-density wave with order parameter 5 ~ g . Scattering
by impurities suppresses the charge-density wave and drives the transition to second order. In this paper
we refine the YS formalism by examining the subtle balance between the spin-density and charge-density
terms in the free energy. We find that the first-order transition is destroyed when the concentration of
vanadium exceeds about 0.15%, in agreement with experimental measurements. We also study the effect
of impurities on the band structure and Neel temperature.

I. INTRODUCTION

As shown by neutron-scattering' and elastic-strain '

measurements, the antiferromagnetic phase transition of
chromium at Tz =310 K is weakly first order. Below Tz
the spin-density wave (SDW) in chromiutn is incom-
mensurate with the lattice. ' The profound effect of im-
purities on the magnetic ordering in chromium has puz-
zled and intrigued scientists for some time. Doping with
as little as 0.2% vanadium destroys the first-order transi-
tion, and doping with 0.1% manganese broadens the
transition so that its order is indeterminate. While dop-
ing with vanadium decreases the Neel temperature Tz,
doping with manganese increases Tz substantially. The
mean-field theories developed by Zittartz and Young
and Sokoloff (YS) do indeed predict that impurities will

suppress the first-order transition and shift the Neel tem-
perature. By examining the subtle balance between com-
peting terms in the free energy, we find that the YS
theory can produce a threshold concentration of impuri-
ties below 0.2% and can explain the effects of vanadium
and manganese impurities on the Neel temperature.

The band structure of pure chromium' is composed of
an electron "jack" and a slightly larger hole "octahed-
ron, " which are imperfectly nested by the wave vector
Q = 2m( 1 + t) )/a, where a is the lattice constant of
chromium. Because t)(0, the SDW with wave vector Q
is incommensurate with the lattice. The addition of
vanadium, with fewer conduction electrons than chrorni-
um, lowers the Fermi energy of the system, thereby en-
larging the hole octahedron and reducing the electron
jack. Therefore doping with vanadium increases the

magnitude of the mismatch 8 and the incommensurabili-
ty of the SDW. But alloying with manganese or rhenium,
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FIG. 1. Schematic drawing of the two hole and one electron
bands in chromium, which are imperfectly nested by the wave
vector Q. The energy levels near the Fermi surface are also
shown for k & 0.

which have more conduction electrons than chromium,
decreases the mismatch ~B~ and increases the commen-
surability of the SDW.

Because QA2~/a, the band structure of chromium ac-
tually contains one electron and two hole surfaces, as
shown in Fig. 1(a). Because of the coupling between the
hole surfaces, even harmonics of the SDW may exist.
The second harmonic of the SDW is equivalent to a
charge-density wave (CDW) with wave vector 2Q.

While the SDW is induced by the Coulomb interaction
A, between the electron and hole surfaces, the CDW is
induced by the Coulomb interaction k' between the two
hole surfaces. As we shall see, the CDW order parameter
5 is proportional to the square of the SDW order parame-
ter g. So, near Tz, 5 is usually quite small. But a CDW
instability occurs as the Coulomb interaction A,

' ap-
proaches —,'. When A,

'=
—,
' the CDW may exist even if

g =0.
According to the mean-field theory of YS, the CDW is

responsible for the first-order transition in pure chromi-
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um. When A,
' is sufficiently close to —,', the large CDW

drives the first-order transition. The threshold value of
A, ', above which the transition becomes first order, is
given by A,~. So the phase transition is first order in the
regime A,z & A,

' & —,'; above —,
' or below A,+, the transition is

second order. Because the transition is weakly first or-
der, A.

' is just above the threshold value A,z =0.4.
Although weak, the first-order transition in pure

chromium was clearly observed by Arrott, Werner, and
Kendirick, ' who measured a discontinuous change at Tz
in the neutron-scattering intensity at the wave vector Q.
Arrott, Werner, and Kendirick found that the rms mag-
netic moment of the SDW at Tz is about 0.27 times the
magnetic moment at T=O. The first-order transition can
also be observed in the discontinuous change of the linear
strain and thermal expansivity ' of pure chromium at
Tx

Adding impurities to a sample of pure chromium
quickly destroys the weak first-order transition. A sam-
ple with 0.2% vanadium no longer displays a discontinui-
ty in the neutron-scattering intensity at Q. The discon-
tinuity in the thermal expansivity is smaller in a sample
with 0.1% vanadium and vanishes in a sample with 0.2%
vanadium. In neutron-scattering measurements, Lebech
and Mikke" found that the phase transition is still first
order in compounds with 0.06% and 0.18% rhenium, but
is second order in a sample with 0.7% rhenium. Hence
the threshold concentration of impurities probably lies
somewhere between 0.1% and 0.2%.

Several ideas have been advanced to explain the pro-
found effect of impurities on the first-order transition.
Falicov and Penn' speculated that the most important
effect of vanadium impurities is to decrease the wave vec-
tor Q and increase the incommensurability of the SDW.
According to YS, however, the first-order transition is
destroyed by impurity scattering, which breaks electron-
hole pairs and suppresses both the SDW order parameter
g and CDW order parameter 5 ~ g . Significantly, the
theory of YS does not consider the effect of impurities on
the wave vector Q or on the other band-structure param-
eters such as the quasiparticle energies near the Fermi
surface. Unfortunately, the numerical estimates of YS
were incompatible with a threshold concentration as
small as 0.2%.

In this paper we use the formalisms of Zittartz and YS
to calculate the threshold concentration of impurities.
Our results for the modified SDW and CDW order pa-
rameters in the presence of impurities differ somewhat
from the results of YS. After including correction terms
neglected by YS, we obtain a threshold impurity concen-
tration for vanadium between 0.15% and 0.2%, depend-
ing on the cutoff energy co. Therefore a small impurity
threshold can be explained solely by impurity scattering,

I

without considering the effects of impurities on the band
structure of chromium.

In order to obtain analytic results near the Neel tem-
perature, we expand the mean-field equations in powers
of I /Tz and Tz/zo, where I is the energy width pro-
duced by impurity scattering and zo is the energy
mismatch between the hole Fermi surfaces. Since' I =3
meV, T&=27 meV, and zo=500 meV, the energy scales
are fairly well separated. The final parameter of the
theory is the cutoff energy co, which determines the
Coulomb interaction A, in terms of Tz. Because this ener-

gy is not fixed experimentally, we only assume that co lies
somewhere between 200 and 500 meV.

