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The Green's-function Monte Carlo (GFMC) method is used to calculate very accurate ground-state
energies of the two-dimensional, spin- —Heisenberg antiferromagnet. The computations are performed

on L X L square lattices up to I.= 16 with varying uniform magnetization, which allows the extraction of
the perpendicular susceptibility (y) and spin-wave velocity (c). These two quantities are the lattice- or
cutoff-dependent parameters that allow one to map the long-wavelength properties of the antiferromag-
net onto the nonlinear o. model and so are of general interest. Systematic errors present in previous
GFMC calculations are addressed and corrected to yield results in excellent agreement with other nu-

merical methods. I find, for the ground-state energy per site, —0.66934(3); the susceptibility renormal-

ization factor, Z~=0. 535(5); and the spin-wave velocity renormalization factor, Z, =1.10(3). Finite-
size effects in the extraction of Z, and Z~ are discussed. The value of Z~ computed here is in agreement
with the series-expansion results of Singh and of Zheng, Oitmaa, and Hamer, thereby clearing up a pre-
vious inconsistency between the series-expansion and quantum Monte Carlo predictions.

I. INTRODUCTION

Much has been learned about two-dimensional antifer-
romagnets in recent years. The renewed interest in this
area of quantum magnetism has sprung from the desire to
understand the undoped phases of the high-T, supercon-
ducting compounds. ' The basic model is that of the
spin- —,

' Heisenberg antiferromagnet (HAF) on a square
lattice, which approximates the undoped high-T, com-
pounds if the Coulomb repulsion is large. A variety of
numerical techniques have demonstrated ' ' " that
the ground state of this system has long-range antiferro-
magnetic order. It had previously been speculated that
the order would be destroyed by the strong quantum fluc-
tuations due to the low spin of —, and low dimensionali-

ty. ' It has been established' ' that in an isotropic an-
tiferrornagnet the long-wavelength properties can be
mapped onto the nonlinear o model, about which much
is known. " ' This model has (imaginary time) action
given by

C2
S= f dr J dx (a„n)'+ ', (c),n)'

2 0 v "
C20

along with the constraint
~
Q(x, r )

~

= l. The vector 0
may be thought of as the local antiferromagnetic order
parameter. The two (bare) parameters, yo and cv, are the

perpendicular susceptibility and spin-wave velocity, re-

spectively. If the analogous quantities are computed for
a particular isotropic antiferromagnet then the long-
wavelength characteristics may be directly mapped to the
nonlinear 0. model. This type of procedure allows the
direct comparison of correlation length measurements'
(via neutron scattering) in La2Cu04 to the predictions of
the HAF. ' The perpendicular (or uniform) susceptibility

g and spin-eave velocity c are related to the spin-stifFness

p, by p, =pc, and, so, from the measurement of two of
the quantities one may obtain the third (see Sec. III). The
quantities y and c have been computed via long perturba-
tion series expansions about the Ising limit by Singh and
by Zheng, Oitmaa, and Hamer, and also via quantum
Monte Carlo simulation by Gross, Sanchez-Velasco, and
Siggia. The values of y were found to disagree by about
30%, while the estimated error of each calculation was
less than S%%uo. Since both methods have the possibility of
subtle extrapolation complications, it is useful to deter-
mine which one is in error. The purpose of this paper is
to report reliable Green's-function Monte Carlo (GFMC)
calculations of y and other quantities. The value I find

for y is in agreement with the series expansion results of
Refs. 8 and 9. The main improvement needed was to pro-
duce sufficiently accurate GFMC y(L) data to enable the
extrapolation to L = ao (which amounts to a nearly 30%
correction). Since the GFMC extraction of y requires the
finite difFerencing of energies, the efFect of statistical or
systematic errors is magnified, and so errors must be
carefully estimated. Additionally, I report a very accu-
rate value for the L = ~ ground-state energy per site,
Eo/N. The spin-wave velocity is computed as well, along
with a discussion of previously ignored finite-size correc-
tions for it. In Sec. II the GFNIC algorithm to compute
ground-state energies in quantum-spin systems is outlined
along with mechanisms for how subtle biases may enter
the calculation. In Sec. III the methods to extract g, c,
and Eo/N from the GFMC energies are discussed along
with an interpretation of the results.

II. COMPUTATIONAL METHOD

The GFMC algorithm as applied to the HAF is out-
lined below. Additional details may be found in Refs. 10,
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11, and 18. The Hamiltonian of the Heisenberg antifer-
romagnet is

0.00006 I I I I I I I

H= J—QS; S
&ZJ&

(2) 0.00004 L=12

with ' J)0. S; =(S;",S,". ,S,') are the components of the
vector spin- —, operator at site i .The sum (ij ) is over
nearest-neighbor pairs on a square lattice consisting of
N=L sites with periodic boundary conditions.

