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We apply the method of Bozzolo, Ferrante, and Smith for the calculation of alloy energies for bcc ele-

ments. The heat of formation of several alloys is computed with the help of the Connolly-Williams

method within the tetrahedron approximation. The dependence of the results on the choice of different

sets of ordered structures is discussed.

I. INTRODUCTION

Recently, a semiempirical method for calculating de-
fect energetics in metallic alloys was introduced by Boz-
zolo, Ferrante, and Smith (BFS).' This technique, which
builds on the ideas of equivalent crystal theory (ECT),
was successfully applied to the study of heats of forma-
tion and lattice parameters of fcc alloys as a function of
alloy composition. The BFS method is a quantitatively
accurate and computationally simple technique for deter-
mining the energetics of ordered multicomponent struc-
tures. Although there have been extensive calculations
for fcc alloys, similar results for bcc alloys have been lim-
ited. Since alloys of bcc metals are important in structur-
al materials, this paper represents an effort to develop an
approach for the calculation of defect energies in these al-
loys. In order to accomplish this goal we apply the BFS
method to the study of bcc-based binary alloys using the
method of Connolly and Williams (CWM) for the study
of the energetics of disordered structures within the
tetrahedron approximation.

In Sec. II we review the BFS method and discuss the
application of the CWM method to several choices of or-
dered structures. Next, an application of the method is
presented for calculating the heat of formation of selected
binary alloys of Cr, Fe, V, and Mo as a function of com-
position in Sec. III. Conclusions are drawn in Sec. IV re-
garding the prediction of the possible ordered structures
which are present in the bcc compounds.

II. FORMALISM

In BFS,' the energetics of binary alloys is described in
terms of pure metal properties and only two experimen-

tally (or theoretically) determined alloys properties. We
build on the formulation of ECT by dividing the total en-

ergy of the alloy into a chemical energy and a strain or
structural energy. ' ' The strain energy associated with
a given atom is computed as if all of its neighbors were of
the same atomic species. It arises from neighbor loca-
tions being different from in the elemental single-crystal
environment. The remainder of the total energy is
defined to be the chemical energy, which is due to some
of an atom's neighbors being of a different atomic species.
We now proceed to outline the procedure for calculation
of heats of formation versus concentration for alloys with
multiple atomic species. With this procedure, the bind-
ing energy curve as a function of volume is obtained,
from which the bulk properties of specified alloys can be
extracted. The application of this technique to different
crystallographic structures is straightforward. In this pa-
per we concentrate on bcc based binary alloys.

Consider a cell containing Xx atoms of atomic species
X (X = A, B, . . . ), so that the total number of atoms in
this cell is given by N =gxNx. The heat of formation of
this cell is

~E.,s =E..n —QNxEx
X

where E„» is the total energy of the cell and Ex is the
cohesive energy of an atom of species X in a pure crystal
of its own species. If E'(i, X) denotes the energy of the
ith atom in the cell (i = I, . . . , Nx ) of species X then

~x
~E-u= X X e,x

X i=1

where the energy difference e, x=E'(i, X) Ex, has a—
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strain and a chemical energy contribution, linked by a
coupling factor g, z that ensures that the chemical energy
contribution vanishes for large interatomic distances:

S ~ C
j,/ +gj,g ei,g (3)

In order to compute the strain energy, e,. z, we just
"fiip" every atom surrounding atom (i,X) into an atom of
the same species X, and perform a regular ECT calcula-
tion. The equivalent lattice parameter a; z is determined

by solving the appropriate ECT equation applied to atom
(i,X) in the defect (but pure) crystal:

where a, denotes the lattice constant of a pure X crystal,
Ec is the corresponding cohesive energy, and lz is a scal-
ing length.

In Eq. (3) the strain and chemical energies are coupled
nonlinearly. The coupling function g, x guarantees that
the chemical contribution will vanish with increase in in-
teratomic spacings, as it should. We define the coupling
function in terms of the scaled equivalent lattice parame-
ter of the strained crystal as

g e t, X

For the chemical energy contribution e, ~ we keep the
actual chemical composition of the cell (i.e., A, B, C in

proper proportions for the alloy), but we force the atoms
surrounding atom (i,X) to be located in the lattice sites of
a pure crystal of species X. Thus, we are including the
effect of changing a neighbor to an A, B, or C atom. Two
similar ECT calculations are then performed:

8R x X 1+6R X X X 2
1 e e

~X ( X X «J ) J (4)
J

(see Ref. 2 for details) where the quantities p«, a«, X»,
and S& are defined in Ref. 2. The sum on the right-hand
side (rhs) of Eq. (4) runs over all neighbors of atoms (i,X)
at a distance r . Equation (4) is solved for the lattice pa-
rameter of the equivalent crystal a; x [ = (2&3/3 )R,
=R z ]. Consequently,

S4
es Ex[1 ()+as@) i»

]
Se

(
S X)/I

e;«(b „«)=y, «Ec[1—(1+a;x )e ' ],
a ce —

(
c x)/I

(9)

with y; z = 1 if a; ~ & 0 and y, z = —1 otherwise.
In this paper we are concerned with calculating the

heats of formation of the bcc-based ordered binary alloys
3 81 „. If no relaxation of the individual atomic sites is
allowed, the calculation of the strain energy for atom
(i,X) in the bulk of the alloy with lattice parameter r is
particularly simple: solving Eq. (4) is unnecessary as the
atom (i,X) finds itself embedded in a pure crystal X with
lattice parameter r. Thus, the strain energy is simply the
energy needed to expand or compress the crystal X [i.e.,
setting r& =(&3/2)r and r2= r in Eq. (4)]. Consequently,

S Ex[1 (1+ Se) x
]

a«*=(r —a, )/lx,

where r is the actual interatomic distance of the alloy.
Within this approximation, the second term in the chemi-
cal energy [Eq. (7)] vanishes, leaving us only with the
computation of the first term, ex(b, ). For a given ordered
structure m, the ECT equation for the equivalent lattice
parameter a«[Eq. (9)] is

the parameters 5Y~ and A~ Y for a given pair of atomic
species (X, Y), two experimental values of any property of
the X Y, alloy are needed. We choose to use the ex-

perimental heats of solution in the dilute limit which in
most cases are readily available.

The equivalent lattice parameter a, z is obtained by
solving the corresponding ECT equation

Rlx X 1 6 1X [ X X 2SR, e +6R2 e

~X
—~~X+ ~~X]r l=~ N~Yr, e

Y

~X X X Yx 2+ M~Yr2 e 8
Y

where R, and R2 are the nearest-neighbor and next-
nearest-neighbor distances in the equivalent crystal of lat-
tice parameter a, z. The first term in the chemical ener-

gy, e, x(b, r «) is then given by

', x ei, x( [ ~ Y, x ] ) e,x(0)

For the first term, e, «( I b, r x] ), the chemical perturba-
tion is included in the appropriate values of the set of pa-
rameters [b, r«] which include the effects of changing
the atomic species of a neighbor, ' where Y denotes the
atomic species of a given neighbor of atom (i,X) The.
second term is a reference energy term included in order
to free the chemical energy from any structural defect in-
formation, retaining only the contribution of the chemi-
cal composition of the surrounding of atom (i,X). It is
obtained by a similar procedure, but setting all the per-
turbative parameters Ib.rx] equal to zero. In the ab-
sence of defects, as in the case examined in this paper,
this second term is always zero. In order to determine

xxr1 e XYr 1

&x ~ ~x+ '/'~x] "2
+M&&r& e

Px —(aX+1/XX+A, YX jr2
+M~Yr2 e

with R, =(&3/2)R2; R2=a«., r, =(&3/2)r~; r2=a, .
The parameters p~, o;z, and k~ are listed in Ref. 2 and
the coe%cients N~~, N~Y, M~~, and M~Y depend on the
different ordered structures considered.

As in previous applications we will use the heats of
solution in the dilute limit as the experimental input for
determining the parameters Azz and h&z. In order to
compute the heats of formation of the disordered alloys,
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TABLE I. Correlations included in the tetrahedron truncation of the CWM for some structures on
the bcc lattice. The g; with increasing index i, correspond to the empty cluster, the point, the nearest-
neighbor (NN) pair, the next-nearest-neighbor (NNN) pair, the triangle formed by two NN pairs and
one NNN pair, and the tetrahedron formed by four NN pairs and two NNN pairs.

