PHYSICAL REVIEW B

VOLUME 45, NUMBER 3

15 JANUARY 1992-1

Jastrow-Slater trial wave functions for the fractional quantum Hall effect:
Results for few-particle systems

Gautam Dev and J. K. Jain
Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794
(Received 13 February 1991)

We report results of a numerical study of the Jastrow-Slater trial wave functions for the fractional
quantum Hall effect proposed by one of us. We study systems of up to eight electrons and find that these
trial states are an extremely good approximation to the true Coulomb states.

I. INTRODUCTION

The purpose of this paper is to test the validity of the
Jastrow-Slater trial wave functions for the fractional
quantum Hall effect (FQHE) proposed by Jain.'? These
are given by

=PI (z;—z m o, (1)
j<k
where the filling factors p and n (the subscript of y or ®
will always denote the filling factor) are related by
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®,, is the known wave function for the incompressible in-
teger quantum Hall (IQHE) system? (i.e., for noninteract-
ing electrons) with n filled Landau levels (LL’s), Xp is the
trial wave function for the FQHE system at filling factor
p, z;=x;+iy; denotes the position of the jth electron, P
is an operator that projects the state onto the lowest Lan-
dau level, and m is an odd integer. These trial wave func-
tions clearly satisfy some of the basic properties, such as
translational invariance (see Appendix A).

In this scheme the quasiparticle excitations of the
FQHE state are also related to the quasiparticle of the
IQHE states in the same manner."? That is, quasielect-
ron and quasihole excitations of y, are given by

XE=P I (z;—z,)" " 'oP, 3)
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X3=PII (z;—z ym lgpae | 4)
j<k

respectively, where <I>‘,4,h is the state with #n filled LL’s ex-
cept for a hole in the nth LL, and ®§° is the state with n
filled LL’s and an electron in the (n +1)th LL.

Subsequently, Jain, Kivelson, and Trivedi* generalized
these trial wave functions to describe the FQHE states at
arbitrary filling factors in the presence of disorder. The
generalized trial states are given by

=? H (Zj—Zk )m—lq)v* > (5)
j<k
where the filling factors v and v* are related by

V*

= (6)
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Here, ® . is the Slater determinant ground state for
noninteracting electrons at filling factor v*, which can be
in principle calculated for arbitrary disorder. The trial
wave function in Eq. (5) asserts that if the IQHE state at
* is uniquely determined (which is always the case with
finite disorder), then a trial wave function for the FQHE
state at v*, related to v by Eq. (6), can be constructed by
application of the Jastrow factor. When v* is an integer
(say v*=n) i.e., ®, corresponds essentially to n filled
LL’s even in the presence of (sufficiently weak) disorder
and one recovers the earlier trial states of Eq. (1). (We
will reserve n and p to denote the filling factors of in-
compressible IQHE and FQHE states, respectively.)
Those trial states of the present scheme, which are en-
tirely in the lowest LL even without the projection opera-
tor, have been considered before. These are x,,, and
their quasiholes x{%,,. These states are identical to the
Jastrow states proposed by Laughlin,’ because

®,= [T (z;—z) exp 2 |z;1?
j<k

(7

and

f'= 1 ( z;—2)®; . ®)
J

However, all other trial states make use of the higher
LL’s, and are new. It is worthwhile to point out here
that our x,,, state ascribes the physics of the FQHE at
v=1/m to Jastrow-Slater correlations rather than to Jas-
trow correlations alone, as was originally proposed by
Laughlin. In the case of v=1/m, these two viewpoints
are equivalent, since the Slater-determinant state @, itself
happens to be of Jastrow form. However, while pure Jas-
trow correlations are capable of describing only the states
at v=1/m, Jastrow-Slater correlations are generally valid
and describe the physics of all FQHE states.

