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Lattice vibrations in time-fluctuating percolation networks: Application to Brillouin scattering
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A model of lattice vibrations in a percolation network which is stochastically fluctuating in time is
treated within the effective-medium approximation (EMA). This work generalizes previous studies on
vibrations in static percolation networks, which are characterized by phonon-fracton crossover, to the
dynamical regime. Our result for the frequency-dependent effective force constant K(co) is that it de-
pends on co through the combinations co —i ~, where ~, are the matrix fluctuation times. For a single-
exponential relaxation, we obtain the relation K($, 7 ) Kp(N 17 '), where Ko is the effective force
constant of the static (~ =0) medium. We calculate the effect of lattice renewal on the dispersion rela-
tion and on the dynamical structure factor, for which we analyze separately the frequency-dependent
linewidth and sound velocity. For the latter quantities, we also provide scaling Ansatze, which are
shown to be obeyed by the EMA for sufficiently small fluctuation times ~. We find that the dynamic fluc-
tuation effects become dominant for small enough 7. and are manifested {as ~ decreases) first as a nonuni-
form broadening and later as a "motional narrowing" of the dynamical structure factor line. The impli-
cations of our results on Brillouin scattering from glass-forming polymer melts and polymer electrolytes
are discussed.

I. INTRODUCTION

The mechanical properties of random networks have
been the subject of many theoretical and experimental
studies in recent years, mainly in conjunction with so-
called phonon-fracton model. ' These studies deal
with systems which are fractal below a certain correlation
length g (with either mass or bond fractality) and that are
homogeneous for length scales much larger than g. The
vibrational eigenstates in such systems have been argued
to be strongly localized for frequencies larger than a cer-
tain crossover frequency co„and extended (or, more ac-
curately, weakly localized) for frequencies below to„. For
scalar elasticity, co„ is related to g by'

p —( 1+(9/2)
~CO

where 8 is the anomalous diffusion exponent (where
(r (t)) ti' + '-for r «g or for times t «g'2+v'2).
The results of this behavior show up in crossovers in the
density of states, ' ' N(to) (which in turn influences oth-
er observables such as the specific heat), ' in the disper-
sion relation to(A), and in the dynamical structure factor
S(q, co) (with q=2m. /A being the wave vector). The
latter can be written in a quasi-Lorentzian form, giving
rise to the introduction of two other quantities: the
frequency-dependent linewidth I (co },which may be inter-
preted as the inverse phonon lifetime (or relaxation time),
and the frequency-dependent sound velocity c,(co).

The density of states for co»co„(the fracton regime}
in d dimensions is given by'

The fracton dimension d is related to the fracta1 dimen-
sion d and to the anomalous diffusion exponent 8 by'

d =2d/(2+8) . (4)

The dispersion relation for wavelengths A»g (the pho-
non regime) is'

cosh(A)-c, A

where the sound velocity c, is related to g by

g
—8/2

while in the fracton regime A «g, it is

It has also been argued that the Brillouin linewidth I (to)
(or the inverse phonon relaxation time) behaves as '

I (to) co to, to «co

obeying the Rayleigh scattering law [I (co)-to in three
dimensions), while in the fracton regime it obeys the
Ioffe-Regel localization criterion '

I (co) co, Co »co

Finally, the frequency-dependent sound velocity in the
two regimes was shown to satisfy

where d is called the fracton dimension. For co((co„
(the phonon regime), it is phononlike:

1—d d —1

N(co ) —co (2) c, (to) to,'."'+'~ f-or to «co.. .
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Numerical values for these exponents (in a percolation
network) are' "'

8=0.80, d =1.9, d =1.36 for d =2 (13)

and

8=1.55, d=2. 5, d=1.42 for d =3 . (14)

Alexander and Orbach' have conjectured that d =—', for
all d &2, although it was shown to break down very
weakly " ' for' dimensionality d &6 (as also implied by
the above values). Conversely, Aharony et al. argued
that Eq. (9) applies for the phonon-fracton problem only
if the Alexander-Orbach conjecture is exact. Recent
simulations" for the vibrational density of states on a
percolating network support d = 3.

From the experimental point of view, results of the
phonon-fracton model are fairly successful in explaining
the low-temperature behavior of glasses, via specific-heat
and thermal-conductivity measurements. ' ' ' In par-
ticular, the non-Debye behavior of the heat capacity, '

found in epoxy resins above 8 K, and the plateau in the
thermal conductivity' between 8 and 15 K are an im-
mediate consequence of the model. Less trivial is the
linear dependence on temperature of the thermal conduc-
tivity' above 15 K, which has also been confirmed by ex-
periment. ' ' Thus the phonon-fracton model seems to
be able to explain some universal features of glasses at
low temperature.

Dynamic rneasurernents for verifying the phonon-
fracton model have been carried out, however, mainly on
silica aerogels. ' ' These are specially prepared rnateri-
als formed by aggregation and intensive drying processes,
which are needed to create the mass fractal structure. In
these materials small-angle x-ray-scattering measure-
ments' ' have shown that the structure is mass fractal
within a certain correlation length. When combined with
the x-ray measurements, the measured density of states'
and dynamical structure factor' ' ' support the
phonon-fracton model.

When applied to glasses, a word of caution should be
given since the phonon-fracton model relies on the fractal
structure of the network. (In fact, other explanations for
the behavior of the density of states in glasses have been
suggested. ) Fractality is not the common picture for
glasses, even if one considers only fractal force constants
with the mass distribution taken to be homogeneous.
Indeed, a more appropriate picture of vitreous silica is
that of topological disorder. Yet the fractal picture
seems to be suitable for cross-linked polymer networks
(such as epoxy resins ), where the fractality of the chemi-

Since the percolation network is fractal below the per-
colation correlation length g, which diverges at the per-
colation threshold p, as g-(p —p, ) ", all the above re-
sults apply to it. The effective-medium approximation
(EMA) for a percolation network yields (for dimensionali-
ty 2 & d & 4) the following results for the exponents:

0=2, d=2, d=1 .

cal bond structure (i.e., the force constants) is a direct
consequence of the nature of the polymer. Indeed, the
phonon-fracton model was partially confirmed in epoxy
resins' and other amorphous polymers by dynamical
measurements. A more general attitude is just to define a
correlation length for disorder that leads to strongly lo-
calized eigenstates for co above co„. One can then consid-
er the fractal as a convenient model that generates
strongly localized eigenstates.

With this in mind, we address the consequences of the
glass transition. Below the glass transition, the system is
frozen and therefore one deals with static disorder, but as
the temperature is raised above the transition, the rear-
rangements that occur via rnatter diffusion may affect
both the phonon and fracton lifetime and dispersion law.
In Brillouin scattering from glass-forming liquids, per-
forrned well above the glass transition, the width of the
phonon peak shows a universal behavior as a function of
the temperature, the width going through a maximum at
some temperature. Such a behavior is also found in more
simple fluids (termed as "complex" in the past) such as
CS2, CC14, and glycerol. ' Although the well-known
theory of Mountain ' (and Montrose, Solovyev, and Li-
tovitz ) seems to explain this behavior, this theory was
originally meant to apply to these "simple" fluids (by the
current terminology). Yet it has also been extensively
used for glasses ' (in a purely phenomenological
manner), while it seems inadequate to treat cross-linked
polymers as liquids; they are much more like solids.

The purpose of the present study is to link Brillouin-
scattering measurements performed well above the glass
transition to measurements in the glassy state as the
system is taken continuously through the transition. As a
convenient mathematical description, we choose the per-
colation network, which is fractal on length scales much
smaller than the percolation correlation length (and
much larger than the lattice spacing). We do not mean
that amorphous polymer networks can be viewed as per-
colation networks. The main point is the expected fractal
nature of these materials for distances below the average
"cross-linking" distance.