Letting S=(S*„.. . , Siv), the Green's-function Monte
Carlo algorithm is based on the interpretation of the ma-
trix K(S',4)= (ei'~K ~4) as a transition probability and
of the ground-state wave function $0($) as the corre-
sponding limit distribution (K is linearly related to H).
Importance sampling is crucial to obtaining accurate
energies. It is the following similarity transformation of
the matrix K in the 1basis:

K(S', 4)=gG(S')K(S', S)/pG($)

0.00002

E(k) —E(0)

0.00000

—0.00002

—0.00004

—0.00006
—0

N =6000

I I I I I I I

500
Number of factors k

1000

with a known "guiding wave function" 1(&(S). As

gG —+/II one can show the algorithm becomes increasing-
ly ef6cient. The limit distribution of the kernel E is
QG($)go($), and so, the average of the function
Ei (4)= ( 4~H

~ fG ) /ga (S) over this distribution yields
the exact ground-state energy. For gG the nearest-
neighbor Gutzwiller wave function of Ref. 11 was used.

The fact that neither E nor E is normalized leads natu-
rally to a branching random walk, that is, one with a fluc-
tuating number of random walkers. ' "" The popula-
tion is kept roughly constant by applying (at iteration or
generation n) a multiplicative factor g (n ) to the kernel,
K'"'=g(n)K, to adjust the population up or down to
keep it near the desired level. Nearly all GFMC simula-
tions ' perform a similar type of "population control. "
The adjustment g (n) introduces a (usually small) bias to
the energy because g(n) is correlated with the walk.
The bias may be systematically removed by taking larger
base populations or by reweighting the measurement (at
generation n) with a suKciently large number k of fac-
tors, i.e., [g(n) g(n —k)] . There is often a statisti-
cally significant bias even with Np p

& 1000. An example
of the convergence with k is shown in Fig. 1. The bias in-
creases with the system size L, evidently because of the
smaller effective number of walkers due to longer auto-
correlation times, and also increases by the use of a poor
guiding function because of the increased branching rate.
It is very plausible that the bias due to population control
always increases the energy estimate. The structure of
the random walk is to replicate a walker when its energy
is low and to delete one when its energy is high. So, if
there happens to be a tendency to create more walkers
(i.e., low energies), then population control may
arti6cially cut it ofF', and similarly for a tendency to delete
walkers (i.e., high energies). Both egrets ctend 'to
(artificially) raise the energy estimate.

The nonimportance sampled [gG =1 (Ref. 24)] results
of Cxross, Sanchez-Velasco, and Siggia appear to be
biased above the correct values. A possible explanation is
as follows. It is known that for the HAF in a given mag-
netization sector the lowest-lying excited state (total) en-

FIG. 1. The removal of the bias due to population control.
The ordinate is the difference between the uncorrected energy
estimate E(0) and E(k), the one corrected by the removal of k
population control factors: tg(n) g(n —k)]. The large error
bar at k =0 rejects the statistical error for E(0), while the error
bars at k)0 denote the statistical error in the difference
E (k) —E (0), which is smaller due to correlated sampling.

ergies differ from the ground-state energy bp
E, En=DE —1—/L . That is, there is an absolute de
generacy in the (L ~ oo) thermodynamic limit. When a
fluctuation occurs during the random walk, to project it
away requires on the order of

1 L4
ln(EII/E, )

(4)

generations. Thus, there exists an autocorrelation time
in the simulation ~-I.". The number of independent
generations is therefore reduced to -Eg,„/r. Reference
10 has shown that the number of distinct families of
walkers is nearly inversely proportional to the generation
time t, that is, Nfe~ o:%pop/t. During an autocorrelation
time of order ~ generations a Auctuation can be spread
over an entire family. Thus, the number of independent
walkers is effectively reduced to -Nf, -N~p/~. The
number of independent "measurements" is therefore
roughly

+ind +geo+pop ~ +geo+pop /L

The main point is that N;„d decreases rapidly with L,
much more so than one might guess. The situation is
made worse if poor importance sampling is used, since
the increased branching rate makes the rate with which

drops off larger. In general, one must be very care-
ful to ensure that N;„d is large. The, say, doubling of
N~p and extrapolating to N, = ao only works if one is
in the asymptotic regime.

The results of Trivedi and Ceperley and of Carlson
agree with the data I present in Sec. III within the quoted
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error bars. However, the fact that most of their data lie
above mine suggests that their values may have un-
corrected biases on the order of the statistical error. I
have attempted to be very careful in addressing biases,
but the possibility exists that some may remain in my re-
sults as well. Arguments in favor of the quality of my
data are (1) I estimate and adjust for the bias introduced
by population control, (2) I sample the importance-
sampled kernel E exactly "' (by rejection) instead of ap-
proximately and correcting by additional weights (which
increases the amount of branching), ' and (3) my L ~ ~
extrapolated ground-state energy is, with high accuracy,
inside the error of the series expansion result of Zheng,
Oitmaa, and Hamer (see Sec. III).