How does one know if these trial wave functions have
anything to do with the reality? One very fortunate
feature of the FQHE is that it is possible to compute the
exact eigenstates of finite systems in the B — oo limit, be-
cause then the Hilbert space is restricted to the lowest
LL, and there are only a finite number of many-body
basis states. It is appropriate to call these studies “nu-
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merical experiments” because (i) they represent the exact
solutions of a realistic Hamiltonian (say Coulomb interac-
tions), and (ii) they provide a faithful representation of the
phenomenon of the FQHE, in the sense that they show in-
compressibility at precisely those filling factors at which
the FQHE is experimentally observed. Therefore, a com-
parison with numerical experiments has come to serve as
the essential test of any trial wave function in the field of
the FQHE. The most sensitive comparison is provided
by the overlap of the trial wave function with the numeri-
cal experimental state. A large overlap not only guaran-
tees that all the correlation functions of the numerical
state are very well approximated by those of the trial
state, but also ensures that the trial state has very good
energies even in the thermodynamic limit. This is the
case because the energy of state is mainly determined by
its short-distance behavior, and good overlap for
sufficiently large (in this case large compared to the mag-
netic length) systems signifies good short-distance corre-
lations.

The Laughlin states, which are also a part of our
scheme, have remarkably large overlaps with the true
Coulomb state for small systems.””’ For example,

Laughlin’s 1 state has an impressive overlap of about

0.995 with the exact Coulomb ground states for a system
of nine electrons on the surface of a sphere.® The appeal-
ing simplicity of the Laughlin states and their extremely
accurate representation of the numerical experiments
make a very convincing case in favor of the Laughlin
states, and as a result it is widely believed that they pro-
vide a satisfactory microscopic understanding of the
FQHE at v=1/m.

Such an understanding was earlier not possible for the
FQHE at a large number of other fractions. In this paper

TABLE 1. This table gives the squares of the overlaps of our
quasielectron trial state x5; [Eq. (9)] and Laughlin’s quasielect-
ron trial state y§%& [Eq. (10)] with the corresponding true
Coulomb ground state. Disk geometry is used for the calcula-
tions. M is the total number of many-body basis states with the
“correct” total angular momentum (i.e., the dimensionality of
the matrix that needs to be diagonalized to obtain the Coulomb
ground state). (a) uses the “open” boundary conditions and (b)
uses “closed” boundary conditions (see the text for a definition
of these boundary conditions).

(a)
N M |<Xtruelx?e/3)l2 l<X!rue‘X?E/,3L>|z
3 3 1 1
4 15 0.9928 0.9966
5 84 0.9845 0.9922
6 532 0.9862 0.9742
(b)
N M |<Xlruelx?e/3>l2 '<X!ruelx?e/'3L>|2
3 3 1 1
4 11 0.9938 0.9974
5 46 0.9860 0.9934
6 217 0.9882 0.9771
7 1069 0.9659 0.9314
8 5529 0.9353 0.8770
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we study the simplest new trial states of our theory—
namely, the % state with one or more quasielectrons, and
the incompressible states at 2 and 2. We find that these
states also have extremely good overlaps with the true
Coulomb states. This lends strong support to this class
of trial states, and gives us confidence that they provide a
valid microscopic theory of the general FQHE states.

The paper is organized as follows. In Sec. II, III, and
IV we study (i) the  states with a single quasielectron, (ii)
the % state with more than one quasielectron, and (iii) the
incompressible states at % and 2, respectively. In all
these cases, we compare our trial states with the true
Coulomb state, and find that our trial states have an ex-
cellent overlap with the true state, better than any other
trial states proposed in the literature. The effect of the
projection operator is discussed in Sec. V and the paper is
concluded in Sec. VL.