In recent years dynamic bond percolation theories for
diffusion have been developed. The work of Druger
and co-workers was motivated by conductivity mea-
surements in polymer electrolytes which show strong
coupling to other observables such as viscosity, Brillouin
scattering, and NMR relaxation. A similar microscopic
model for vibrations in these materials (as presented in
the present study) is equally important. Both theories use
the percolation model and use a microscopic rearrange-
ment (or relaxation) time r that controls the evolution of
the disorder.

In the present study, we use the effective-medium ap-
proximation ' ' to obtain an analytic continuation
rule for the effective force constant, which is similar to
that found for the diffusion constant in the analogous
diffusion problem. The formalism used here is merely a
generalization of the Harrison-Zwanzig treatment and
its Granek-Nitzan extensions to the scalar vibrational
problem.

Our starting point is then the (infinite) set of stochastic
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equations of motion for the displacement component
U, (t.) (i is the site index) based on the scalar elasticity
model,

(15)

where Ii I is the set of nearest-neighbor sites to i, coo is the
natural spring frequency, and o; (t) are. stochastic vari-

ables, which will be taken to fiuctuate (at equilibrium) be-
tween 0 or 1 according to the rate equation

p (O, t)
1 p 1 p p (O, t)

P.(1,t) ~ p —(1—p) P.(1,t) (16)

Here p (o, t) is. the probability that the bond a =(ij) has
the value o. at time t, p is the average fraction of open
bonds (o; = 1) at any time (and the fraction of time that
a specific bond is open during an infinitely long period),
and ~ is the fluctuation time. Both p and ~ are assumed
to be independent of the U s. Thus we assume that each
bond fluctuates independently of the local strain U —U;
and independently of all other bonds. Both assumptions
are not entirely physical, but for simplicity we disregard
this aspect of the problem for now. For the same reason,
we shall limit ourselves to the scalar elasticity mod-
el, although tensorial effects were shown to result
with d ( I (which is significant for the behavior of the
density of states for co )co„).

Our objective is then to average over the equations of
motion (15) in conjunction with Eq. (16). In Sec. II it is
shown that the averaged equations of motion are non-
Newtonian and (quite) generally can be written in an
effective-medium form

the probability that bond a has the value o at time t and
assume it to obey the master equation

at
—P (o, t)=QQ (o., o')P (o', t)—=Q P (o, t), (18)

which defines the operator 0 . The equilibrium solution
of Eq. (18),p (o ), is the solution of

g Q (cr, cr')p (o')=0 . (19)

—U=P,
dt

d—P= —W U—= —~ o (t)V U
dt a a

(20)

where a corresponds to a bond (ji) between the nearest-
neighbor sites i and j and where

&.=(It &
—

Ij&)((t I

—(jl) (21)

and

U=g U, ~i&, P=QP;~i & (22)

(with ( i
~j & =5;J }.

To obtain the average equations (17), we start with the
Liouville master equation for the joint probability distri-
bution f(U, P, o, t), to find (at time t) the displacements
and momenta given by U and P and the bonds in the col-
lective state cr =(oi, o 2, . . . ,'cr, . . . ),

The set of Eqs. (15) can be written in the vector form
(henceforth we set coo=1; hence all timescales will be
given in units of c00 '}

d2
, ( U, (t) &

dt2

I dt'K(t —t')[( U, (t') &
—(U, (t') &],

je Ii I

(17)

f= (W—Uf )
— (Pf )+Qf,a a a

Bt BP aU

where

Q=QQ

(23)

(24)

implying a microscopic viscoelastic behavior. The prob-
lem still remains to determine the effective force constant
K(t) Asolutio. n for this problem is obtained within the
EMA in Sec. II. In Secs. III and IV, we examine the im-

plications of the time-dependent bond fluctuations in the
binary percolation model on the dispersion relation and
on the dynamical structure factor. Some predictions for
glass-forming polymers and (solvent-free) polymer elec-
trolytes are provided in Sec. V. %'e summarize our re-
sults in Sec. VI. f(U, P, o, t =0)=5(U—Uo)5(P —Po)p(o ), (25)

If Q=0 in Eq. (23), this is just the usual Liouville equa-
tion for the equations of motion (20). As initial condi-
tions, we assume that both the displacements and mo-
menta have specific but arbitrary values Up and Pp re-

spectively, while the bonds are distributed according to
their equilibrium distribution. Hence we limit our
analysis to the effect of bond fluctuations at equilibrium.
The initial condition for f (U, P, o., t) is therefore

II. GENERAL FORMALISM
AND EFFECTIVE-MEDIUM APPROXIMATION

To make the formalism applicable to more complicated
fiuctuation processes than the one described by Eq. (16},
we allow (more generally) for many values for the bond
force constant o. . Following the basic formalism used by
Harrison and Zwanzig and by Granek and Nitzan for
the analogous diffusion problem, we denote by P (cr, t)

p( )=gp ( ). (26)

We perform the needed average in two stages. First,
the partial average of an observable A is defined as

A(o, t)= J dU JdP Af(U, P, o, t) . (27)

where p(o ) is the equilibrium distribution for the collec-
tive bond state and is given by
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The full average of A is then given by Q-A(o, t). With
A being U and P, we get from Eq. (23), using integration
by parts [and the fact that f (U, P, cr, t} should vanish fas-
ter than any power of U or P at the boundaries of the
(U, P }phase space],

a—P(o, t) = W—U(cr, r)+ QP(cr, r),
(28)

and (35), the averaged equations of motion become the
non-Newtonian equations (17) [with K(t) being the in-
verse Laplace transform of K (z)].

To find K(z) we use the EMA. In the EMA, ' one
considers a medium consisting of one fluctuating bond
(oi) embedded in an otherwise effective medium with
bond force constants K(z). Therefore W and Q for this
medium are given by

U—(o, t) =P(o, t)+ QU(o, t) .

By Eqs. (27}and (25), we have, for the initial conditions,

W=K(z) g V~+cr, V, =W +[o
&

—K(z)]V, ,
a(%1)

Q=Q] .

(36)

(37)
P(o, t =0)=Ptip(o ), U(o, t =0)=Uop(o ) . (29)

We now take the Laplace transform [denoting by A(o, z)
the transform of A(cr, t}] of Eqs. (28) and solve for
P(o,z) and U(cr, z). In this procedure it is essential to
keep the order of noncommuting quantities. The pro-
cedure is given in detail in Appendix A. We obtain

[z'1+W.(z)]-'=y r. , (38)

with

Using Eqs. (36), (37), and (31), we obtain a self-consistent
condition for the effective force constant,

P(cr, z)

U(o', z)
I =[(z —Q, ) 1+W +(cr, —K)V, ] 'p, (cr, ) . (39)

zg(cr, z) z g(o, z) —p(cr)1

z(z —Q) 'g(cr, z) z (z —Q) 'g(o. ,z )

II,
Uo

(30)

where we have defined the partially averaged Green's
operator g(cr, z) as

g(o, z)=[(z —Q) 1+W(o )] 'p(o ) . (31)

To obtain Eq. (30), we have explicitly used Qp(cr)=0.
Thus Eq. (30) is valid only when p(o ) is indeed taken as
the equilibrium distribution of the bonds. The full aver-
ages of P and U are therefore given by

g (cr —K)Q =0 (40)

and

gM' [1+(cr—K)hl]Q =0, A, IAO, 1=1,2, . . . , n,

The remaining part of the procedure follows exactly the
lines of the EMA for the effective diffusion coefficient.
Here we quote only the result. Similar to the diffusion
problem, the effective force constant is determined from
the requirement that the determinant of coefficients of Q
(which are vectors in the site space) in the n + 1 equations
below (n is the number of bond states) vanishes:

(P(z))
(U(z))

zg(z) z g(z) —1

g(z) zg(z)

where we have defined g(z) as

g(z) =g g(cr, z )

Po

Up
(32)

(33)

(41)

where M' are elements of the left eigenvector of the
transition matrix Q with nonzero eigenvalue

I(g M, ' Q~(cr', o )=—AIM' ),

pc
h&= [1—elg(e, )], (42)

g(z)=[z 1+W (z)]

where

(34)

W (z)=K(z) g V (35)

Here the effective force constant K(z) is yet undeter-
mined. In Eqs. (34) and (35) we have invoked the
effective-medium assumption that an analytical function
K(z), which makes Eqs. (33) and (34} exactly equal,
indeed exists. Upon inversion of Eq. (32), with Eqs. (34)

(i.e., the fully averaged Green's operator). To get Eq.
(32), we have used the fact that Q has the property

(cr, o') =0 and the normalization condition

g~(o )=1. Thus we have reduced the averaging to a
calculation of one quantity g(z). We now write g(z) in
the form

with g (s) being the lattice Green's function of the origin
(Appendix B),

(z +A, l)
(43)

and p, =2/Z is the static EMA percolation threshold
(with Z being the coordination number of the underlying
lattice). The result for K(z) differs from the EMA result
for the diffusion coefficient ' only by the definition of
the spectral variables sl, with (z+A.I) replacing z+A, l.
Note that K (z) depends on z only through the combina-
tions z+A, I. The result for K(z) is rather complicated
when several bond states are assumed to be present. In
the next sections, we therefore discuss in detail the
binary-value model (o.=0, 1), for which the result is sim-
ple and the static case has been studied extensively.
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III. BINARY DISTRIBUTION
AND THE DISPERSION RELATION

In the Harrison-Zwanzig fiuctuation model (original-

ly solved for the diffusion model), the bond dynamics is
described by the 2X2 inaster equation (16) for which the
equilibrium solution is p(1)=p, p(0)=1 —p. Applying
the above formalism, using z =ice+0 for analytic con-
tinuation to the complex plane, yields the EMA result

p —p, +S,Eg(e)E=
1 —p, +p, Eg(E)

with

(ico+r ')
K

(44}

(45)

K( cor '}=Ko(co—ir ') . (46)

Following Refs. 4—6, we now turn to examine K(co)
near the static percolation threshold and for low frequen-
cies and slow renewal (small r ' ), namely, where
co, ~ '-p —p, &&1. Consider first the static case ~ '=0.
For 2&d &4, we can use, to first order, g(e)=g(0),
which is a finite numerical constant. This leads to

S I,+ [(p——~, }'—4(1—S, )Z,g(0)~'1'"
2(1—p, )

(47)

It is seen from Eq. (47) that as co increases from zero,
E':—ReK decreases. For co &m„, where

(p —p, )'

4g(0)p, (1—p, )
' (4&)

K is real (in this approximation). For co) co„ the imagi-
l

(which reduces to the result of Refs. 4—6 for r '=0).
This implies that, in the single bond EMA, the
frequency-dependent effective force constant for the dy-
namic case, K(co, r '), is related to that for the static
case, Ko(co), by the analytical continuation rule

nary part of K is finite and increases as (co —co„)'/ . The
"nonanalyticity" that appears at co„ leads to a hump in
the density of states (and in the dynamic structure fac-
tor ) at the phonon-fracton crossover co-co, . As r ' in-
creases from zero, we And that this sharp transition be-
comes smoother and shifts to

co (q) =K(co(q))q (50)

in conjunction with the effective-medium equation (44).
Focusing on the regime co, ~ '-p —p, &&1, we can make
use of the asymptotic expansion for g (e) near E=0 (for
2&d &4),

g(E) =g(0)—yde" (51)

where g(0) and yd are numerical constants. [For a
three-dimensional sc lattice, g (0)=0.252 73 and
F3=1/4ir. ] Substituting K =co(q)/q and

co(q)=co +i5 (52)

in Eq. (44), we obtain equations for co~ and 5~.
It can be shown that a crossover behavior in the

dispersion relation appears at a certain wave vector
q =q, . For ~ '=0, this q, has been obtained by Entin-
Wohlman et (21. to be [denoting q,o=q, (r '=0)]

PC
q

2

g (0)p,
(53)

In fact, we expect that q,o-g ', where g is the percola-
tion correlation length; Eq. (53) therefore implies that
g-(p —p, )'/ in the EMA. For r '%0 (but small) and
above the percolation threshold, this crossover is changed
to

(49)

We now turn to analyze the dispersion relation (in the
Debye approximation), namely, the relation between fre-
quency and wave vector q (for small q, q = iqi). co(q) can
be obtained by solving

q, =q, o 1+

where

d iX"'l(I —p, )'"
(0)(d —i)/2 (d —3)/2( }2

—d/2
C C

(54a)

~(1)+(~(2)—( 1 )d/2~ (54b)

Thus q, increases as ~ ' increases from zero.
In the small-q limit q «q„ the dispersion relation is phonon like co -c,q, where the sound velocity c, for large ~

behaves asymptotically as
1/2

cS

PC

1 —p, 2(p —p, )'
for p &p, and ~ &&co„&&1, (55)

S

S,g(0)
1 —p,

p, g (0)

PC P

for p =p, or co„«~ «1,

for p &p, and ~ '&&co, &&1,

(56)

(57)



45 LATTICE VIBRATIONS IN TIME-FLUCTUATING. . . 12 249

where co„-p —p, [cf. Eq. (48)]. It is seen from Eq. (55) that the sound velocity c, starts to change considerably as r
increases from zero only when ~co„-1. Note that this condition is the same as the condition for a considerable change
in the crossover frequency co, (r ') in Eq. (49).

In the phonon regime q «q, but when q also obeys q »(rc, )
' (implying p &p, and r 'q, o' «q «q, o}, 5 ap-

proaches the asymptotic form

Pc (2) d+ 1 d (1) d
1 —p,

+(y',"—dq', ")dq' ' ' r ' + ' q'r '+ (58)

3.0

O

2.0—
o

O

1.0—3
3

0.0
0,0 1.0

vs.. 2.0 3.0

3.0

O

2.0—
'o

Thus 5 increases with r ', namely, the (dynamic) fluc-
tuations decrease the phonon lifetime. This effect adds to
the relaxation caused by scattering from effective "de-
fects, "which can mode1 the strong spatial disorder in this
long-wavelength regime. Indeed, for a static network
(r '=0), 5~-q"+', which is the well-known Rayleigh-

scattering ' law (for scattering of phonons from de-
fects). Equation (58) shows that the increase of the life-

I

time of a phonon with increasing wavelength is main-
tained for a fluctuating network. For q «(rc, ) ', 5
shows a crossover to a different behavior, which will not
be discussed here.

The numerical solution for co~ and 5~ (for d =3) is de-
picted in Fig. 1. We plot co~ /co„and 5q /co„versus q/q, o
for two values of p, (p —p, )/(I —p, )=10 [Fig. 1(a)]
and (p —p, )/(1 —p, ) =10 [Fig. 1(b)], both for the stat-
ic case ~=DO and for two values of fluctuation time,
v=100 [Fig. 1(a)] and v=10 [Fig. 1(b)]. It is evident
from these figures that there is a characteristic cutoff
wave vector q, separating the two regimes, q(q, and

q & q, . It is also seen that for v. ' & 0, q, is roughly the
same as q, o [=q,(r '=0}], although a little larger, as
implied by Eq. (54). The same is true for the crossover
frequency co, and the sound velocity c, : co„which is the
local maximum in cu versus q, and the sound velocity, c„
which is the slope of co versus q as q ~0, are seen to in-
crease with r ' as implied by Eqs. (49) and (55).