III. RESULTS AND DISCUSSION

—0.670

—0.674

I I I I I I I I I I I I I I I

E(L S) EII 1.438c 1 S(S+1)+
2X

(6)

where S is the total spin of the system (e.g. , singlet S=0,
triplet S= 1, . . .) and is related to the net magnetization
by S= i+,.S ~. The data used to extract the three
coefficients in Eq. (6) are listed in Table I. I typically

TABLE I. Green's-function Monte Carlo results for the
ground-state energy per site for different lattice sizes lV =L' and
with varying total spin S. The number in the parentheses is the
error in the last digit(s). For example, —0.661 304(12) denotes
—0.661304+0.000012.

L=6
Energy

—0.678 871(8)
—0.670 878( 10)
—0.655 092(9)
—0.631 591(10)

L=8 —0.673 486( 14)
—0.665 325(8)
—0.657258( 10)
—0.646 609(9 )
—0.633 447( 12)

L =10 —0.671 492(27)
—0.664 533( 13 )
—0.659 873(13)
—0.647 392{11)
—0.630 642(18)

L =12 0
5

8
10

—0.670 581(49)
—0.661 934(9)
—0.650 041( 16)
—0.639 518(5)

L =16 0
9

13
17
21

—0.669 872(28)
—0.661 304(12)
—0.652 809(5)
—0.641 592( 10)
—0.627 968( 30)

The leading finite-size corrections to the ground-state
energy may be written as —0.0000 0.0005 0.0010 0.0015 0.0020

i/I. '

FIG. 2. Singlet ground-state energy per site E/X vs 1/L'.
GFMC denotes the Green's-function Monte Carlo results of the
present work. The curve is the fit involving terms up to 1/L'
described in text. The intercept at L = ~ is
E/X= —0.66934(3). MS%T are the results of the modified
spin-wave theory described in Ref. 34. The standard second-
order spin-wave predictons are also displayed. (See Ref. 3 for a
discussion. )

have used Np p
6000 and N,„=10 for S=0 and usual-

ly a smaller N,„ for SWO. I first extract Eo/N and c
by considering the data with S=O. These energies are
plotted versus 1/L in Fig. 2. It is tempting to fit the
data to 3+8/L for L &6 as other workers have
done, since the statistical errors in Table I suggest the rel-
ative error in c would be less than 0.3%%uo'. The data are
too accurate, however, and so cannot be fit with the two
parameter function. Using renormalization-group
methods, ' Fisher has predicted that the next-order term
(with S=0) is proportional to 1/L . This is the same in-
verse power of L that occurs in the standard spin-wave
theory. Fitting the energy data with this extra term
yields Eall= —0.669 34(3) and c =1.55(4). The num-

ber in the parentheses denotes the error in the last digit.
The value for the energy is in agreement with the previ-
ously most accurate GFMC result of Carlson

[—0.6692(1)], and the recent series-expansion calcula-
tion of Zheng, Oitmaa, and Hamer [—0.6694(1)]. The
standard practice is to report c relative to the first-order
spin-wave theory result, which in my units (J= 1) is
cswT='I/2, thus, Z, —:c/cswT=1. 10(3). It is not clear
why this result is outside of the series expansion result by
Singh [Z, =1.18(2)]. See, however, the discussion in the
following paragraph on the possibility of di6'erent fitting
forms. ' For comparison, the second-order spin-wave
theory has Z, =1.158.

As mentioned above, the 6 (L ( 16 energies in Table I.
are not fit by a straight line in 1/L . Indeed, the data
suggest a 5 —10%%uo increase of slope [that is to say, an in-
crease in c(L) ~ BE/B(L )] in going from L =10 to ~.
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s(H) =so — H ——, IHI + 'x
12~c

(8)

where here H is an applied uniform field and c is the
ground-state energy per site. If M is the magnetization
per site that H couples to, then the standard Legendre
transformation, s(H) =s(M) —MH, yields

3
IMI

(9)
12mc

s(M) =so+ M—1

2X
+ 0 ~ ~

To estimate finite-size corrections, one makes the replace-
ment M ~S(S+1)/N =x, which implies

1 1e(x}=so+ x —
3 IxI i +. . .