II. SINGLE QUASIELECTRON

The wave function for a quasielectron at the origin is
given by
Zy 22 Z3
1 1 1
Zy z, 1z

X15:= 2 2 2
zZ1 z; zj

XH(Zj—Zk)Zexpl——}zzkjlz] . 9)
j<k J

This wave function is different from various other wave
functions proposed in the literature for the quasielectron.
For concreteness, we will compare it with the trial wave

function proposed by Laughlin,5 which we denote by
X4,

¥ L= X1/3 - (10)

nm-

j 9
The derivatives in this state do not act on the exponential
factor.

We discuss in Appendix B how we obtain the true
Coulomb ground states and in Appendix C how we ob-
tain the lowest LL projection of various trial wave func-
tions. In our calculation of the true Coulomb ground
state we employ two types of boundary conditions: (i)
“closed” boundary condition, in which we restrict the in-
dividual angular momentum of each electron to be less
than or equal to the maximum individual angular
momentum that an electron attains in the trial state; (i)
“open” boundary condition, in which we make no restric-
tion on the value of the angular momenta of individual
electrons. It is clear from our results that both boundary
conditions give similar answers. The advantage of the
closed boundary condition is that the total number of
many-body basis states is much smaller compared to that
with open boundary condition, thus making it possible to
compute the true Coulomb ground state for larger sys-
tems.

In Tables I(a) and I(b) we give the overlaps of both of
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these trial states with the Coulomb ground states calcu-
lated for the appropriate total angular momenta with
open and closed boundary conditions. The largest system
studied consists of eight electrons. (For the eight-
electron system, the true Coulomb state was obtained by
employing a modified Lanczos technique.® The initial
vector was chosen to be one of the trial state.) Clearly
our trial state for the quasielectron has near unity overlap
with the true state. Furthermore, it is a better approxi-
mation for the true quasielectron state that the Laughlin
quasielectron trial state, although both seem to do well.
These results are consistent with our assertion that
quasielectrons of the FQHE state are closely related to
quasielectrons of the IQHE state.

We close this section with the following remarks.

(i) It is intuitively quite clear that in our trial state the
quasielectron is created in such a manner that the in-
compressible 1 state far from the quasielectron position
(say, z,) does not get perturbed. The heuristic argument
that leads to this conclusion is that (a) the IQHE state
®9° with one electron in the second LL at z, has filling
factor v=1 everywhere except in the vicinity of z,; (b)
therefore, when the Jastrow factor acts on this state, it
produces 1 state everywhere except near z,; (c) the pro-
jection operator again disturbs the state only near zy—it
does not affect the 1 state far from z, as it is already in
the lowest LL. It is not very clear to us why the Laugh-
lin quasielectron trial state should have this crucial prop-
erty. This may be related to why the Laughlin quasielect-
ron trial state becomes increasingly worse than ours as
the system size increases.

(ii) Neglecting the projection operator, our trial state
is, by construction, also valid for the v=1 state. The
Laughlin trial state can also be written as the lowest LL
projection of some state as follows:

TABLE II. This table shows squares of the overlaps of trial
states [s,¢] of Eq. (12) with the corresponding true Coulomb
states. Disk geometry with closed boundary conditions is used.

N State M (Overlap)?
5 [5,0] 73 0.976
[4,1] 46 0.986
(3,2] 27 0.996
6 [6,0] 338 0.972
[5,1] 188 0.988
[4,2] 134 0.982
(3,3] 88 0.055
7 (7,0] 1658 0.931
[6,1] 1069 0.966
[5,2] 663 0.970
[4,3] 424 0.966
8 (8,0] 8512 0.939
[7,1] 5529 0.935
[6,2] 3436 0.974
[5,3] 2174 0.980
[4,4] 1430 0.024
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X$9E=PII 2 X1 /m - (11)
J

However, if one removes the projection operator for
m =1, it can be shown that this state does not describe
Y because it has a logarithmically diverging energy
E,~(InN)fio,, where N is the total number of elec-
trons.