For r '=0 and q &q„5 is relatively small (because
5 -q~), while for q &q„5~ increases rapidly (5~-q).
Thus, if a phonon of wave vector q is excited (by some
mechanism), it will relax quickly (with a relaxation rate
5~). This is just another manifestation of the fact that the
eigenmodes of such "short" wavelengths (namely, the
fractons) are really strongly localized and is further dis-
cussed in Sec. IV. As w

' increases, 5 in the phonon re-
gime q &q, increases, as implied by Eq. (55). However
for q & q„5q is somewhat decreased by the fluctuation
process. The latter fact may be interpreted as a result of
a "smearing out" of the fractals (whose effective linear
size is the percolation correlation length).

O

1.0-3
3

0.0
0.0 1.0 2.0 3.0

q/v«
FIG. 1. Real and imaginary parts of the dispersion relation

(normalized by co,,'), co~/co„and 5~/co„, vs the reduced wave
vector q/q, o for two values of p: (a) (p —p, )/(1 —p, )=10
and (b) (p —p, )/(1 —p, ) =10 . The static case r= Oo (the lines
denoted by a) and one dynamic case ~ ') 0 (the lines denoted
by 6) are shown in each figure: (a) ~= 100 and (b) ~= 10 .

IV. DYNAMICAL STRUCTURE FACTOR

A. General results

2

Ne [n (co)+ 1]—

XIm g e "g; (iso+0) .
J

(59)

Here we consider the inelastic one-phonon term of the
dynamical structure factor (e.g., light- or neutron-
scattering intensities). With the common assumption of
self-averaging and within scalar elasticity, it is possible to
write the scattered light intensity in the form (see Appen-
dix C)

0

dQdE
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Here 8'is the Debye-Wailer factor,

2II/=q ( U(0) )T,
and n (co) is the Bose population factor,

n(co) =(e~" —1)

(60)

(61}

K(co) obeys these symmetry properties, as can be shown
using the general expression for g(E) [Eq. (Bl)] in Eq.
(44). Next, we discuss the EMA results in more detail.

B. EMA results

S(q, co) =2 sgn(co)ImG(q, co —iO),

where

(62)

G(q, co —iO)= —g e "g~(z =ico+0) .
J

(63)

In a simple cubic lattice in d dimensions, G (q, co) is given
by (

—m. & q S & 1r )

with p= 1/k2) T; R;~ =RJ —R; is the vector separation be-
tween sites i and j, g,"(z) are elements of the fully aver-
aged Green's operator of the theory of Sec. II [Eqs. (33}
and (34)], and N is the number of scatterers.

We now leave out the thermal factors ' and define the
dynamical structure factor as

First, we analyze (within the EMA) the linewidth I (co)
in the phonon regime co((co„. We limit the discussion
to p &p, (the more physical situation). In the limit

'=0, we have using Eqs. (70), (44), and (52),

d+1
d/'2 —1 (71)r(~)= )d/2+1 ~CO

(I -co4 in three dimensions), which is basically the
Rayleigh-scattering49 ~0 (of phonons from defects} result.
At the phonon peak, we have co =c,q, where

c, -(p —p, )'/2, so that the width is I'-q +'/(p —p, )'
this is indeed the same result as for 5 in Eq. (58} with

'=0. As r ' increases from zero, Eq. (71) is changed
to

d
' —1

G(q, co)= co 2K g —(1—cosqs)
6=1

(64)

~(2)p (1 p )d/2ccd+1
)d/2+ 1

2g (1—cosqs }=q (65)

where q& are the components of the vector q. In the De-
bye approximation (q « 1),

2(1 —p, )p,g (0)co

(p p, )

dy( 1 )p ( 1 p )d/2cod
d C C

)d/2+1
—17 (72)

(66)

(q = IqI), and with K =K'+iK", Eqs. (62) and (64) yield

2q sgn(co)K"
co 2co q K'+—q IKI

Equation (66) may be rewritten in the form

The first term is the same as Eq. (71) and is therefore a re-
sult of the spatial disorder, while the second term is the
additional relaxation caused by dynamic fluctuations.
For d =3(g3 '= —g3, y(3"=0), Eq. (72) reduces to

S(q, co)=sgn(co)[S+(q, co) —S (q, co)],

c, (co)q r( )
S+(q, co) =

co [co+c,(co)q ] + I (co)2

(67)

(68)

pc(1 p } X3 $ 2pcg(0)(1 p

)
5 /2 (p —p, )'

(73)

where the frequency-dependent sound velocity is given by

IK(co) I

Re1/K (co)
(69)

and the frequency-dependent linewidth is

Im1/K (co )

Re1/K (co)
(70}

As expected, the one-phonon structure factor shows two
quasi-Lorenzian peaks, one for phonon emission with en-

ergy fico=Pic, (co)q and the other for phonon absorption
with the same energy.

Equations (66) or (67)—(70) allow one to calculate
S(q, co) given an expression for K(co). The time-reversal
symmetry of the correlation function (U, (0)U (t)) in

Eq. (C2) implies that S(q, co) should be a symmetric func-
tion of cu. This requirement leads to the following
relations under the symmetry operation
co~ —co: K'(cow ') =K'( —cow ') and K"(cow ')
= —K"(—co, r ' ). Indeed, the EMA expression for

The second term in Eq. (73) scales as (co/co„) r
This term alone is consistent with the scaling assumption
that I (co)/co should be a function of co/co„and rco„
only. The first term, however, contradicts this assump-
tion. We shall define r„as the r for which r(co) starts
to change considerably from its value for 7 '=0. This
will be when the second term in Eq. (73) or (72) becomes
of the order of the first. Thus we find

c1
~CO

'd —1

—d/2
co (74)

or r, ) -(co„/co) co, for d =3. Thus, unlike what is ex-

pected on general grounds, co„7„ is not a function of
co/co„alone and (with co/co„kept constant} increases as

co„~O (i.e., as p —p, ~O). This is clearly related to the
failure of scaling of the linewidth for 7 '=0. The second
term in Eq. (73) implies, however, that for r «r, ) (and
for d =3), I (co)/co does scale with ~ and co„, at least to
the first order in 7 '. This Ansatz is checked numerically
in Sec. IV C. We may define a second crossover value of
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~ for which the position of the peak starts to change con-
siderably (as r ' increases). This crossover can be easily
obtained from the asymptotic expression for the sound
velocity [Eq. (55)] to be at r,z-co,,', which is smaller
than r„(i.e., the peak broadens even before it starts to
move).

For co»co„and r '=0, one finds [from Eqs. (70),
(44}, and (52)] that the EMA linewidth obeys the Ioffe-
Regel localization criterion ' I (co) =co, which is
equivalent to the wavelength becoming of the order of the
mean free path. Corrections to this result for small
nonzero r ', r '«co„, are of order r '/co and there-
fore negligible for co »co„. Thus, for cu »co„, the relax-
ation time marks the onset of localization, and relaxation
caused by dynamic fluctuations is negligible in this limit.