This paper is divided into five parts. In Sec. II we re-
view the formalism of YS for the SDW and CDW order
parameters. In Sec. III we use this formalism to calculate
the jump in the SDW order parameter at T~ in the ab-
sence of impurities. This relationship allows us to deter-
mine the value of the Coulomb interaction A.

' between the
hole surfaces in terms of the experimentally known
discontinuity of the magnetic moment at Tz. In Sec. IV
we use the method of Zittartz to study the effects of im-

purity scattering. In Sec. V we calculate the threshold
concentration of impurities as a function of A, '. Using the
result of Sec. III, we finally obtain an expression for the
threshold impurity concentration as a function of the
jump in the CDW order parameter of pure chromium. In
Sec. VI we summarize our results and discuss the possi-
bilities for future experimental work. Several integrals
are evaluated in Appendix A; in Appendix B we evaluate
the sixth-order g term in the free energy of pure chromi-
um; to first order in I, the modified order parameters and
frequencies are evaluated in Appendix C; and in Appen-
dix D we evaluate the various contributions of order I to
the self-consistent equation for the SDW order parame-
ter.

II. YOUNG-SOKOLOFF FORMALISM

In this section we review the formalism of YS for the
SDW and CDW order parameters of pure chromium. As
expected, the phase transition becomes first order in a
narrow range of A,

' between A,F and A,,', which will be
evaluated shortly. Because the non-nested contributions
to the Neel temperature are included, our results differ
slightly from the original results of YS.

Since the band structure of chromium contains two
hole and one electron bands, the Green's function
G(k, ice„) is a 6X6 matrix (accounting for the spin) with
Matsubara frequencies co„=2m T(2n+1). Following YS,
we write the inverse Green's function as

G '(k, iso„)=
[iso„—e, (k)]1

[ico„—Eb (k) ]1 —51

[iCo„—Eb+(k) ]1

where e, (k) is the energy of the electrons (in band a), while
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Eb+(k) =Eh(k+Q)

are the energies of the holes (in bands b ). This form for the inverse Green's function assumes that &+0 and Q+2~/g.
When 8 =0, a 4 X 4 matrix should be used to model the one electron band and one hole band. However, our general re-
sults for BWO smoothly interpolate with previous results for 0=0. Assuming that the SDW is polarized in the n direc-
tion, the SDW order parameter is given by

g=gn. cr .

Of course, the CDW order parameter 15 is diagonal in the spin indices.
The inverse of Eq. (1) is given by

T

1 [ [ico eb +(k ) ]

X [iso„eb —(k)]—5 ]
1

G(k, ice„)=—n crg j [ice„—eb+(k}]+5]

n crg [ [ice„—Eb (k)]+5]

n erg[[ice„e&+—(k)]+5] n cJg I [ico„—eb (k)]+5]

1[[ice„—E, (k}] 1 j [ico„—c,, (k }]5+g
X [iso„—Eb+(k)] —g ] 1I [ice„—e, (k)]

1[[iso„—E, (k)]5+g ] X[ico„eb (—k)] —g ]

where

2)= [ice„—E, (k) ][ice„—Eb+(k)][iso„—E& (k) ]
—[ice„—E, (k) ]5 g[ic—o„—Eb (k) ] g'[i—co„—Eb+(k)] —2g 5 (5)

is the determinant of 6
Because the traces of the ah+ matrix elements vanish, the self-consistent equations for the SDW and CDW order pa-

rameters are

n'erg= ~ y [&,b+b ,6 (—k ico„)+&„b b 6 (k i~„)]
n, k

5=—g 1Ub b+b b+ g Gyy
+ (k, ice„) vb b b—+b+G "+(k,ice„)

n, k r
(7)

i co„—eb (k}+5
(8)

[ice„E,(k)]5+g-5= — Tg—

where the direct interaction U &r& only couples quasipar-
ticles with the same spin and the exchange interaction

v~&r& is spin independent.
It is straightforward to show that (S,, ) is proportional

to the SDW order parameter g and oscillates with wave
vector Q. The charge density, on the other hand, is pro-
portional to the CDW order parameter 5 and oscillates
with wave vector 2Q. The formalism of YS ignores
higher harmonics of the SDW which may be induced by
the coupling between the charge- and spin-density waves.

Substituting the matrix elements of the Green's func-
tion into the self-consistent equations, we find

I

then both g and 5 vanish except for the particular value
of v' satisfying Eq. (9) with g =0. For any other value of
v', both v and v' must be nonzero to support a CDW.

If v' and 5 vanish, then Eq. (8) for g is formally identi-
cal to the self-consistent equation for the superconduct-
ing order parameter 5 in BCS theory. Like 6, g also has
the significance of an energy gap. The interacting quasi-
particle energies are found by setting 2)=0. If 5=0, the
Coulomb interaction v produces an energy gap of 2g at
the Fermi surface. As in BCS theory, the zero-
temperature value of g is then given by g(0) =1.76T~. If
v' and 5 are nonzero, however, the straightforward analo-

gy with BCS theory disappears and the set of self-
consistent equations becomes more complicated.

The integrals over momentum can be evaluated by us-

ing the simple form for the electron and hole energies
originally proposed by Falicov and Penn

where

+aab —b —++ah+ b —a (10)

E, (k)=z,

E„+(k)= —z,
Eb (k) = —z+zo,

(12a)

(12b)

(12c)
I

+b —b —b+b+ —2 Ub —b+b —b+

are the modified effective interactions. If v'=0, but v&0,
then the CDW order parameter vanishes, but the SDW
order parameter is nonzero. On the other hand, if v=O,

where z =vF k —cF is the energy of an electron measured
from the Fermi energy and zo=500 meV is the energy
mismatch' between the two hole surfaces. Relations
(12a)—(12c) are valid over the portion of the Fermi sur-
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face shown in Fig. 1(b), which is nested by the b+ and a
bands. Because of the symmetry between the two halves
of the Fermi surface, all integrals can be evaluated with
these energies. As ~B~ decreases, Q approaches 2m. /a and
zo tends to zero. In that limit, of course, only two bands
survive and Eb+(k}=sb (k).