III. MANY QUASIELECTRONS

One feature of our scheme is that it is straightforward
to write trial wave functions for states with more than
one quasielectron; these are simply related to the IQHE
states in which the lowest LL is completely filled and
there is more than one electron in the higher LL. For
reasons given below, we consider only the specific class of
trial states given by

z? z3
ziz, 23z,
ztz{7h z3zi7!
[s;t]1=P|
Zy Z2
A7z
2
XTI (z;—z )V exp [—1+ 3 117 ] . (12)
j<k j

The Slater determinant in this state corresponds to the
IQHE state in which there are s electrons in the lowest
LL, occupying the single-particle state of angular mo-
menta 0,1,...,s—1, and ¢ electrons (¢ <s) in the second
LL, occupying the states of angular momenta
—1,0,1,...,t—2 (see Appendix A). [The form of the
Slater determinant given in Eq. (12) is obtained after
some row manipulation.] In other words, the FQHE trial
state in Eq. (12) is related to IQHE state in which both
the lowest LL and the higher LL are completely filled up
to their respective boundaries. The state [s;¢#] can be
thought of as the 1 state with ¢ quasielectrons.

The reason for the above specific choice is that these
trial states are translationally invariant. That is, the sub-
stitution z;—z;—z, alters merely the center-of-mass
coordinate (this substitution leaves the polynomial part of
the states unchanged, as can be explicitly verified, and
changes only the center-of-mass coordinate in the ex-
ponential part). For other choices of the Slater deter-
minant, the trial state, in general will not be translational-
ly invariant.

We again compare these trial states with the true
Coulomb ground states calculated for the appropriate to-
tal angular momenta. The overlaps are given in Table II.
These results show that the above many quasielectron tri-
al states [s;z] are a very accurate representation of the
true states for ¢ <s. (The states [s;¢] with s=¢, which
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one would like to identify with filling factor £, seem to do
rather poorly; these will be discussed in greater detail in
the next section.)

We would like to point out that our results are also
consistent with the generalized states in Eq. (5). As men-
tioned earlier, the basic assertion of the states in Eq. (5) is
that if the IQHE state can be determined uniquely, a
reasonable approximation for the FQHE state [at a filling
factor given by Eq. (6)] can be obtained by multiplication
by the Jastrow factor. In the present case the IQHE state
if uniquely determined because of the total angular
momentum restriction; the IQHE state described by the
Slater determinant of [s,¢] has the property that it is the
unique ground state for s+ electrons with total angular
momentum equal to s(s —1)+¢(t —3).

To summarize the results of this section, the Jastrow-
Slater trial wave functions appear to be valid even for
more than one quasiparticle.

IV. INCOMPRESSIBLE STATES

Equation (1) implies that the trial wave function for the
incompressible state at v=£ can be obtained by multiply-
ing the IQHE state &, by the Jastrow factor
I, < x(z;—2z )? (and, of course, projecting it onto the
lowest LL). Even though there is no truly unambiguous
definition of two filled LL’s in the disk geometry, it seems
natural to define @, to be the state in which there is an
equal number of electrons in the lowest two LL’s. With
this choice the states [3;3] and [4;4] of the preceding sec-
tion would describe a system at v=3:. As shown in Table
I1, these have very poor overlaps with the true ground
states.

We show below that these poor overlaps are a result of
boundary effects, which are overemphasized in our few-
electron calculations, and that our trial states indeed de-
scribe the (bulk) physics of the incompressible FQHE
states accurately.