It is of interest to obtain the linewidth in the large co or
' limit where the EMA becomes very accurate. Using

2(1 p—)co r
(1+co r ) 2—(1—p)(1 —co 7 )r

(75)

This result is valid for all lattices in all dimensions. For
rco«1 we have 1(co)-co r while for rco»1 it is
I (co)-co

In Figs. 2—5 we present (within the EMA) the effect of
increasing r ' on the dynamical structure factor S(q, co),
the linewidth 1(co), and the sound velocity c,(co) in a
three-dimensional sc lattice (p, =

—,') for p —p, —10
(p =0.3334}. To obtain these results, we have solved Eq.
(44) for the real and imaginary parts of the effective force
constant E(co) and used it in Eqs. (66), (69), and (70). We
have used the expansion (51) for g(s} for r & 10 and the
exact expression [Eq. (B2)] (with d =3) for g(e) for
'r & 10 [since the expansion (51) breaks down in this re-
gime. ]

Figures 2 and 3 show S(q, co) multiplied by co„,against
the reduced frequency co/co„ for different r values. Fig-
ure 2(a) and 2(b) are for q/q, 0=0. 1 and Fig. 3 is for
q/q, o= 10. In Fig. 2(a) we see that, as r ' increases from
zero, the phonon peak (the left peak} gets broadened and
higher, while no change can be observed for the fracton
peak (the peak on the right) on this plot. The change in
the width becomes significant when r-r„(e.g., r„—10
for co=co„ in Figs. 2 and 3). However, only when r be-
comes larger than ~, & by two orders of magnitude
(r-10 ) are the results almost indistinguishable from
those corresponding to the ~~ac limit. When ~ ap-
proaches r, 2 ( —10 ), the dip between the phonon and
fracton peaks disappears completely and the presence of
the fracton peak is hardly observed [Fig. 2(b}]. Also, for

~,z, the phonon peak starts to move to the right as
' increases [Fig. 2(b}], a result of the fact that the

for s~ao, g(e)=e ' —ZE [cf. Eq. (B4)] in Eq. (44),
we 6nd that, for ~,z ' &&1,

/lt
I (co) =co
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FIG. 2. Dynamical structure factor S(q, co), multiplied by
co„, vs the reduced frequency co/co„ for q/q, 0=0. 1 and for
different ~ values. (p —p,o)/(1 —p, )=10, co„=1.22X10
and q,0=2.81X10 . (b) continues (a) for lower v values.
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FIG. 3. Same as Fig. 2, but for q/q, o= 10.
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sound velocity starts to change considerably. The width
of the phonon peak also continues to grow after it starts
to move. It goes through a maximum (when the phonon
peak is somewhere between the static phonon and fracton
peaks) and then starts narrowing for increasing
Eventually, for ~~0, it becomes a 6 function situated at
co=&pq (i.e., c, =V'p ). Note that even for small r, the
far right-hand side (RHS) of the phonon peak has the
same shape; all lines for different ~ values join together
for co »co„.

Figure 4 shows I'(ai)/to plotted against the reduced
frequency co/cu„on a log-log plot for a few values of ~.
In the static limit ~= ~, the Rayleigh-scattering ' ' be-
havior I -co (slope 3 for the linear line) for ai «ai„and
the Ioffe-Regel behavior I -~ for co&&co„can be
clearly seen. For co «co„ I (to) increases with r '. A
significant change in I (to) is seen only when r & r„(for
example, r„—10 for co=0. leo„), as anticipated from
Eq. (74). For co »co,„I (to) does not change significantly
in the range of r values plotted here, 10 & r & ~ [since it
should start to change only when ~co-1; compare, e.g. ,
with Fig. 6(a)]. For r « r, i the lines are again practically
linear in the small-co limit, with slope 1, as implied by the
second term in Eq. (73); this is in contrast with the
Rayleigh-scattering behavior of the ~= ~ line whose
slope is 3.

Figure 5 shows the sound velocity c, ( )co(divided by
+to„) plotted against co/to„(on a log-log plot) for a few

values of v. For r= 00, (c)dodoes not depend on oi for
co«co„and it crosses over to a co' behavior for
co « co p The sharp dip seen at ~„ is a result of the
sharp change in the EMA result for K (co) at this frequen-

cy, as discussed following Eq. (47). As r is increased,
c, ( )coin the phonon (small-to) regime starts to change
when r-r, 2-to„(—10 for p =0.3334) behaves as

for w & 10 and remains frequency independent.
In the fracton regime (co»co, ), c, (co) does not depend

10 =-

10 =-

10 =-

10 =-

10 =-

10 =-

010—

T lO
I III' I I I I Illq

10 10 10
~/~

FIG. S. Sound velocity c,{co},divided by co,', , plotted against
the reduced frequency co/co„, for a few values of
(p —p, )/(1 —p, )=10 and co„=1.22X10

significantly on ~ for 10 (~~ ~, and its co dependence
becomes -co, as for the w= ~ case. The crossover fre-1/2

quency co, shifts to higher frequencies, as seen from Eq.
(49). The dip between the phonon and fracton regimes
"smears out" and disappears as ~ ' is increased.

C. Scaling

1. Scaling of the lineioidth

Following the scaling assumption in the static case
'=0, we now assume the following scaling behavior

for the linewidth (where we expect scaling to hold only
for w ', to, co„«1):

I (co)=tof, ( a/it„o, re), (76)

I (to)-to co,, N h(co) -co,, o~
+' (78)

If, however, res « io„/to (still in the phonon regime), the
relaxation is expected to be controlled by dynamic Auc-
tuations. We may obtain the asymptotic behavior of
I (co) if we assume in addition that

I VI in Eq. (77) be-
comes independent of co in this range of r. Equation (76)
and (77) then imply

where f, is the scaling function. The asymptotic behav-
iors of the linewidth may be derived using the Born ap-
proximation for scattering of phonons, '

(77)

where N(co) is the density of states and Vis the scattering
matrix element. In the phonon regiine (co «to„) and the
static limit (r '=0), one then finds IVI -to co,, To-
gether with the scaled result for the phonon density of
states, N~h(co) -co,", ai ', this leads to

10 = I ( )
d —d d —i —(2 —d)
CO (79)

IIII' I I I I illq I I I I Illq I I

10 10 10

FIG. 4. I (cu) /co vs the reduced frequency co/co„(on a log-log
plot) for a few values of ~. (p —p, ) /(1 —p, ) = 10 and
t0„=1.22 X 10

which indeed reduces (for d =3) to the EMA result (73)
when d = 1, the EMA value for the fracton dimension.

In Figs. 6(a) and 6(b), we see that the EMA results for
the linewidth [Eqs. (44) and (70)] obey our scaling as-
sumption [Eq. (76)] for r&r„[where r, i is given by Eq.
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(74}]. These results are obtained using the approximate
expression Eq. (B3) for g(e} in Eq. (44) for practical
reasons. In each figure I (co)/ro is plotted against the re-
duced frequency co/co„ for one value of ~co„
[-r(p —p, )]: rc0, =1 and 10 in Figs; 6(a) and 6(b), re-
spectively. Each value of wm, corresponds to a few
values of co„and ~, giving the same product value. It is
seen that, in this range of parameters, the EMA results
satisfy our scaling assumption to a very good degree of
accuracy. The scaling is better satisfied for co«co„, in
agreement with Eq. (74) (namely, r„ increases with de-
creasing co, and therefore the condition w«~, 1 is better
obeyed). Obviously, the choice for the r values in these
figures was in the range r «r, i, and for r & r«(incl uding
the r= cc case studied in Ref. 6) scaling is not obeyed.

c,(ro;p —p, ) =corfo(ro/ro„), (80)

where the exponent y is yet unknown. Since c, is in-
dependent of co for r0 &&ro„, the scaling function fo must
behave as fo(x)-x r for x «1. In order to satisfy
c, =aloe, ' + ', we must choose

0
2+ 0

(81)

c, (ro, r;p —p, ) co f—z(ro/co«, 7Yo) .