Since 5 is of order g, it does not contribute to the
linearized self-consistent equation for g:

1+V ~f eb+ f b—

N g Eb+ Cb

Expanding the difference of Fermi functions in powers of
zp we find that'

D =1—2A, ',

p Z Zp Zp Z

(13)

T 1 13 (2G —1/A, )
xo oe

where

(14)

where f(z)=1/[exp(Pz)+1] is the Fermi function. The
coupling constant A, =vp(sF)/2 is proportional to half
the density of states at the Fermi surface. The first term
in Eq. (13) is produced by the nested portion of the Fermi
surface; the second term, which was neglected by YS, is
produced by the pairing between non-nested electrons
and holes with energies differing by zp.

As usual, the cutoff cp is required to obtain convergent
integrals and signifies the energy below which the quasi-
particle excitations are well defined. Physically, the
cutoff must be much larger than the zero-temperature or-
der parameter g(0) =0.06 eV and much smaller than the
Fermi energy' cF =1 eV. Since zo provides a natural
energy scale for the problem, we believe that cp lies

slightly below zp. However, all of our results will be plot-
ted as functions of the cutoff between 200 and 500 meV.

Evaluating the first integral in Eq. (13), we obtain the
Neel temperature of pure chromium:

where I,'=v'p(sF)/2 is the coupling constant between
holes. When A, '=A, ,'—:—,', the self-consistent equation for
5 has a nontrivial solution even when g =0. So, at A, '„a
CDW can exist without a SDW. For all other values of
A, ', both above and below A,,', 5 is proportional to g and a
CDW cannot exist in the absence of a SDW.

Because G approaches 1/(4A, ) very rapidly as z0~0, 5
vanishes as the SDW becomes commensurate. But, for
large zo, 5 falls off like 1/zo. Numerically, 5/g reaches
a maximum when zp 0.95Ep.

To evaluate the self-consistent equation for g to order
g is rather complicated. Because zp is large compared
with TNo, this task can be simplified by neglecting the
non-nested contributions to the self-consistent equation.
With the two exceptions mentioned below, terms of order
T~o/zo and higher can be safely neglected in Eq. (8). The
first exception is that the logarithmically divergent in-
tegral G is always retained, even though it is formally of
order (so/zo) . The second exception is introduced be-
cause the CDW order parameter 5 diverges as A,

' ap-
proaches k,'. Since A,

' is very close to A,,'= —,', 1 —2A,
' is

taken to be of order (T&0/zo) . Therefore 5 is of order zo
and terms of order (T~o/zo) /(1 —2A, ') are retained in
the self-consistent equation for g.

Expanding Eq. (8) to order g and neglecting terms of
order ( TNp/zp ), we find that

f(z) f zo

~p 2Z Zp Zp 2Z
(15)

0.45

5= —2 (1—4AG},V g
zpv D

where D is given by

(16}

is evaluated at T~p. Because G is logarithmically diver-
gent, the integral over energy must be cut off at cp. When
zo =0, G( Tzo) = 1/(4A, ) and we recover the result of Zit-
tartz for Tzo when chromium has only two bands.
When zo=so, G(TNp)=0. 3, and the non-nested portion
of the Fermi surface multiplies the result of YS by about
1.8. Hence the non-nested contribution to Eq. (14) lowers
the value of A, required to produce a given Neel tempera-
ture.

In Fig. 2 we plot A, versus the cutoff cp using TNo=26. 7
meV and zp =500 meV. As expected, the coupling con-
stant A, is a decreasing function of cp. For values of cp be-
tween 400 and 500 meV, A, lies between 0.30 and 0.27. If
the non-nested portion of the Fermi surface was neglect-
ed, A, would increase by about 25%%uo.

Using the quasiparticle energies of Eq. (12), we can also
evaluate 5 to order g:

0.40

0.30

0.25 I I I I I

200 250 300 350 400 450 500

E,(mev)

FIG. 2. Coupling constant A, vs the energy cutoff cp for
TNp =26.7 meV and zp =500 meV.
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g(3)
8~ T

4A,
' (1—4A, G)2

g'z' 1 —2A,
'

0

T= —ln
TNO

(19)

0.44

0.43

0.42
where g(3) =1.204 is the Riemann g function defined in
Appendix A. The various integrals in the self-consistent
equation have been evaluated in Appendix A and B.
When 6 is neglected, this expression agrees with the re-
sult of YS. If A, '=0, the expression in brackets is positive
and Eq. (19) has no solution for g when T) T~o. The
transition is then second order. But if the second term in
brackets exceeds the first, then a nontrivial solution for g
exists when T) Tzp. In that case the transition is first
order. These two regimes are shown schematically in
Fig. 3(a), where the order parameter is plotted versus
temperature.

To obtain the threshold value of A, ', above which the
transition becomes first order, we set the expression in
brackets to zero. This yields

7 A g(3) zo

1 —2A, ~ 32m. ( 1 —4A, G )

or, with the dimensionless parameter y =zp l27TT~p,
]

1+(1—4A, G )
1 4
2 77 y g(3)

(21)

J(

F(g)

which is plotted in the lower curve of Fig. 4. When cp

equals zp, 6 is approximately 0.30 and k~ is close to 0.39.
Note that kz initially decreases as c.p increases, but passes
through a minimum slightly above zp.

So the phase transition of chromium is first order if the
Coulomb interaction A.

' lies in a narrow window of values
between A,F =0.4 and A,,' =0.5. If k' exceeds A,,', then the
expression in brackets is again positive and the transition
is second order. In the limit zo~0, G ~1/(4A, ), so that
both the numerator and denominator of Eq. (20) vanish.
However, Eq. (20) was derived by assuming that
zp &) T~p. If the threshold was evaluated exactly, then
the numerator in Eq. (20) would vanish more slowly than
the denominator. So, as zp~0, kz~ —,

' and the window

0.41

0
0.40

0.39

0.38-

0.37 I I I I I

200 250 300 350 400 450 500

t, (mev)

FIG. 4. Threshold value I,+ {dashed) above which the transi-

tion becomes first-order and the true value of A,
' {solid) vs the

cutoff co. This figure uses the same parameters as Fig. 2 as well

as go / T~o =0.7 1 .

of values between k~ and —,
' shrinks to zero. In order to

obtain a first-order transition with a small value of zp,
chromium must be on the brink of a CD% instability.