The clue to the importance of boundary effects lies in
the observation that the overlaps are rather good for the
states of the form [s,s —1] (which also correspond to a
filling factor of £ in the thermodynamic limit). Since
[s,s —1] and [s,s] differ only at the boundary, it is
reasonable to conclude that boundary effects become im-
portant in [s,s]. This raises the question of why the ex-
istence of a boundary affects only states of the type [s,s]
and not the Laughlin state or the state [s,¢] with s <t.
In order to answer this question, we show in Fig. 1 the
one-electron density p(r) of some trial states of the type
[s,t] for an eight-electron system [which is essentially
also the p(r) of the true Coulomb state for t <s]. The
p(r) of the Laughlin | state [8,0] has one peak near the
boundary, while the p(r) of other states has two peaks.
This might have been surprising, but, given our trial
states, interpretation of these peaks is quite straightfor-
ward: there is one peak corresponding to the boundary
of the lowest LL and one to the boundary of the higher
LL. It is reasonable to assume that so long as the two
peaks are far enough that the energy associated with their
Coulomb interaction is small compared to the typical en-
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FIG. 1. This figure shows the one-electron densities of vari-
ous trial states of the type [s,7] [Eq. (12)] where the total num-
ber of electrons (s+1¢) is eight, and the number of quasielect-
rons is f.

ergy differences between the low-lying eigenstates of the
system, they do not influence the physics of the true
Coulomb ground state in any significant manner. How-
ever, as t approaches s, they come closer to each other
(just as the boundaries come closer in the related IQHE
state) and at some point their interaction starts affecting
the ground state significantly. Since they are closest at
t =s, we expect these boundary effects to be most severe
at v=1, which, we believe, is the reason for the failure of
our trial states of the type [s,s].

In order to investigate if our trial states adequately de-
scribe the bulk properties of actual states, we have re-
peated our calculations for Y,,s=[];.«(z;—z )2®, and
X2,9=1I1,-1(z;—2;)*®, in the spherical geometry,”’ in
which there are no boundaries. (For completeness, a dis-
cussion of wave functions in the spherical geometry is in-
cluded in Appendix A. For Coulomb matrix elements see
Fano, Ortolani, and Colombo.®) Another advantage of
the spherical geometry is that, unlike in disk geometry,
the IQHE state with n filled LL’s is uniquely defined,
since each LL has only a finite degeneracy. Consequent-
ly, the states x, are also unambiguously determined.

The first thing to note is that on sphere our  and %
states occur when the lowest LL degeneracy (N, ) is
given by (Appendix A)

N, =3N-3 (13)
and

N, =IN-5, (14)

respectively, where N is the total number of electrons.
This is consistent with the results of the exact diagonali-
zation studies of few-particle systems which find cusps in
the ground-state energy at these values of N, .
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TABLE III. This table shows squares of the overlaps of our % and % trial states with the correspond-
ing Coulomb ground state. It also shows the relative energy difference between the trial state and the
ground state, defined by ry =(E,,—E,)/E,, where E,, is the energy of the trial state and E|, is the ener-
gy of the ground state. Spherical geometry is used. D is the number of independent uniform (zero an-

1

gular momentum) states. For comparison, we also show some results for the Laughlin = state taken

from Ref. 6(b).

v N N, D M (Overlap)? re (%)
z 4 7 1 5 1 0
6 12 3 58 0.999 64 0.0040
8 17 8 910 0.999 28 0.0055
2 4 13 2 43 0.999 88 0.0021
1 5 13 2 73 0.998 12 0.024
6 16 6 338 0.992 89 0.049
7 19 10 1656 0.99273 0.048

# Fano et al., Phys. Rev. B 34, 2670 (1986).

The overlaps of our trial states with the true Coulomb
states are shown in Table III. For four electrons, there is
only one uniform state at v=2, and the overlap of unity
tells us nothing more than that our trial state is uniform.
For the six- and eight-electron I state and the four-
electron % state, however, our results are meaningful,
since a random uniform trial state would have an overlap
of approximately 1/V'D with the true ground state,
where D is the number of independent uniform states.
The near-unity overlaps in these cases leave little doubt
that our trial states are indeed an excellent approxima-
tion of the true Coulomb ground states.'® The overlaps
for our states are better than the overlaps of other trial
states at 2 and 2 considered in the literature.®!!