For co))co„,c, should be independent of co„. Therefore,
for x »1, we must have fo(x)~const and c, -cur in this
limit. In the EMA, 8=2 and y =

—,'.
Turning now to the dynamic case, we assume a scaling

law of the form

2. Scaling of the sound velocity

Consider, first, the scaling of the frequency-dependent
sound velocity in the static case. We assume that the
sound velocity obeys the scaling law

4.0—
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FIR. 6. I (co)/~ (the linewidth divided by frequency) against
the reduced frequency co/co, for one value of re„,
r(p —p, )/{1—p, )=1 and 10 in (a) and (b), respectively {using
different r and p). The results were obtained by solving Eq. (44),
using the approximate Eq. (B3) for g (e), and Eq. (70) for I (co).
(a) Solid line, p =0.3334, r= 10; dashed line, p =0.334, r= 10;
dotted line, p =0.34, r= 100. (b) Solid line, p =0.333 34, r= 10
and p =0.3334, r=10', dotted line, p =0.334, r=10 .

FIG. 7. Sound velocity c,(co), normalized by co,,', vs co/co„
for a few values of rcpt„, r(p —p, ) /(1 —p, )=0.1, 1, and 10 in (a),
(b), and (c), respectively (using different r and p). The results
were obtained by solving Eq. (44), using Eq. (B3) for g(s), and

Eq. (69) for c,(co). (a) Solid line, p =0.33334, v=10; dashed
line (almost coincident with the solid line), p =0.3334, r=10;
dotted line, p =0.334, r=10. (b) Solid line, p =0.33334,
r=10 and p =0.3334, r=10; dotted line, p =0.334, r=10'.
(c) Solid line, p =0.333 34, r=10 and p =0.3334, r=10'; dot-
ted line, p =0.334, r= 10 .
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In Figs. 7(a)—7(c), we check whether the EMA results
[Eqs. (69) and (44) with Eq. (B3) for g(e)] obey the scal-
ing assumption Eq. (80). We plot the sound velocity, nor-
malized by co,,', against co/co„ for a few values of ~co„
[~co„=0.1, 1, and 10 in Figs. 7(a), 7(b), and 7(c), respec-
tively] where in each plot we use a few values of v and c0„
that give the same ~co„. It is seen that the EMA results
obey the scaling assumption for the sound velocity to a
very good degree of accuracy in this range of v.. Devia-
tions from scaling exist mainly for co)&co„. For 7 ))7
[which is not the case in Figs. 7(a)—7(c)], we have found
that deviations from scaling exist also in the vicinity of
co„. This is consistent with the results for the static case,
~= ~, studied in Ref. 6.

3. Scaling of the dynamical structure factor

3

~ 0
U

3

10 =-

10 =

10 =

10 =0

10 =

10 =-

10 =

~CO
co g —A (83)

where A is a numerical constant. This leads to the scal-
ing law

The scaling assumptions for the linewidth and sound
velocity [Eqs. (76) and (80)] can be combined in the gen-
eral expression for the dynamical structure factor [Eqs.
(67) and (68)] in order to obtain the scaling form of this
quantity. In addition, we suggest scaling of the dynami-
cal structure factor with q/q, o. Using the fact that
q,o- g

' - co„~' + ' (g is the percolation correlation
length), we get [with y =8/(2+8) ]

2/(2+ (9)

i IIII] I i I I IIII[ I I I I IIII

10 10 10
S(q, co, r;p —p, )=to %(q/q, o, to/to„, rco), (84)
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co where 4 is the scaling function.
In Figs. 8(a)—8(c) we check our scaling assumption

[Eq. (84)] for several values of p —p, and for r(r„.
Since the EMA results for both I (co) and c, ( o)twere
found to obey our scaling assumptions (for ~ in this
range), it is clear that S(q, co) also obeys scaling. We plot
to„S(q,co) as a function of co/co„, keeping q/q„and no„
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FIG. 8. Dynamical structure factor S(q, co), multiplied by
co„, vs the reduced frequency co/m, for q/q, o=0. 1 and for a
few values of ~co„, ~(p —p, )/(1 —p, ) =0.1, 1, and 10 in (a), (b),
and (c), respectively (using a few values of ~ and p). (a) Solid
line, p =0.3334, ~= 10; dashed line (almost coincident with the
solid line), p =0.334, ~=10; dotted line, p =0.34, ~=10. (b)
Solid line, p =0.3334, ~= 10 and p =0.334, ~= 10; dotted line,

p =0.34, &=10 . {c)Solid line, p=0. 3334, &=10; dashed line

(almost coincident with the solid line), p =0.334, v= 10; dotted
line, p =0.34, &=10 .
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FIG. 9. Same as Fig. 8, but for ~(p —p, )/{1—p, )=100.
Solid line, p =0.3334, ~=10; dashed line, p =0.334, ~=10',
dotted line, p =0.34, ~= 10 .
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constant [qiq«=0. 1 and rr0„=0.1, 1, and 10 in Figs.
8(a), 8(b), and 8(c), respectively], while for each plot we
used a few values of v and p that give the same ~co„. The
accuracy of scaling exhibited by the EMA is striking. It
is better for ~(&~,I than for 'T 1 I as was anticipated
analytically, although for r too small scaling is also not
obeyed very well [Fig. 5(a)]. For comparison we also
show, in Fig. 9, the results for ~co„=100, where it is seen
that scaling is not obeyed at the dip in the vicinity of ~„,
similar to the ~= ~ case seen in Fig. 1 of Ref. 6.

There were a few speculations concerning the
failure of the EMA results to scale with a single frequen-
cy co« in the static (r '=0) limit of the present model.
They invoke either the approximation made in the EMA
or the possibility of another crossover frequency cu&R for
the crossover to Ioffe-Regel behavior I (co) co-Th. e fact
that for ~ ' )0 scaling is obeyed to a good accuracy for a
large range of parameter values suggests that in these
cases the EMA is quite reliable, even if it is less accurate
in the static case. Recent simulations" (for static net-
works) indeed show that there is no hump in the density
of states X(co) near co«, implying that the hump seen in
the dynamic structure factor is also an artifact of the
EMA. (Rather, a hump appears at the fracton Debye fre-
quency. ) Yet, for the range of r values where our scaling
assumption is obeyed, the EMA dynamical structure fac-
tor does not show such a hump. Therefore these simula-
tions do not contradict our results.

V. EXPERIMENTAL IMPLICATIONS

The theory advanced here simply recovers the EMA
results for the static bond percolation systems
(r =0). It is therefore consistent with specific-heat and
thermal-conductivity measurements below the glass tran-
sition ' ' ' ' (see Sec. I), since r is expected to be prac-
tically infinite well below T . Our theory then deals with
the behavior of these and other observables as the tem-
perature is raised above Tg to form a liquid. To make
this theory useful, it is essential to estimate the tempera-
ture dependence of the model parameters.