Generally, the phase transition is weakly first order
when A,

' just exceeds kF. The transition becomes more
strongly first order as k' approaches the CDW instability
at A,,'. As shown in Fig. 3(b), the true Neel temperature
in the first-order regime is no longer given by T~p. In or-
der to evaluate Tz, we must expand the self-consistent
equation to order g . This task will be undertaken in the
next section.

III. FIRST-ORDER TRANSITION
IN PURE CHROMIUM

In this section we calculate the true Neel temperature
Tz and the jump gp in the order parameter at Tz in the
first-order regime A,z & k' & k,'. To do so we construct an
efFective free energy F(g), which can be expanded near
the Neel temperature in powers ofg:

F(g)= A)g + Aqg + A3g + . (22)

(a)

gp

(b)

where we set F(0)=0. Using this free energy, we can ob-
tain analytic results for g() and Tz. In the original work
of YS, gp and Tz were evaluated numerically.

The self-consistent equation for g is given by the condi-
tion dF/dg =0. Retaining only the three lowest-order
terms in Eq. (22), we find

FIG. 3. Schematic drawing of the SDW order parameter g vs

T for the second-order regime {k'(A.F) and the first-order re-

gime {A,'& kF). Also shown is the free energy vs g at the Neel
temperature T& in the first-order regime.

A
&
+2Apg +3 A3g =0 (23)

In the first-order regime, the Neel temperature TN and
jurnp gp of the order parameter at T& are obtained by set-
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ting F(g)=0, as shown in Fig. 3(b). This condition can
be written

A&+Azg +A3g =0.
Together with Eq. (23), this relation fixes go at

Az
gp=

2A
~ (25}

When the transition becomes first order, A
&

changes sign
from negative to positive and A z changes sign from posi-
tive to negative. From Eq. (25) we conclude that A3
must be positive in the first-order regime. The Neel tem-
perature is now obtained by substituting Eq. (25) into ei-
ther Eq. (23) or (24), with the result

4A, A3=A', . (26)

As gp ~0, both A, and A z tend to zero and TN ap-
proaches TN0, which is given by the condition A

&
=0.

The coefficients A „Az, and A3 can be determined up
to a constant by writing the self-consistent equation for g
in the form of Eq. (24). Therefore, Eq. (19) implies that

r

T
A =—ln1

TNO
(27)

(1—4A, G) 7){, g(3}
A,zpz 1 —2A,

'
32m T

(28)

49$(3) k 31K,g(5)
128m T~o 1 —4A, G 256~ T~o

Also, since Az is very small near the threshold for the
first-order transition, this coefficient may be linearized in
powers of (A,

' —
A,

' ):

A~= — g(3)
16m

2
Zp

TNO

1

(1—4A, G )

(30)

which anticipates the fact that TN —
TNp is of order

( A,
' —A,~ )2.

Using Eq. (26), we find that the first-order Neel tem-
perature is given by

Tx —
Taro 1 7A,g(3) zo (~ ~F }

Two 2 4~ Two (1—4&G )'

where the sign of A, is chosen to be positive for T & TN0.
In order to evaluate TN and gp, we also need the sixth-
order term in the free energy or the fifth-order term in
Eq. (8).

To evaluate the fifth-order term in the self-consistent
equation for g, we must first calculate the fourth-order
term in the self-consistent equation for 5. The result for
5 is provided in Appendix B. After expanding the self-
consistent equation for g in terms of 5, we obtain the ex-
pression for A3 in Eq. (B3).

Since TN is very close to T&p and A.
' is very close to A,z,

A 3 may be evaluated at TNp and A,~

Note that T~ —Tzo is proportional to (A,
' —A~) and

grows as A,
' —

A,+ increases or as the transition becomes
more strongly first order. Also, as expected, the first-
order Neel temperature TN is slightly larger than the
second-order transition temperature TN0. Since we have
linearized A2 in A,

' —A,z, Eq. (31) assumes that A,
' is small-

er than the critical value A,,' =
—,', above which the transi-

tion is once again second order.
Using Eq. (25), we finally find that the jump of the or-

der parameter at TN is given by

zo 49((3) A, (A,
' —

A,~)gp

TNO T~o 2(1 4kG }

X [98k ((3) —31((5)(1—4A G ) ] (32)

IV. IMPURITIES

In order to study the effects of impurity scattering, we
must generalize the formalism of Zittartz, which was
originally designed for a metal with only two bands. For-
tunately, only minor changes are required to accornmo-
date the presence of two hole surfaces instead of one. Be-
cause it breaks electron-hole pairs, impurity scattering
suppresses the SD%' order parameter g and the Neel tem-
perature TN0.

Following Zittartz, we replace the order parameters g
and 5 in the inverse Green's function G ' by the
modified, frequency-dependent quantities g„and 5„:

Because go/Tzo scales like (2, ' —k~)'~, the first-order
transition becomes ~eaker as A,

' approaches the threshold
kz from above. Of course, Eqs. (31) and (32) assume that
A.

' is above the threshold A,~ so that gp is real.
%hile the jump in the order parameter cannot be mea-

sured directly, the jurnp in the rms magnetic moment at
TN can be measured by neutron scattering' and is given

by p(T+ )/p(0)=0. 27, where p(0) is the rms magnetic
moment at T=O. Because the SDW order parameter g is
proportional to the magnetic moment, the ratio go/g(0)
also equals 0.27. As discussed earlier, the order parame-
ter is itself proportional to the energy gap at the Fermi
surface. If 5=0, then the energy gap at the Fermi sur-
face is 2g. Using the experimental value' of 0.12 eV for
the energy gap at low temperatures, we estimate that
g(0) =0.062 eV. Alternatively, the zero-temperature gap
can be estimated from the BCS-like relation
g(0) =1.76TN =0.047 eV, which also assumes that 5=0.
If 5 is nonzero, then YS find that gp =0.055 eV. Because
g(0) inay be somewhat larger than this, we use 0.07 eV
as a conservative estimate for g(0). The ratio go/T~o is
then approximately 0.71.

Using this value for gp/TNp, we plot k' versus the
cutoff c,p in the upper curve of Fig. 4. Like A,~, A,

' also
passes through a minimum slightly above zp. Because the
phase transition is weakly first order, the coupling con-
stant A,

' is close to the threshold value A,F, differing by
about 0.007.

