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Layered systems (e.g., semiconductor superlattices) with a deterministic nonperiodic structure exhibit

characteristic lengths at all scales, therefore their properties are especially interesting in the infinite lim-

it. X-ray-diffraction spectra of such systems are usually analyzed in terms of their Fourier transforms,
i.e., within the kinematical theory of scattering. The diffraction pattern of an infinite lattice, though, is

rigorously described only by the dynamical theory of scattering which, in particular, takes multiple

rejections and extinction into account. As an example, the diffraction pattern of the Thue-Morse lattice
is studied theoretically in the infinite limit. The results of high-resolution x-ray diffraction measure-

ments on a GaAs-A1As Thue-Morse superlattice are presented and analyzed. Photoluminescence and

photoluminescence excitation spectra of the same structure are also discussed.

I. INTRODUCTION

Since the discovery of quasicrystals, considerable atten-
tion has been paid to nonperiodic, yet deterministically
ordered structures, both theoretically and experimentally.
Much studied have been the one-dimensional realizations
of such systems in the form of semiconductor superlat-
tices, either quasiperiodic (e.g., the Fibonacci lattice) or
more general (e.g. , the Thue-Morse lattice). Their x-ray-
diffraction spectra, in particular, clearly show charac-
teristic features of the nonperiodic order. ' Such
diffraction patterns are related to the Fourier transform
of the underlying structures, which have been theoretical-
ly studied also in the infinite limit. For a thick system,
though, the effects of extinction and multiple reflections
cannot be neglected and a weak-scattering theory such as
the kinematical theory is, in principle, inadequate. In
particular, the x-ray-diffraction pattern of a thick super-
lattice is not simply related to the Fourier transform of
its compositional profile, but can be correctly described
only by the dynamical theory of scattering. In Sec. II
the diffraction pattern of a model of the infinite Thue-
Morse lattice is theoretically studied within the dynami-
cal theory. In Sec. III high-resolution x-ray-diffraction
spectra of a GaAs-A1As Thue-Morse superlattice are
presented and discussed, along with the results of optical
measurements on the same structure. In the experiments,

even if the diffraction pattern clearly reveals the underly-
ing nonperiodic order, the total thickness is not enough
for the kinematical theory to break down. In this sense
the available samples (see also Ref. 1) are far from the
infinite limit investigated in Sec. II.

II. THEORY (INFINITE LIMIT)
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Using two building blocks A and B, the Thue-Morse
lattice ( ABBABA AB ")can be defined recursively as in-
dicated in Fig. 1(a) with the gth-generation approximant
containing 2s elementary blocks (A and B).' To calcu-
late its diffraction pattern within the dynamical theory,
it is convenient to set up a system of recursion relations
for the reflection and transmission amplitudes of succes-
sive generation approximants. Referring to Fig. 1(b), r, r,
t, and t for the (g+1)th approximant are given in terms
of the same quantities for the gth approximant as follows:
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comprised of the shaded regions; the boundary of the invariant
manifolds is sketched by the dot-dashed lines, with a few preim-
ages sketched by the dashed lines (see text for details).

FIG. 1. (a) Generation rule of the Thue-Morse lattice (A =B,
B=A, AB= AB=BA, etc.). (b) Definition of reflection and
transmission amplitudes, from the left and from the right (in all
cases, r*r+t t=1).

and similar equations for t + &
and r~+ &. The reflection

and transmission amplitudes for a single homogeneous
slab ( A or 8) are written in general as

+A, Brg g =lpga g8

tern of this model of the Thue-Morse lattice is given in
the infinite limit by

1
R„(po,yo)= lim (r*r )= lim 1—

q*qg

where it is convenient to fix pp between 0 and 1 and vary
40 (without loss of generality 40 can be restricted to the
range [0,m /2] ).

With reference to Fig. 2 and considering only the re-
gion outside the unit circle (q =u+iv, q'q & 1) under the
continuous mapping of Eq. (3) the first quadrant goes into

with
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The Thue-Morse lattice is modeled as simply as possible
setting 4„=4g 4p and p„=—pz =pp, then, using the
generation rule, it follows that
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Thus, within the dynamical theory, the diffraction pat-

Finally, from Eqs. (1) and (2), the following recursion re-
lation for the quantity qg 1/tg is derived:

!
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FIG. 3. Reflectivity pattern of the Thue-Morse lattice ac-
cording to the mapping of Eq. (3) as a function of @p with
pp=0. 2. Shown above the horizontal axis are (a) the fourth-
and (b) the fifth-generation spectra; the vertical rectangles below
the axis mark the ranges corresponding to points mapped into
the domain D after (a) two and (b) three iterations. Also
marked by arrows are the reflectivity zeros predicted by the
kinematical theory.
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the first and second ones, the second one into the third
and fourth ones, the third one into the first and second
ones, and the fourth one into the third and fourth ones; in
particular, the region la below the line v =1/&2 goes
into the first quadrant and the region 1b above the same
line into the second one, and similarly for the other re-
gions shown in Fig. 2. The points with u =0 and ~U~ &1
go into points with v=0 and u (—1 and the latter go
into the fixed point (u = l, v =0), which corresponds to
vanishing reflectivity (i.e., perfect transmission). This is
the only way in which, starting with po& 0 (4o &0), a
vanishing reflectivity can be achieved, and for 4o varying
from 0 to 2m, 2g reflectivity zeros are obtained after the
gth iteration of the mapping (g &0), which gives the
diffraction pattern of the gth-generation approximant
within the dynamical theory. These zeros do not have a
simple analytical expression, whereas the kinematical
theory would give refiectivity zeros for the gth generation
simply at 4(g, n) =2m n/2, with n =0, 1, . . . (2s—1) (cf.
Figs. 3 and 4). With regard to x-ray diffraction, more
significant than the reflectivity zeros are the ranges of 4 o
for which a large reflectivity is obtained, in particular
those ranges which correspond, in the infinite limit, to to-
tal reflectivity (R „=1). In this instance the kinematical
theory is definitely inadequate and the scaling of the peak
intensity with the generation number predicted on the
basis of the Fourier transform of the compositional
profile breaks down as soon as the reflectivity becomes
comparable to unity. The mapping of Eq. (3) admits an
invariant manifold consisting of only two regions trans-
forming into one another (one in the second and one in
the third quadrant). As sketched in Fig. 2, the boundary
of the first one is tangent to the unit circle at the point
(u = —