Structure

bcc
DO3
B2
B32
DO3
bcc

Composition

A

A3B
AB
AB
AB3
B

ko

1
1

2

0
0

1

2—1

1

0
—1

0
0
1

1

0
1

—1

0
1

1
1

2

0
0
1

2—1

1

1
—1

1

we use the Connolly-Williams method. This method is
based on a forrnal expression for the total energy first de-
rived by Sanchez, where the total energy of a particular
configuration m of a binary alloy consisting of atoms A
and 8 on a lattice of fixed symmetry is given by

g(g, ) '~E (r) 0 y -y-..
Nl

v (r)=r 0, y,„&y&00, (14)

b,E (r)= g v (r)g~,
r

(12)

where vr(r) are many-body potentials, the gr are mul-
tisite correlation functions defined on a y-type cluster, r
is the lattice parameter, and the sum includes all y-type
clusters on the lattice. The multisite correlation func-
tions are defined as

1 g rr„cr„
r I n,. I

(13)

where o-„ is a spinlike variable which takes the values +1
and —1 depending on whether the lattice point n is occu-
pied by an A or 8 atom, and Nr is the total number of
y-type clusters.

The many-body potentials vr(r) are obtained by inver-
sion of Eq. (12), which implies the existence of a max-
imum cluster y,„beyond which the vr(r) are supposed
to be negligible. Thus, for a certain set of ordered struc-
tures a and by arbitrarily truncating the summation in
Eq. (13), the many-body potentials are

where P represents the empty cluster. Recently, the
CWM was extended to include more ordered structures
and cluster sizes than the ones originally proposed.
Multisite correlations for the most common bcc- and
fcc-based superstructures were also given. Table I lists
the correlations included in the tetrahedron truncation of
the CWM for some structures on the bcc lattice. Table
II shows the coeScients Nzz, Nzz, Mzz, and Mz~ need-
ed to solve Eq. (11) for all the possible ordered structures
included in Table I. These ordered structures are derived
from the tetrahedron cluster shown in Fig. 1: a and y
are on body centers and P and 5 are on cube edges.
When a=y and p=5 the structure is called B2. The
832 structure is derived when a=5%p=y and the DO3
structure is obtained when p=5@aAy.

In this paper we considered different choices of ordered
structures, as well as the type of clusters included in Eq.
(13). Being that the experimental input is, obviously, the
same for all cases studied, a comparison with available
experimental data for the heats of formation of binary al-
loys should give us an indication of the preferred or-

TABLE II. CoeKcients X», N&z, M», and M&& for difFerent structures and compositions. The
third column indicates the atomic species of the atoms in the tetrahedron and, between parentheses, the
number of atoms of that atomic species in the tetrahedron.

Struct.

bcc

Comp. Atom N»

B(4)

Na Na M» Mgq

DO3 AB3
A (1)
B(2)
B(1)

A (2)
B(2)

B32

DO3 A3B

A (2)
B(2)

A(2)
A (1)
B(1)
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Struct. Comp.

TABLE III. Polynomials c (x) for cases (i), (ii), and (iii).

bcc
DO,
B2
B32
DO3
bcc

B
AB3
AB
AB
A3B
A

1 —4x +5x —2x
4x —12x + 12x —4x

8x 2 —16x3+8x4
4x —4x
—x +2x

1 —4x+7x —6x +2x
4x —12x + 12x —4x

4x —8x +4x
4x —4x

x' —2x'+2x4

1 —4x+7x —6x +2x
4x —12x + 12x —4x

4x —8x +4x

4x —4x
x' —2x'+2x 4

(15)

where nr is the number of sites contained in the y clus-
ter. For each choice of ordered structures and multisite
correlation functions we have different many-body poten-
tials:

vr(r)= g(gr ) AE (r) (16)

Replacing Eq. (16) in Eq. (15) we can write BED(r,x) for
each one of the cases studied as

AED(r, x)= g c (x)bE (r), (17)

where the sum runs over the appropriate ordered struc-
tures included in each case considered and the polynomi-
als c (x) are also dependent on the clusters and struc-

dered structures for a given binary alloy.
The different choices are related to the two possible or-

dered structures at 50% composition (82 and 832) and
the corresponding pair multisite correlation functions (gz
and g3). We will denote the cases studied as follows: (i)

832-g2: includes the 832 ordered structure and the gz
correlation function (nearest-neighbor pair), leaving out
the 82 structure as well as the g3 function (next-nearest-
neighbor pair); (ii) 832-g3: includes the ordered structure
832 and the g3 function, leaving out 82 and gz', (iii)

82-gz. includes 82 and g2, leaving out 832 and g3, and
(iv) 82+832 $2+$3 -includ. es all the structures and
functions listed in Table I. In each case, the excess ener-

gy b,E (r) for the corresponding ordered structures is
obtained with Eq. (2). Within the tetrahedron approxi-
mation, this calculation involves just a few atoms, as indi-
cated in Table II.