X [98Ag(3) —31((5)(l—4AG)] (31)
n.og„=n-og+ f dp p 6,& (p, iso„),

27TPPl kF p
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15„=15+ f dp p Gb b+(p, ico„),
2Am kF 0

where

P„kFmr= ", f dn~~(e)~'

(34)

(35)

1&8'„' = 1&m„— dp p G„b+b+(p, & m„) . (36)
2mmkF 0

is the energy width produced by impurity scattering and
1/1 is the scattering lifetime of electrons and holes near
the Fermi surface. In Eqs. (33)—(35), m is the mass of a
quasiparticle, kF is the Fermi wave vector, p„ is the den-

sity of impurities, and u (8) is the impurity potential.
An angular average has already been performed over

the Green's-function matrix elements in Eqs. (33) and
(34). Therefore the remaining momentum integral over p
implicity averages the nested and non-nested portions of
the Fermi surface.

The Matsubara frequencies co„ in 6 ' must also be re-
placed by the modified frequencies co'„', where

i co„Eb—(k)+5„
(37)

[ico'„—e, (k)]5„+g„5= T—g—
N

(38)

where

2)'= [ico'„—s, (k)][ico„—eb+(k)][ico„—Eb (k)]
—[ico'„—e, (k))5„g„[ico—„—Eb (k)]

g„—[ico„—E (k ) ]—2g„5„ (39)

is the modified determinant.
The Green's function of Eq. (4) is now replaced by

Although the electron and hole frequencies are now
different, the symmetry between the b+ bands guarantees
that co„+=co„

The modified self-consistent equations are now given

by

G(kico,„)=

n crg„[[ico„bE+( k)—] +S„j n crg„[[ico"„—sb (k)]+5„j

1[[i co'„—e, (k)]5„+g„j
1 I [ico„'—c,,(k) ]

X [ico„—eb (k}]—g„j

1 [ [i co"„b—e(+k ) ]

X [ico„"—eb (k)] —5„]
1

n crg„[[ico„"—Eb+(k)]+8„j 1[[ico„'—e, (k)]

X [ico„Eb+(k)]——g„j
n og„[[ico„eb (k}]+—5„j 1[[ico'„—e, (k)]5„+g„j

(40)

V1=——g gn
(41)

Since g„, 5„, co'„, and co'„are themselves evaluated in

terms of the matrix elements of this Green's function,
Eqs. (33)—(40) must be solved consistently.

Because we are interested in very small concentrations
of impurity, the self-consistent equations may be linear-
ized in I . Therefore Eqs. (33), (34), and (36) can be evalu-

ated by setting I =0 in each of the integrands. As usual,
the momentum integrals are evaluated by using the elec-
tron and hole energies of Eq. (12). Since the Fermi ener-

gy cF =1 eV is much larger than the temperature or zQ,

we replace the lower limits of integration by —~. The
results for 5„,g„, and the Matsubara frequencies co'„and
co„are contained in Appendix C. To zero order in g,
both Matsubara frequencies equal co„given by Eq. (C3).
But to order g, co'„and co„differ by a term of order

Ig /T.
The second-order Neel temperature TNQ in the pres-

ence of impurities is now evaluated with the modified
self-consistent equation to zeroth order in g:

l
T

TNQ

3m. I 5m. rT
"

1

16 T 2 „p co2+zp2/4

+ 1Tzp g3m 2 1

„=p (co„+zp/4)

+2[G(T) G(T~p)] (42)

G(T) G(T ) = ——ln—
1 T

NO
NO

(43)

is of order I /T and the modified Neel temperature

~r
TWO TN0 4

(44)

agrees with the result of Zittartz when the electron and
hole bands are perfectly nested.

More generally, the difference between the G functions
can be written

Because the non-nested contribution to g„was retained,
this expression is exact to first order in I . If zo =0, then
the difference

n a n b+

Expanding this relation to first order in I, we find that
G(T) G(T~p) =(T T~p)

dG
TNO

(45)
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For large zo, G(T) is of order (eo/zo) and dG/dT is of
order 1/zo. In that case Eq. (45) is of order I /zo and the
last term in Eq. (42) can be neglected. In this limit the
second and third terms on the right-hand side of Eq. (42)
can also be neglected. Therefore the modified second-
order Neel temperature in chromium is given by

3"T =T — 1 (46}

T~o(I ) = T~o(0)+al (47)

d Two dzo dG dzo
(48)

The dimensionless parameter a is negative for vanadium
doping but positive for manganese doping. Together
with Eq. (46), this relation implies that the second-order
Neel temperature is given by

3nTxo=T~o(0)+ a—
16

(49)

Because the non-nested portion of the Fermi surface does
not effectively contribute to the impurity scattering, this
result is larger than the result of Zittartz with zo =0 (as-
suming that Tzo is fixed).

Because I is always positive, Eq. (46) implies that im-

purity scattering always suppresses the Neel temperature.
While the Neel temperature is suppressed with vanadium
doping, the Neel temperature is actually enhanced by
doping with manganese. Since it has more conduction
electrons than chromium, manganese decreases zo and in-

creases the commensurability of the SDW. Experimen-
tally, doping with manganese increases the Neel temper-
ature until the SDW becomes commensurate with the lat-
tice when T&=700 K.

But, so far, we have neglected the effects of impurities
on the band structure of chromium. The wave vector Q,
the mismatch energy zo, and the quasiparticle energies
eb+(k }=e&(k+ Q) are all affected by doping with impuri-
ties. In addition, the density of states p(e~) and the cou-
pling parameters A, and A, ', which are proportional to
p(e~), may also be affected by the presence of impurities.

While impurity scattering may be the most important
effect of doping with vanadium, the dominant effects of
doping with manganese are the increased commensurabil-
ity of the SDW and the enhanced electron-hole pairing
between the non-nested Fermi surfaces. As discussed in
Sec. II, the function G of Eq. (15) measures the coupling
between electrons and holes on the non-nested Fermi sur-
faces. When zo decreases, both 6 and the Neel tempera-
ture T~o of Eq. (14) increase. The dependence of Tzo on

zo is shown in Fig. 5, where we fix co=500 rneV and
A, =0.273, so that T~o=310 K when zo=500 meV. The
increase of Tzo with decreasing zo is very rapid because
G(zo) is a very sensitive function of its argument when

zo (0.Sco.
In order to calculate the correction to Eq. (46) for

small concentrations of impurities, we expand T~o to first
order in I as

1200

1000

800
hC

600

400

200 200 400 600 800 1000

zo(me V)

FIG. 5. Neel temperature Tzp vs zp with op=500 meV and
A. =0.273.