For glass-forming polymers, we can gain some insight
by noting that a single polymer chain forms a fractal ob-
ject (for distances much larger than the persistance
length), and if no forces are acting on it by the environ-
ment, its fracton dimension is always d = 1 (irrelevant of
its fractal dimension or dimensionality of the embedding
space). ' Consequently, we may assume as an Ansatz that,
in the absence of cross-1inks, the fracta1 correlation
length g (for the force constants) scales with the density
just as the polymer correlation length g (the mesh size
of the network) that appears in the theory of polymer
melts. ' In cross-linked polymer networks (with either
transient or permanent cross-links), the distance between
cross-links may also serve as an estimate of the correla-
tion length. For example, in solvent-free polymer electro-
lytes, ' the number of ions and, hence, the number of
transient cross-links (per unit chain) formed by the doped
ions are both known, and the reduction of the correlation
length can be estimated. Alternatively, at low tempera-
tures it is possible to estimate the correlation length

directly from specific-heat and thermal-conductivity rnea-
surernents. ' For example, in epoxy resin' these mea-
surements suggest that )= 100 A.

A well-accepted model of semidilute polymer solutions
is that of an array of densely packed "blobs" of linear size

g, the (monomer) density correlation length. Each blob
consists of a self-avoiding (or Gaussian) chain, which (in
the present context) is a fractal object. Thus various
properties of semidilute solutions obey simple sca1ing
laws governed by g~. This could have made such systems
natural for application of the phonon-fracton model.
However, since the polymer is surrounded by solvent
molecules, the force matrix is rather uniform in space.
Although the solvent is absent in polymer melts, scaling
theory usually breaks down at such high densities. In
semidilute polymer solutions, g~ scales with the mono-
mer number density p as g -p ~, while in polymer
melts g is much smaller than the former and the scaling
exponent is —,

' rather than —,
' (namely, gz-p ' ).

Consider now a (pure) glass-farming polymer melt. In
view of the above discussion, we assume as an Ansatz
that the fractal linear size g (associated with the force
constants) continues to scale with the density as g of the
semidilute solutions, namely, gz-p ~ . On the other
hand, for a percolation network, g-(p —p, ) (where,
e.g., v= —,

' in the EMA). Equating the two lengths, we

find p —p, -p ' "', a result which maps the (static) per-
colation model onto the glassy melt. Similarly, since in
the phonon-fracton model ro«-j "+ ~ ', q,o-g ' and
(in the static r ' =0 case) c, —g, we find
co -p "+ '

q -p and (for T( T ) c, -p
Since' d =1 and d =—', for swollen linear polymers, we

have 8=2(did —1)=—', . This yields co«-p ~ and

c, -p' . This result for c, should be valid well below Tg.
As T is raised above T~, we expect that ~ ' would start
to increase (from zero), but the relation c, -p'~ will still
approximately hold until ~~„-vp —1. The tempera-
ture at which this occurs we denote T' ( )T ). Then,
according to Eq. (55), larger dynamic fiuctuations will
cancel some of the decrease in the density. These predic-
tions are consistent with experimental observations:
Below Tg, both the density and sound velocity show a
slow decrease with temperature. * Just above T, both
show a more rapid decrease with temperature; however,
while the density continues to drop with T, the sound ve-
locity flattens at some T*, just as stated above. ' In
spite of this consistency, we note that Eq. (56) does pose a
severe problem for the present model, as it implies an in-
crease of c, with temperature for T) T'.

Consider now a (solvent-free) polymer-electrolyte net-
work [e.g. , poly(propylene oxide) or poly(ethylene oxide)].
%hen the network is doped with salt, the Lewis-base
atoms (oxygen, nitrogen, etc.) usually form a quasi-
tetrahedral configuration around the alkali ions, whereas
the anions are relatively free and their contribution to
transient cross-links can be neglected. ' Let N, o be the
number of monomers between two consecutive (transient)
cross-links along a chain, in an ionic-free network. In a
doped network with a given ratio No.~ of monomers to
metal ions, for every N, o monomers on a single chain
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there are (on the average) about 1+(N,o/No ~) "contact
points" to other chains. This means that
N —N o/[ 1 + (N 0/No I).] is the mean number of mono-
Iners along a chain between two consecutive "cross-
links. " One can use N,o-g -p, where gf is the
correlation length of an ionic-free network, as discussed
above. To obtain the fractal size, we can use g-N,
Thus, for T & Tg, we have c, -N, ~' or (using 0=—', )

(85)

where A is a numerical constant. Thus e, increases with
decreasing No.~, as experimentally observed. Similarly
co„-A p

~ + 1/No. ~ and q,o- [ A p + 1/No ~ ] ~ .
Consider now the density dependence of the linewidth

I of the phonon peak. Below T the phonon-fracton
theory predicts the Rayleigh-scattering behavior I -q .
Just above Tg we predict I -q (assuming g q «r '),
which is similar to the prediction of Mountain
theory and is experimentally well confirmed. Using
again the estimates for the correlation length in polymer-
ic glasses and the scaling results for I [Eqs. (78) and (79)],
we find, for pure polymers,

(86}

(87}

As ~ should decrease rapidly with temperature just above
Tg, Eq. (87} indeed explains why the phonon peak shows
substantial broadening when one crosses from the glass to
the liquid phase. For a complexed polymer electrolyte,
we similarly find I -N, ~

q (for T &&T ) and
I —N, ~ r 'q (for T )T ). It should be easy to check
these predictions experimentally.

To conclude this section, we would like to stress a few
points: (i) In Sec. IV B it was noted that as r ' increases
from zero (keeping p fixed), the width of the phonon peak
increases, passes through a maximum, and then diminish
again. Since r should decrease monotonously (and rapid-
ly) with increasing temperature above the glass transi-
tion, a similar behavior is expected for increasing temper-
ature. This is indeed the universal behavior observed in
liquids above their glass transition. However, Moun-
tain phenomenological theory offers another ex-
planation for this effect. (ii) As seen in Fig. 2(a), the
"background" line on the LHS of the phonon peak is
very low for ~= ao and increases substantially as w

' in-
creases from zero, while a much more moderate effect is
observed on the RHS to the peak (i.e., the peak is not
broadened uniformly). This is consistent with experimen-
tal observations below and above the glass transition.
Another explanation for this effect is offered by a phe-
nomenological "Mountain-like" theory. (iii) Although
the actual temperature dependence of the model parame-
ter ~ is not known, we expect it to have the Vogel-
Tamman-Fulcher6' form, =wre ox[p8/( T—To)], where

To is an "ideal" (or "equilibrium"} glass transition tem-
perature and where 8 and ro are constants. (iv) r can also
be obtained independently from the same Brillouin exper-
iment by extracting the monomer diffusion coefficient
from the width of the quasielastic Brillouin line and

deducing the monomer diffusion time over a monomer
size. (v) The temperature T, which is defined above as
the temperature at which the sound velocity shows no
more substantial decrease with increasing temperature,
seems to be closely related to the kinetic glass transition
temperature T, which appears in mode-coupling
theories.

Finally, we note that the ideas presented in this section
are some hat speculative in nature and cannot be regard-
ed as the fi l word on this issue. However, a similar ap-
proach to thk; one presented here has recently been suc-
cessful in analyzing the Raman spectrum of amorphous
polymers.

VI. CONCLUSIONS

In this paper we have generalized (within the EMA)
the Alexander-Orbach theory for phonon-fracton behav-
ior to time-dependent percolating networks. Our formal-
ism yields a general procedure for obtaining the
frequency-dependent effective force constant IC(co) [cf.
Eqs. (40)—(43)] and shows that, just as for the frequency-
dependent diffusion coefficient, K(co) depends on co and
on the network relaxation times r, (only) through com-
binations of the form co —i /~. . For situations where the
dynamics is associated with a single relaxation time, this
leads to the analytic continuation rule Eq. (46), similar to
that found for diffusion.