12' y
(10)

The above suggests that 1/2y, z I—:[s(x ) —so] /x ]
should have a &x correction term. Indeed, the GFMC
data fit this form quite well: both the sign and approxi-
mate size of the &x correction agree with that implied in
Eq. (10). The above form has been used to extrapolate to

Thus, the Monte Carlo calculations of Z, with no 1/L
fitting term may have a 10% systematic error, since
values of L less than 10 are used to extract Z, . The
modified spin-wave theory (MSWT) of Arovas and Auer-
bach, Takahashi, and Tang and co-workers is a
surprisingly accurate theory for the spin-correlation func-
tions and energies on finite lattices. As L~ao the
theory reproduces the second-order spin-wave predic-
tions. The second-order spin-wave and MSWT energies
are plotted in Fig. 2 with the simulation results. Al-
though it is dificult to see, the MSWT appears to repro-
duce the slight upward curvature in energy versus 1/L .
This is not surprising, since the theory describes small
lattices rather accurately. Like the GFMC data, the
MSWT has about a 10% change in c(L) from L =10 to

Numerically I find that the MSWT has 1/L as its
subleading finite-size correction rather than 1/L as pre-
dicted by Fisher. Fitting the GFMC data to
A+B/L +C/L gives Z, =l 15(3) and an Eo/N
changed only slightly from the one quoted above. This
latter value of Z, appears to be in closer agreement with
the other numerical calculations. It should be noted
that the MSWT was able to predict terms in the low-
temperature expansion of the one-dimensional Heisen-
berg ferromagnet that are missing from the ordinary
spin-wave theory prediction. Unfortunately, GFMC cal-
culations of much higher accuracy and on larger lattices
would be required to distinguish between 1/L and 1/L
subleading corrections.

I now turn to the calculation of the perpendicular sus-
ceptibility y. From Eq. (6) one can define an effective sus-
ceptibility y,s(L,S) through

1 [E(L,S) E(L,O)]L — 1

2y, tt(L, S) S(S+ 1) 2y

Using the GFMC data, one finds that there is a substan-
tial S dependence in y,s(L,S) (L fixed) and so once
again we need a higher-order term in Eq. (6). Fisher
has shown for the infinite system that

Perpendicular Susceptibility

30

OC

25

20 I— L = 16 12 10 8

—0.0 0. 1

1/L
0.2

FIG. 3. Extrapolation of the GFMC inverse perpendicular
susceptibility 1/2g to the thermodynamic limit. Solid line is the
fit described in text. Intercept is 29.9(3). Units are those of Ref.
5 (J=4) that found 22.5(13). The series expansion result is that
of Ref. 9, and is displaced from zero for clarity.

x=0. The resulting values of 1/2g, s(L) are plotted vs
1/L in Fig. 3. By exploiting certain universal amplitude
ratios, Fisher has noted that there should be a sizable
1/L finite-size contribution in y(L), and it should be
comparable to the observed correction in the staggered
magnetization M (L). ' ' " For example, M (L) has a
reduction of 33% in going from L =6 to Oo, and the y(L)
computed here has a 31% reduction for the same varia-
tion of L. To extrapolate to L=~, I fit 1/2y, tt to
A+B/L+C/L . The result is g=0.0669(7) or
Z& =y/yswT=O. 535(5). The value is in agreement with
the series expansion calculations of Singh [Zr =0.52(3))
and of Zheng et al. 9 [Zr =0.527(8)], and is substantially
outside of the quantum Monte Carlo estimate by Gross,
Sanchez-Velasco, and Siggia [Z& =0.71(4)] and the
second-order spin-wave result (Z& =0.448).

In summary, I have reported accurate GFMC ground-
state energy calculations on the spin- —,

' HAF along with a
discussion on how systematic biases may be avoided.
From these data I have estimated the L ~ oo limits of the
ground-state energy per site Eo/N, and the spin-wave ve-
locity c, and the perpendicular susceptibility y. For these
quantities, both leading and subleading finite-size correc-
tions are required to fit the data. The author knows of no
other quantum Monte Carlo calculations that have con-
sidered these terms. In spite of the increased error that
accompanies additional fitting parameters, this study has
produced the most accurate values to date for Eo/N and
g. Most importantly, the GFMC result for y now agrees
with the series expansion calculations in Refs. 8 and 9.
The value for c still appears to lie outside of the best esti-
mate, and so more effort is required to clear up the
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—
8%%uo discrepancy. The prospect of directly measuring

the spin stiffness p, (Z =ZzZ, ) via GFMC is currently
$

being investigated and may provide useful information on
the true value of c.

Accurate values for Eo/N, Z„and Z& are important
because, through the nonlinear o. model, they allow a
direct comparison with experimental correlation length
measurements and also because they provide useful
"benchmark" data against which variational and other
analytical methods may be tested. Third-order spin-wave
calculations should be accomplished soon, and the com-
parison of them to the exact results should prove il-
luminating. This work has shown that the GFMC algo-
rithm can be used to compute energies in spin systems to
within one part in 10 —10 for lattices consisting of
several hundred sites. Hopefully, this powerful tool will
find many applications in the field of quantum magne-
tism.
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