If a is smaller than 3m/16, then small concentrations of
impurities will suppress the Neel temperature. But if a is
larger than 3n./16, then the Neel temperature will be
enhanced by impurities.

For large zo, zo dG/dzo is independent of temperature
and scales like (Eo/zo ) . If the wave vector Q is a linearly
increasing (or decreasing) function of vanadium (or man-
ganese) concentration, then dzo/d I scales like zo/Tzo
and the band-structure parameter a scales like (Eo/zo) .
Therefore a may not be negligible compared to 37r/16.

Because the Neel temperature increases with man-
ganese doping, a must exceed 3n/16 in Cr-Mn alloys.
Although Fig. 5 yields a commensurate Neel temperature
T~o of about 1050 K, the measured Neel temperature of
700 K in Cro 94Mno o6 also includes the effects of impurity
scattering and of electron-phonon scattering, which be-
comes increasingly important as the Neel temperature
grows. In vanadium alloys a is negative and the Neel
temperature decreases with doping. Significantly, the
Neel temperature also decreases when chromium is al-
loyed with isoelectric elements like molybdenum or
tungsten. In such compounds the band-structure pa-
rameter a can be neglected and impurity scattering dom-
inates.

Since the band-structure parameter a can have a
significant effect on the Neel temperature, we will retain
this parameter in the next section. However, as men-
tioned above, impurities can also affect other band-
structure parameters such as the coupling constants A,

and k'. In order to keep the formalism fairly simple, we
neglect these other changes in band structure with dop-
ing.

Generally, 1 can be estimated from the residual resis-
tivity at zero temperature. However, such an estimate
would require knowledge of the electron effective mass.
Alternatively, we may use Eq. (46) with a=0 and the
measured Neel temperatures to obtain an upper or lower
bound on I . In Cr-V alloys, a is negative and this esti-
mate would provide an upper bound on 1. Noakes, Hol-
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den, and Fawcett found that doping with 0.2%%uo vanadi-
um lowers the Neel temperature from 310 to 289 K.
Since Tz= Tzp, Eq. (46) implies that I /Tzp=0. 115. For
small amounts of vanadium, I is a linear function of the
impurity concentration and I =(178 K) Xc„,where c„ is
the percentage of vanadium.

V. THRESHQI. D IMPURITY CQNCKNTRATIQN

In this section we calculate the threshold value of I,
above which the transition becomes second order. First,
we obtain an expression for I F/Tbtp as a function of
I,' —k„'. Then we use the results of Sec. III to express this
threshold in terms of the jump go of the order parameter
in pure chromium at its first-order Neel temperature.
Our final results do not depend on the band-structure pa-
rameter a.

To solve for the CDW order parameter 5 in terms of
the SDW order parameter g, we expand Eq. (38) to
second order in g and first order in I . While the denomi-
nator D of 5 is unchanged by impurities, the numerator
contains two extra contributions:

neglected the direct effect of impurities on the energy
mismatch zo and on the coupling constants A, and A.'. The
actual effect of band-structure changes on the CDW de-
pends on the summations of these many effects. Of
course, the net effect of vanadium or manganese impuri-
ties on the CDW then depends on the balance between
the scattering and band-structure terms.

Although we cannot predict the effect on 6 of small
concentrations of impurities, we can conclude from Eq.
(50) that 5 vanishes in the limit zp~0. Because co„ is an
odd function of co„, the summation over Matsubara fre-
quencies vanishes if z0=0. So the CDW must vanish
when the manganese concentration is suSciently large
that the SDW is commensurate. Further experiments are
required to determine the behavior of the CDW for small
concentrations of manganese.

While the impurity corrections to 5 are of order
I zpg /Tbtp the correction to 5n in Eq. (C 1) is of order
I g /zpT&p. So, to lowest order in 1/zp, 8„=5 is given
by Eq. (50).

To order g the modified self-consistent equation for g
can now be written as

= —2
1 —2k'

2xg
zo

1 —4A, G —
A, —aA,

r I
TAO TN0

v' 16= ——
, T

N 1 —2A,
'

-2 1
gn

( ~n Ea )(i~n eb+ )( @n eb —)

(50)

v gn1=— Tg-
N n, k g

+
( i CO„

-2
gn

S ) (le„Fb+)'

(i COn
—E )(lattn Eb+ )(l@ nlrb )

1

(lan Ea )(lan Cb+ )

(51)

which uses Eq. (49) for Tbtp Tzp(0). Sin—ce dG/dT is of
order 1/zo for large zo, we ignore the I dependence of
G( Tbtp) and evalua'te this function at T~p(0).

As expected, Eq. (50) with a=0 implies that impurity
scattering suppresses the CD@' order parameter 5. How-
ever, the effects on 5 of changes in band structure are
somewhat more complicated. While the effect of impuri-
ties on Tzp is explicitly included in Eq. (50), we have

I

where we have ignored the non-nested contributions of
order 1/zp and higher. Because the second term on the
right-hand side is of order 1, we preserve the g depen-
dence of the frequencies co'„and co„ in this term. In all
the other terms, which are of order g, the frequencies
are evaluated to zeroth order in g.

The various contributions to Eq. (51) are evaluated to
order I in Appendix D. After a lengthy calculation, we
find that

3a I
16 TNQ

7g(3) 1 7g(3) I 3m.

Sm TNO 4~ TNo 16

23~ I
768 TNo

4
, (1—4A. G ) 1 —4A.G ——A. —2aA.

r r
g2z 2 8 TNo TNo

T= —ln
TNQ

(52)

where TNQ is evaluated with I =0 and G is evaluated at
TNO. Because the correction terms of order I with a =0
are positive, impurity scattering suppresses the SDW order
parameter g. As for the CDW order parameter, the
changes in band structure with doping can either enhance
or suppress the SDW order parameter.

Of course, the threshold value for I is obtained by set-
ting the expression in brackets equal to zero. After
linearizing in X' —l.I;, we find that

r = 12~
TNO

2
7A,g(3) zp

7T
2

TNQ 1 —4A, G

X I84$(3)[3(1+4AG)+A]—23vr (1—4AG)I

where the corrections involving the band-structure pa-
rameter a have canceled. As expected, the threshold
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value decreases as A,
—kF decreases.