—,', v=&3/2) and approaches asymptotically the
lines U =1/&2 and u =0 (the second region is obtained
from the first changing the sign of U). The points in the
interior of this domain and of all its preimages of which
those of order one and two are sketched in Fig. 2, respec-
tively, within region 1b (or 4b) and regions la and 3a (or
4a and 2a), escape to infinity, which means that they give
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FIG. 4. Total number N»(O) of reflectivity zeros, according
to the mapping of Eq. (3), with 40 between 0 and 4 for the
11th-generation approximant with po=0. 2. The kinematical
theory would simply give for N»(%) the integer part of
(2»4/2') as indicated by the solid line; note, instead, the wide
ranges of @0where zeros are absent and how they mostly corre-
spond to points mapped into the domain D already after only
four iterations, as marked by the vertical rectangles.

rise to total reflectivity. As a closed expression for the
boundary of the invariant manifold described above
could not be found, in order to show how in the infinite
limit there are ranges of 40 of finite extension giving rise
to total reflectivity, the domain D defined for analytical
convenience by ~uv

~

&&3/4 and ~U ~
& &3/2 (shown by

the shaded areas in Fig. 2) is studied in the following.
Under the mapping of Eq. (3), once a point is taken inside
D, it stays in D; furthermore, if qM belongs to D, it fol-
lows that, for all n &M —1,

iq„+, /
=1+4U„(iq„i —1)
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and also

which implies

i.e., once a point is mapped into D, it escapes to infinity.
As a consequence, the extended ranges of 4o that, at a
given iteration M, correspond to points within D give
rise, in the infinite limit, to total reflectivity regions, as
pictured in Fig. 3 [see, in particular, the range
40/7r-0. 33 in Fig. 3(b)]. Moreover, within these inter-
vals of 4o, no reflectivity zeros can ever be obtained, in
contrast to the predictions of the kinematical theory dis-
cussed above (cf. Fig. 3 and, especially, Fig. 4).

III. EXPERIMENT (FINITE SIZE)

A semiconductor superlattice fabricated according to
the Thue-Morse generation rule using a layer of GaAs as
the A building block and one of A1As as the B building
block [cf. Fig. 1(a)] has been investigated by high-
resolution x-ray diffraction and by photoluminescence
and photoluminescence excitation spectroscopy. Figur-
5(a) shows the diffraction pattern of the eight-generation
approximant (256 layers) in proximity of the (200)
refiection. As shown in Fig. 5(b), employing literature
values for the parameters of the bulk materials, a very
satisfactory fit is obtained with a GaAs layer thickness of
4. 1 nm and an A1As layer thickness of 2.5 nm (in close
agreement with estimates based on growth rates). In the
simulation a constant background at the level of 10
and a broadening of 10 rad are included. As evident
from Fig. 5, the superlattice quality is excellent and all
the side peaks predicted above the background as a
consequence of the Thue-Morse nonperiodic order are
resolved. However, the corresponding reflectivity values
are only of the order of 10; therefore the diffraction
pattern shown here is far from the infinite limit discussed
above, as a result of limitations in the total thickness of
the sample.

Figure 6 shows the photoluminescence (PL) and photo-
luminescence excitation (PLE) spectra of the same sam-
ple. Structures related to the nonperiodic order of the su-
perlattice are not clearly recognizable. Actually, the
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FIG. 6. Photoluminescence excitation (PLE) and photo-
luminescence (PL) spectra of the eighth-generation Thue-Morse
lattice. The vertical scale is linear for both PLE and PL, in ar-
bitrary units. The main luminescence peak (extending from
about 780 to about 800 nm) is truncated as it is about two orders
of magnitude stronger than the peak at 723 nm.
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FIG. 5. (a) High-resolution x-ray-diHraction pattern of the
eighth-generation Thue-Morse lattice near the (200) reflection, '

(b) fit to the data shown in (a), the experimental curve has been
vertically shifted by a decade for clarity (see text for details).

spectra can be roughly interpreted on the basis of the
simultaneous presence of single wells (i.e., isolated A
blocks sandwiched by B blocks) and of double wells (i.e.,
two contiguous A blocks sandwiched by B blocks) as a
consequence of the Thue-Morse generation rule [see Fig.
1(a)]. In particular, the two low-energy PLE peaks at

about 780 nm correspond to the first heavy-hole and first
light-hole transitions in the double wells, the next peak at
717 nm falls between the first heavy-hole and first light-
hole transitions in the single wells, and the broader one at
688 nm corresponds to the second heavy-hole transition
in the double wells (the second light-hole transition in the
double wells is calculated at about 665 nm, where no
resolved structure is evident). As for the PL spectrum,
besides the main peak of the first heavy-hole transition in
the double wells (corresponding to the lowest-lying elec-
tronic excitation), an additional peak, about two orders of
magnitude weaker, is clearly observed at 723 nm in
correspondence of the first heavy-hole transition in the
single wells, indicating that not all carriers excited in the
narrow wells are collected in the large ones before they
recombine.
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