Knowledge of the effective force constant makes it pos-
sible to calculate any physical observable of interest
through the Green's-function formalism. In this work we
have focused attention on the dispersion relation (Sec.
III) and the dynamical structure factor (Sec. IV}. For the
latter quantity, dynamic fluctuations in the disorder have
a significant effect. First, the phonon peak is broadened
as the fluctuation process is switched on, namely, as ~
increases from zero. This extra broadening is negligible
until r-r„ is reached [Eq. (74}]. As the fluctuations be-

come faster, the width goes through a maximum and then
diminishes again (the "motional narrowing" effect of
Kubo line-shape theory ). The sound velocity increases
monotonously with ~ ', this increase is negligible until
'T 7 2 co

' is reached.
In order to relate to experiment, the temperature

dependence of the model parameters has to be set. A way
to circumvent this difficulty is provided in Sec. V by
equating the percolation correlation length with the poly-
mer correlation length for screening of the excluded
volume interaction. Decrease of the sound velocity with

temperature is explained via volume expansion of the ma-

terial. %e note that the Mountain relaxation theory
suggests an alternative explanation for this effect. How-
ever, Mountain theory predicts that the linewidth should

be proportional to q below the glass transition {infinite
relaxation time), just as for a Navier-Stokes liquid, while

the present inodel leads to a q behavior (Rayleigh's law)

which is more likely to be correct.
Obviously, calculation of other observables can help to

support our model, for example, calculation of the
specifi heat, which involves only one new input, the den-

sity of states. The latter can be readily obtained from the
Green's function. The specific heat increases significantly
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when passing from below to above the glass transition,
and it would be interesting to see how the present model
predicts this change.

ACKNOWLEDGMENTS

Most of this work was carried out at Tel-Aviv Univer-
sity. I am grateful to Professor Abraham Nitzan for sug-
gesting this topic and for guidance and many useful dis-
cussions. I am also indebted to J. Klafter, M. Bixon, S.
Alexander, O. Entin-Wohlman, M. Feingold, M. E.
Cates, M. A. Ratner, L. M. Torell, M. Pietralla, and J. K.
Kruger for stimulating discussions. This work was sup-
ported in part by EC Grant No. SC1 0288-C.

APPENDIX A:
FORMAL SOLUTION FOR EQS. (28)

zU(o, z) Uop—(cr)=P(cr, z)+QU(cr, z) . (A lb)

In order to keep the order of noncommuting quantities,

Here we obtain Eq. (30) from Eqs. (28). Taking the La-
place transform A(cr, z)= fo"dt e "A(cr, t) of Eqs. (28),
we get

zP(cr, z) —Pop(cr ) = —W U(o, z)+ QP(o, z ), (Ala)

we invert Eqs. (Al) step by step. By definition, Qp(o. ) =0
[cf. Eq. (19)],and thus

(z —Q) 'p(o ) =z 'p(o ),
whence, from Eq. (Alb),

U(o, z}=(z—Q) 'P(o, z}+z 'Uop(cr } .

(A2)

(A3}

Substituting Eq. (A3) into Eq. (Ala) and solving for
P(o,z), we get

P(o z) gpss(cr z)'Po+gpu(cr z) Uo (A4)

where the partially averaged Green's operators g z(cr, z)
and gz„(cr,z) are formally given by

g~~(cr, z) =[(z —Q)1+W(z —Q) '] 'p(cr ), (ASa)

Using again Qp(cr ) =0, g (cr, z) can be simplified to

g (o,z)=z[(z —Q) 1+W] 'p(o) . (A6)

In addition, g (cr, z) and g „(o,z) can be simply related
to each other. To find this relation, we rewrite g „as

gp„(cr, z) = —z '[(z —Q)1+W(z —Q) '] ' Wp(cr ) .

(Asb)

gz„(cr,z)= —z '(z —Q)[(z —Q) 1+(z —Q)W] ' (z —Q)Wp(o )

= —z '(z —Q)[(z —Q) 1+(z —Q)W] '.[(z —Q) 1+(z—Q)W —(z —Q) 1]p(cr)
= —z '(z —Q)[1—[(z —Q) 1+(z —Q)W] '(z —Q) ]p(cr)

= —z '[zl —z [(z —Q) 1+W] 'jp(cr), (A7)

where we have again used Qp(o )=0 Thus.
g (s)=2[a+6+ [s(a+12)]' '] (B3)

g „(cr,z)= —p(o )I+zg~~(cr, z) . (A8)

U(cr, z) can be now found by substituting P(cr, z) in Eq.
(A3) [using again Eq. (A2)]. This leads to Eq. (30).

APPENDIX B

Expressions for the lattice Green's function of the ori-
gin g (s) are summarized here. In d dimensions it is gen-
erally given by

g(e)=s ' —Zs +o(s '), (B4)

which is valid for an arbitrary lattice (in all dimensions).

g(s) is also the Laplace transform of the random walker
probability for returning to the origin at time &, Po(r).
Using, for smail r, Po(t) —1 Zt +o(t )—, where Z is the
coordination number, one obtains, for large c,

g(s)= d f dq c.+g(1—e''i'1

(2ir) Bz
(Bl) APPENDIX C

where a are vectors directing from an origin to the
nearest-neighbor sites, and the integral is carried over the
first Brillouin zone. For a simple cubic lattice (in d di-
mensions), Eq. (Bl) can be transformed to

g (s) = ,' f dt ex—p[—(d +—,'s)t][Io(t)] (B2)

where Io(t) is the modified Bessel function of order zero.
A useful approximate expression for a 3D simple cubic
lattice has been obtained by Odagaki and Lax:

d cri

dQdE fi
(C 1)

Here we obtain Eq. (59) in the common way. We write
the results directly for the scalar elasticity model, where
the different components of the displacement vector are
not correlated (in Sec. II we treated the dynamics of a
single component). Consider a specific realization of the
dynamically disordered system denoted by the bond
configuration vector cr(t) For any such .realization, the
intensity of the scattered light is given by
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2

S&(q,co)=e I dt e' 'g e "(U, (0)U (t))r .
l, J

(C2)

Here W is the Debye-Wailer factor 2W=q ( U(0) ) T and R,"=R —R, is the vector separation between sites i and j.
The angular brackets denote thermal average. The (standard) next step is to argue that by summing over all scattering
atoms located at sites i in Eq. (C2) we pick up all realizations of the system (with respect to both the spatial disorder and
stochastic dynamics of the bonds) and so this is approximately equivalent to (N times) the ensemble average over all
realizations of the system (namely, all realizations of the initial condition for the bond configuration and all realizations
of paths for each initial condition) with a fixed site index i. Equation (C2) is then rewritten as

2

S, (q, co)=e f dt e' 'pe "((U (0)U (t))T),
J

where the second angular brackets denote such an ensemble average. The thermal and ensemble averages can now be
interchanged. This can be seen from the form of Eq. (32) showing that the calculation of ( ( U;(0) U (t) ) T ) involves the
fully averaged Greens functions gj (t) and equilibrium correlation functions of the form U, (0)U&(0))T and

( U;(0)Pk(0) ) T. We avoid the explicit calculation, and we now make use of standard results. In the theory of lattice
dynamics, it is shown that

f dt e' '( U( 0) U(Jt)) T= 2A[n( co) +1]lm 6;(co iO), —

where n (co) is the Bose population factor,

n(co) =(e~"" 1)—
(C4)

(C5)

with P= 1/ke T and where G; (co) is the Green's function of the system [6; (co iO) —is the advanced Green's function].

6; (co) is now identified with an element (in Laplace space) of the fully averaged Green s operator
g l(z) of the theory of

Sec. II [Eqs. (33) and (34)],

G; (co —iO)= g; (ic—o+0)—= —(i ~g(ico+0)j~) .

This leads to Eq. (59).

(C6)
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