Finally, we can use Eq. (32) for the jump go in the
SDW order parameter when I =0 to write

2

[98Ag(3) —31((5)(1—4AG )]
773

~F gp

TN0 TNO

X I 84(( 3 ) [3( 1 —4A 6 ) +A, ]—23~ (1—4A G ) ]

(54)

This relation, which is the most important result of our
work, determines the threshold concentration of impuri-
ties in terms of the experimentally determined jump in
the SDW order parameter in the absence of impurities.
The only quantity which cannot be fixed by experiment is
the energy cutoff eo, which affects the values of A, and G.

With go/Ttvo=0. 71, the threshold I z/Tzo is plotted
versus co in Fig. 6. Like A,+, I + goes through a minimum
when co is slightly above zo. If co=zo, then the threshold
equals I F=0 085 TN.O, which corresponds to about 0.15%
vanadium. This result is consistent with the experimental
evidence '" that the threshold impurity concentration
lies somewhere between 0.1% and 0.2% vanadium. If a
smaller value of gp is used, then the threshold will de-
crease like the square of go/Toto. For example, if
go/TNo=0. 60 instead of 0.71, then I F =0.061TNO corre-
sponds to about 0.11%vanadium.

In order to determine the threshold concentration for
other alloys, we would need to estimate the dependence
of I on impurity concentration. Because the band-
structure parameter a is large for manganese or rhenium
alloys, I cannot be easily estimated from the enhance-
ment of the Neel temperature with doping. So, while I F
may not sensitively depend on the band structure and

dopant, the threshold concentration may vary greatly for
different alloys.

For a fixed value of so and go/TNo I p/T~p is a de-
creasing function of zp. For examPle, if co=500 meV,
then 1F/TNO decreases from 0.085 to 0.078 as zp in-
creases from 500 to 600 meV. This weak dependence
arises from the function 6, which decreases as zo in-
creases.

Because we have assumed that Tzo/zo is small, it is
difficult to extract the limit of vanishing zo from Eqs. (53)
and (54). In the first-order regime, A,

' must lie between A, 'F

and A,,' =—,'. So, using Eq. (21) for A,F, we conclude that

8nTNO ( 1 —4A, G )
A,

' —A.F 7 zo g g(3)
(55)

VI. CONCLUSION AND DISCUSSION

Therefore Eq. (53) implies that I F/TNO vanishes like
1 —4A, G as zo tends to zero. From Eq. (32) for go, we find

that (go/T&0) also vanishes like 1 —4k 6 as z&~0. Qn
the other hand, Eq. (54) implies that the ratio of I F/T&0
and (go/Tzo) is finite in the limit of vanishing zo.

Physically, these results are reasonable: As zp de-

creases, the SDW becomes commensurate, the first-order
transition in pure chromium becomes weaker, and the
threshold concentration of impurities must tend to zero.
In the previous section, we discovered that the threshold
A,F approaches the critical value of —,

' as zo~0. Hence a
first-order transition survives within a shrinking window
of A,

' as zo decreases. This result is confirmed by Eq. (55),
where the numerator (1—4A, G ) vanishes faster than the
denominator (which would really vanish like zo if we had
not evaluated the integrals to lowest order in 1/zp).
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FIG. 6. Threshold impurity potential I z normalized by TNO

vs the cutoff energy, with all parameters the same as in Fig.
4. A vanadium concentration of 0.2' corresponds to
I F/TN =0.115.

In this paper we have evaluated the threshold concen-
tration of impurities required to destroy the first-order
transition in chromium. Because the first-order transi-
tion in pure chromium is weak, only a very small concen-
tration of impurities is required to drive the system
second order. The threshold value decreases as the SDW
becomes commensurate with the lattice, and the phase
transition of pure chromium becomes more weakly first
order.

The most remarkable result of our work is that impuri-
ty scattering alone can explain the very low impurity
threshold. As mentioned in the last section, we have in-
cluded only one of the many possible effects of impurities
on the band structure of chromium. Although the
change in TNo cancels out of our final result for I F, the
other changes in band structure may not be negligible. In
addition, we have assumed that the non-nested contribu-
tions to I F may be neglected. Because y =zp/27TTNo 3
is not very large, however, the non-nested contributions
may also affect I F. While the change in band structure
and the higher-order terms in 1/zp may shift I F by as
much as 50% from our prediction, we still expect that
the threshold impurity concentration lies somewhere be-
tween 0.1% and 0.2'Fo.

Unfortunately, most experimental work has been done
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with samples containing more than 0.2% impurities. In
order to test the prediction of this work, we encourage
experimentalists to fabricate and study samples with less
than 0.2% impurities. While the elasticity measurements
of Fawcett et al. and the neutron-scattering measure-
ments of Lebech and Mikke" indicate that the threshold
probably lies between 0.1% and 0.2%, more work is
needed to pinpoint the threshold value.

When I is below the threshold value, the jump go in

the order parameter at TN should scale simply like

2 T
1 —kin

ZQ TNQ
+ G(T),

ZQ

I3= ——T gV 1

(ice„—E )(ice„—eb+)

=1—
A, ln

T
TNQ

V 1
Iz = — —TgN „k (ice„—e, )(ice„—eb+)(icon —eb )

(A3)

(A4)

r
F

(56)
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APPENDIX A

In this appendix we evaluate the summations and in-

tegrations that are required to perform the calculations in
the text. Whenever the summation over the Matsubara
frequency and the integral over energy z do not commute,
the Matsubara summation is performed first. Of course,
5„and g„are evaluated by performing the energy in-

tegral for a fixed Matsubara frequency co„.
In order to evaluate the denominator D of 5, we use

I, = Tg—V 1

N k (icon —cb+ )(ice„—Eb )

which vanishes when I =I F. This scaling might be ob-
served by measuring the jump in the magnetic moment
with neutron scattering.