It is now clear that the poor overlaps on the disk
geometry were due to boundary effects. This shows the
importance of using spherical geometry in the study of
incompressible FQHE states. For Laughlin states both
geometries seem reasonable, even though the overlaps of
the Laughlin states are somewhat worse in the disk
geometry than in the spherical geometry, presumably
again because of boundary effects.

V. THE UNPROJECTED STATES

It is worth pointing out here that in typical experimen-
tal situations the interaction energy per electron is com-
parable to the cyclotron energy, and consequently
significant LL mixing must occur in the ground state.
Why are our trial states, which are strictly in the lowest
LL, valid in such situations? The answer is that the
finite-B FQHE state is in the same phase as the infinite-B
FQHE state, and therefore a trial state valid in the
B — o limit also describes the physics at finite magnetic
fields. (Remember that we are considering here only
completely spin-polarized ground states. In reality, it is
possible that some finite-B FQHE states may not be in
the same phase as the infinite-B state due to their
different spin configuration.)

We now wish to make the important point that the
unprojected trial states (i.e., our trial states without the

projection operator 7) also provide a valid description of
the FQHE. This is very useful since the unprojected
states are much simpler to understand and work with,
and provide a feel for the physics represented by the pro-
jected states. This follows from the two points discussed
below.

(1) Recall that the lowest-LL trial states studied in this
paper are obtained by simply projecting out the higher-
LL component of our highly correlated unprojected
states. Clearly, our study of the projected trial states is in
essence a test of the validity of the correlations built into
the unprojected states, and shows that they contain the
essential correlations of the FQHE.

(ii) The unprojected states are not very far from the
projected states in the phase diagram. This follows be-
cause even the unprojected states are, despite their use of
higher-LL wave functions, predominantly in the lowest
LL, as shown by Monte Carlo calculations.!?> For exam-
ple, even though ®, has only half of the electrons in the
lowest LL, the unprojected % state has approximately
96% electrons in the lowest LL and the unprojected
state has 98% electrons in the lowest LL (in the thermo-
dynamic limit). Further, Monte Carlo calculations'?
show that the interaction energy of the unprojected states
is less than that of the projected states. For typical ex-
perimental parameters, the increase in the kinetic energy
is compensated by the reduction in the interaction ener-
gy, and the projected and the unprojected states have
comparable energies.

We stress that both the projected and the unprojected
trial states make a special choice of the occupation of
various LL’s, but this choice is dictated by where a sim-
ple description is possible, and has no experimental
significance. In particular, the unprojected states do not
become “more correct” than the projected states for the
FQHE at relatively small magnetic fields. In other
words, the unprojected states do not address the physics
of LL mixing. We would also like to mention, as should
be clear to everybody by now, that our approach does not
imply that higher LL’s are necessary for the FQHE.
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VI. CONCLUSION

In this paper, we have studied the simplest new trial
states of Refs. 1 and 2, namely the quasielectron of the 1
state and the incompressible Z and Z states, and find that
these have very large overlaps with the corresponding
true Coulomb states.

In addition to large overlaps, our incompressible states
share another property with the Laughlin states: they are
the exact ground states of some model Hamiltonians with
hard-core interactions.> Exploiting this feature, Rezayi
and MacDonald'? have shown, through explicit numeri-
cal calculations, that our unprojected trial wave functions
are adiabatically connected to the true B — o states.

Finally, our scheme fits various experiments nicely. In
particular, it provides a unified framework for the entire
phenomenon of the QHE, consistent with the experimen-
tal fact that there is no essential distinction between the
observations of the IQHE and the FQHE plateaus.
Another noteworthy feature or our theory is that it clear-
ly identifies the prominently observed fractions."? For
example, with m =3, Eq. (2) yields the FQHE sequence
4,%,3,%,..., which are the only (unambiguously) ob-
served fractions in the range 1 Zv> 1.