Clearly, chromium is a complex and fascinating system
that holds many surprises to come. In the future we hope
to build upon this work by studying the dynamics of
doped chromium in its paramagnetic state.

v 1I = — Tg-
n k (l&n Sa) (l&n eb+)

3Am T "
1

4 5
n=o ~n

93k, g(5)
128 (~T)4 ' (A5)

V 1I5= ——T g
n k (i~n ea )(i~n Eb+ ) ( ~n eb —)

A~T "
1

„=oco„(co„+zo/4)

2
ZQ

(A6)

V 1
Ib = — Tg-

„k (ice„—e, ) (ice„eb+) (ice—„Eb )—
A 7T Tzo 1 1 1

„=p co„(co„+zo/4) 2 co„(ro„+zo/4)

7A, g(3)
8(aT) zo

V 1I, = ——Tg
n k (l&n ea) (l&n Eb+)

Am. T g—1 7g(3)

n=o n 8

where the Riemann zeta function g(n ) is defined by

(A7)

(A8)

where Tzo is given by Eq. (14) and is a function of
G ( Tzo). If zo =0 and T= T&o, then 6 = I /4A, and Iz =0.

The non-nested contributions to the remaining in-
tegrals are neglected. So, to lowest order in 1/zo,

where

f( —z) f( —z+zo)
=2k, ' dz — +

oo ZQ ZQ

= —2k', (A1)

Qo

=g(n ),
p=1 7

1
g(n) .

(A9)

(A10)

(z) = 1

e~'+1 (A2)
Note that g(2)=sr /6, g(3)=1.202, g(4)=m. /90, and
g(5) = 1.037.

is the Fermi function. It is essential that the Matsubara
sum in Eq. (Al) be performed first. If the energy integral
had been performed before the sum over n, I, would van-
ish.

The next two integrals include non-nested contribu-
tions and are evaluated exactly:

APPENDIX B

In this appendix we evaluate the A 3 term in the free-
energy expansion of Sec. III. To evaluate the fifth-order
term in the self-consistent equation for g, we must first
calculate the fourth-order term in the self-consistent
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equation for 5. After expanding I /S in powers of g and
using the results in Appendix A, we find that

5= ——,1 —
A ln

2 A, g T
1 —2A.

'
zo TN0

+ G
A,

'
g 7g(3) A,

'
g

z, 42 1 —2j' T2, (B1)

8A, 7i,g(3) z+ 7A,g(3)
zp 8(n.T) 2(n T) zp

93k,((5)
128(n.T)

(B2)

where g(5)=1.04. Substituting for 5 and solving for A3,
we finally obtain

2
(1—4A, G )

X2Z4
0

1 —12K,G 31((5)
T2, 2 256~4 T4 '

16
3 1 —2A,

'

7g(3)
1 —2A,

' (B3)

Because ln(T/Tzp) is itself of order g, the term propor-
tional to g ln(T/TNp) is actually of order g . Since
1/(1 —2A, ') is of order (zp/T~p), all the contributions in

Eq. (Bl) are of order zp.
Expanded to order g and expressed in terms of 5, the

self-consistent equation for g is

T = 2 T
kin 1 —

A, ln
TNO ZO TNQ

sgn(co„)
5n =5+ g4 co„(co„+izp/2)

After expanding I /Xl to order g, we also find that

(C 1)

gn= g
r

1 ——
4 ~n

1
sgn(co„)

COn +LZO/2

sgn(co„) I,sgn(co„)+ g5 +—g4 co„( co„+izp/2) 8
(C2)

rco„=co„+—sgn(co„) . (C3)

But to order g,
sgn(co„)

n

sgn(co„)

~n

(C4)

(C5)

differ by a term of order rg /T .

Since 5 is formally of order z0, the second term in Eq.
(C2) is formally of order l. In order to obtain the correct
z0=0 limit of the self-consistent equations, we have re-
tained the non-nested contribution of order gI /zp. Al-

though our expressions for g„and 5n disagree with the
results of YS, they correctly reduce to the results of Zit-
tartz when zo =0.

To zeroth order in g, the frequencies co'„and co„" are
given by

which is positive in the first-order regime. APPENDIX D

APPENDIX C

In this appendix we evaluate the modified order param-
eters and frequencies in the presence of impurities. To
order g, Eq. (34) implies that

The self-consistent equation for the CDW order pa-
rameter g is given by Eq. (51) in the text. In this appen-
dix we evaluate the various contributions to this relation
to linear order in I and to second order in g.

Expanding the gn /g contribution to order g and to or-
der I, we find that

V gn 1Tg-
g (i co'„—e, )(i co„—e&+ )

sgn(co„); I sgn(co„) I sgn(co„)
=AT+ dz 1 —— + 5 +—g

oo 4 co„4 co„(co„+izp/2) 8

1

co +zn

i r sgn(co„) i I z sgn(co„) i I sgn(~n ) i I z
sgn(co„)

X 1 — + g 1 — + g4 co„(ico„—z ) 2 ico„+z 8 co„(ico„+z)

=1—
A, ln

TNQ

3m' I 1 1

16 T TNQ
+ p 5T y 1 +5~RE ~T g4 „=p co„(co„+zp/4) 8 „p co4

T 3 A.I (T )
I X' 5 A, I

TNO 16T 4Tz 1 —2A,
' 768T

(D 1)

J

which uses Eq. (C2) for g„and Eqs. (C3)—(C5) for co'„and co„. This integral is evaluated by using the fact that I is small
compared to any Matsubara frequency co„=m.T(2n+ 1). Because T T&p is proportional —to g, the third term in the
last line of Eq. (Dl) is proportional I g .



12 318 R. S. FISHMAN AND S. H. LIU 45

Similarly, the g contribution to Eq. (51) is

-3

2g (ico„—E, ) (iso„—Eq+)

which again uses Eq. (C2) for g„.
Finally, the 5 integral is

8(AT) „— 4 co„(co„+z ) (co„+z )

7lg(3) q 3vrA, I
8(nT) 128T

(D2)

V gn— 1——T 6„
g (ice„—c,, )(ico„—eb+)(iso„—eb )

2X~T 2

zp

sgn(a)„) 1—I sgn(co„)

2'~

I sgn(co„)1—
4' n

1

1 —2A,
'

zp

2 ~I 2+i"
8T T

4 2
k' ~ I I

1 A, 2(xk,
gz2 1 —2k' 16 T T

where the logarithmically divergent sum over co„ is cut off at eo/2m T and Eq. (Cl) is used for 8„.
Adding the contributions of Eqs. (Dl) —(D3) yields the result given in Eq. (52).

(D3)
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