We believe that a combination of all these factors
makes a compelling case for our theory of the FQHE.
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The Slater determinant in this state corresponds to the
state in which there are N /2 electrons in the lowest LL,
occupying the single-particle states of angular momenta
0,1,...,N/2—1, and N /2 electrons in the second
LL, occupying the states of angular momenta
-1,0,1,...,N/2—2. (The form of the Slater deter-
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APPENDIX A

We provide here a brief discussion of wave functions in
both disk and spherical geometry.

1. Disk geometry
The Hamiltonian of an electron in magnetic field

__1
o om

(A1)

e

2
e
+<A
prial

can be solved exactly for the eigenvalues and eigenfunc-
tions. In the circular gauge, A=(B/2)(y,—x,0), the
eigenstates are given by

n’q=(2ﬂ_2q+rq!r!)-—l/2€1/4(x2+y2)Dthre—(l/2)(x2+y2) ,
(A2)

where r=0,1,2,... is the LL index, g=—r,—r

+1,...,0,1,2,... is the angular momentum index,

D=0/0x +id/dy, and x and y are expressed in units of
the magnetic length /=(#c /eB)'/?. In particular, the
(unnormalized) single-particle states in the lowest LL are
given by

—z|%/4

Mo,q —2% (A3)
and those in the second LL are given by
My, =2%2q +24zz%)e /4 (A4)

The IQHE wave functions ®,, and consequently the
FQHE states x,, can be constructed with the help of
these single-particle states. For example, X,,s, which is
related to @,, is given by

I
minant is obtained after some straightforward row ma-
nipulation.)

It is clear that without the projection operator X;,s is
translationally invariant; replacing all z; by z; —¢ leaves
the polynomial part of x,,s unchanged. The projected
state is obtained by replacing all z* by 28/9z;, with the



45 JASTROW-SLATER TRIAL WAVE FUNCTIONS FOR . . .

understanding that the derivatives do not act on the ex-
ponential.? It is easy to see that this state is also transla-
tionally invariant. Similarly all other states of Eq. (1) can
be shown to be translationally invariant.

2. Spherical geometry

In spherical geometry, one considers a magnetic mono-
pole of appropriate strength located at the center of the
sphere. The eigenstates of an electron on the surface of
the sphere are spherical harmonics, first obtained by Wu

and Yang.’ In the first two LL’s, these are given by
(without normalization)
qg+tm g—m
_ 0 . i(m—q)é
Yoom= cos— sin>- e 1 (A6)
and
+m -m
v e "] e
aq+l,m COS; sm?
.20 itm—q)8
—2(g+1)sin ?+(q+1—m) e 79,
(A7)
where, for the rth LL (r=0,1,...)
m=—(q+r),—(g+r—1),...,(g+r). The magnetic

field is such that the total number of flux quanta passing
through the surface of the sphere is 29, which must be an
integer according to Dirac’s monopole quantization con-
dition.

The degeneracy of the rth LL is 2(¢ +r)+ 1. The state
with the lowest LL completely filled has N =2q +1 elec-
trons, and can be written in the usual form:

—igé
q)l:H(uivj—U,-uj)He k )
k

i<j

(A8)

J

(r,s|V|t,u)=[2" TS T uQm ) risttiyt]~172 fdzzldzzz
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'¢j/2

where u; = cos(Gj/Z)ei¢f/2, and v; = sin(6;/2)e . In

spherical geometry, the trial states of Eq. (1) are given by
=PoT o, (A9)

The lowest LL degeneracy of x, can be read off easily as
follows. The g of a state can be obtained by determining
the largest power of e B in the wave function. The g of
X, is thus the sum of the ¢’s of the individual states in the
product. The value of g for @, is given by

N—n?
=—, A10
qn n ( )
where N is the number of electrons. In particular, for ®,,
N-—1
= All
q, ) ( )
Therefore, for y, we have
N—1 6 N—n?
= — - + —_—
g, =(m—1) > o (A12)

and the lowest LL degeneracy of y, is given by
N;=2q,+1. The particular choices m=3,n=2 and
m=35,n=2 lead to Egs. (13) and (14) for x,,s and X, 9,
respectively.

APPENDIX B

In this appendix we provide the Coulomb matrix ele-
ments that we use in our calculations. The interaction
Hamiltonian is given by

This integral can be performed by transforming to the center of mass and relative coordinates. The result is

risitiu!

(r,slVit,u>=5r+s,,+u(—1)s+" 4r+s

a=0 B=0 y=0 6=0

r s t u
2 2 3 38aipys—

%2aaaa<rs|V|tu) (B1)
nstu

where V=r"!, and

zi‘;z;—’zzi‘zltl e—(|zl{2+iz212)/2 B2)
1722
1)+ 2 atB-l g+ BN2r+s—a—B)—1]!
alBlydr—a)(s —BMNt—yMu—8) °

(B3)

For the Coulomb matrix elements in the spherical geometry, we refer the readers to Fano et al.®

APPENDIX C

We wish to determine the lowest LL projection of
states of the type

@({z},{z*}] T1(z;—z)

j<k

2 exp l~‘2|z |2] (C1)
Formally, it can be obtained by making the substitution?
2} —23/0z; (where all z*’s must be brought to the left of
the z’s prior to the substitution), with the understanding
that the derivatives do not act on the exponential. How-

|
ever, in order to carry out our calculations, we need to
determine the coefficient of each term of the type

z7' o zy N exp [—%lellz] (C2)
i

(where it is sufficient to consider only the case
m;<m,< --- <my) in the expansion of this projected
state. The coefficient is given by the overlap of this term
with either the projected or the unprojected trial state.
There are a number of ways of determining the
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coefficient of any such given term. The most straightfor-
ward way is to simply expand the polynomial, bring all
z*’s to the left of z’s in each term, make the replacement
z*—20/09z, and carry out the derivatives, possibly using
symbolic manipulation computer techniques. However,
this allows treatment of only very small systems (N <4).
The other technique is to calculate the overlap of Eq.
(C2) with the unprojected trial state using Monte Carlo
techniques. The disadvantage of this method is that it
converges extremely slowly and therefore limits the accu-
racy tremendously. Yet another technique depends on
the ability to find a model Hamiltonian for which the
unprojected trial state is exact. Then the trial state can
be generated and easily projected on to the lowest LL by
exact numerical diagonalization of the Hamiltonian.
This technique can be applied only to a small subset of
states (e.g., X»,5, see Ref. 10) and is again restricted to a
small number of particles. We use the technique de-
scribed below, which is fairly general and allows us to
study systems of up to eight electrons without difficulty.

The terms in the expansion of the polynomial
I <x(zj—2 )’® which have a finite overlap with Eq.
(C2) are of the form

*a *xQ m,+a
1 N 1 1.,
)Zl

mytay
(zl ...aN 'ZN

(C3)

and the overlap is the same as that of the state obtained
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from the above state with the replacement z—20/9z;
(the derivatives acting only on the polynomial part).

We go though each term of the Slater determinant and
determine what term of the Jastrow factor would give us
the desired powers. Suppose the term of ® under con-
sideration is of the form

*xQ *a m,—i, +a
1 N 174 ..
)z

(Zl Tt ay (C4)

—_7 . +
.z I:InN IyTay .
Then we need to determine the coefficient of the term

i i i
zy'z) -z (C5)

in the Jastrow factor [, .x(z; —2;)>. Itis given by

N
E P(ji,e o )Py =1 iy—Jy) 5 (C6)
Jpoe e iy=1
where P(j,...,jy) is the permutation of (j,,...,jy)
li.e., P(j,...,jy) is +1 or —1 depending on whether

(ji»---,jy) 1s an even or odd permutation of
(1,2,...,N), and is zero if any two of the arguments are
equal].

This can be straightforwardly extended to states in
spherical geometry.
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