Following CWM, the excess energy for the disordered
alloys A B, „ is given by

tures included in each case. Table III lists the polynomi-
als c (x)for the reduced basis sets (i), (ii), and (iii) and
Table IV displays the corresponding polynomials for the
general case (all structures and multisite correlation func-
tions included in Table I). Finally, the heat of formation
for a given concentration x is obtained by finding the
minimum value of b,ED(r, x).

III. RESULTS AND DISCUSSION

In this section we present results for selected bcc-based
alloys which display quite different behavior. For the
four systems studied we used the experimental values of
the heats of solution in the dilute limit, listed in Table V.
Table VI displays the values of p, a, l, and E& for the
pure elements, needed to solve Eqs. (5)—(11). Table VII
shows the values of h~z and h~~ one obtains with our
procedure for several binary alloys A-B and for the
different choices of basis sets described in the previous
section.

The parameters A~~ and h~„can be taken as "pertur-
bations" to the pure-element a's listed in Table VI, trying
to simulate the interaction between two atoms of different
species. In all cases, these quantities are small compared
to the pure-element a' s, and, surprisingly, rather insensi-
tive to the different choices of basis sets. However, these
small differences translate into a noticeable change in the
heat of formation versus concentration curves obtained
for each choice of basis set, as can be seen in Fig. 2.

Figure 2(a) shows the results obtained for Cr-Fe alloys
where the regular, symmetric behavior of the heat of for-
mation curve is accurately reproduced by using the basis
set (iii), where a 82 structure is included. Similar results
were obtained for Fe-V alloys [Fig. 2(b)j where, again,
basis set (iii) best approximates the available experimental
values of the heat of formation. Interestingly, there is
some experimental evidence that such an ordered phase
exists. '

TABLE IV. Polynomials c (x) for case (iv).

FIG. 1. Tetrahedron cluster in a bcc lattice (see text).

Structure

bcc
DO,
B2
B32
DO3
bcc

Composition

B
AB3
AB
AB
A3B
A

(iv)

1 —4x +6x —4x'+x
4x —12x + 12x —4x

4x —8x '+ 4x
2x —4x +2x

4x ' —4x
x4



45 HEATS OF FORMATION OF bcc BINARY ALLOYS 12 195

TABLE V. Experimental heats of solution E» and E».

Cr
Fe
Cr
Cr

Fe
V
V
Mo

0.218
—0.102
—0.088

0.215

0.218
0.807

—0.189
0.323

The predictions for Cr-Mo alloys show a drastic
change in behavior as compared to Cr-Fe, although both
systems display similar features in the experimental
values of the heat of formation. Figure 2(c) shows the
theoretical results. In this case, the basis sets (i) and (ii)
which include only the 832 structure, yield comparable
results.

Of the four examples shown in this work, Cr-V [Fig.
2(d)] displays the most surprising features, therefore pro-
viding a severe test to the sensitivity and accuracy of our
method. In the large body of experimental data for
binary alloys, Cr-V is one of the very few to display the
irregularities seen in the heat of formation versus concen-
tration curve, characterized by a sudden change in curva-
ture for a small range of concentrations. As it was the

case for Cr-Mo, this feature of Cr-V is approximately
reproduced only by the results generated with the choice
of the basis set (ii).

The fact that we used the experimental heats of solu-
tion in the dilute limit (i.e., the derivative of the heat of
formation at x =0 and x = I) might lead one to believe
that that choice somehow predetermines the behavior of
the heat of formation curves. The examples shown in
this work obviously contradict this fact: all four curves
(for each choice of basis set) were obtained with the same
values of the heats of solution. However, their behavior
for the whole range of concentration is quite different in
each case.

The explanation for the particular features of the heat
of formation versus concentration curves is not then in
the heats of solution, which is our only experimental in-

put, but in the delicate balance between the strain and
chemical energies, as de6ned in our formalism. Except
for the case of Cr-Fe, where the small lattice mismatch
results in an almost negligible strain energy, in all the
other cases the heat of formation predicted with our
method is obtained from large competing strain and
chemical energy contributions.

Figure 3 displays these contributions for the four sys-
tems considered in Fig. 2, showing the results obtained

0.10
(a) Cr-Fe

E0
0.08-

0I
Z

0.06-
0

~~
0.04

0
V

0.02
C$I
Z

E 0.14- (b) Fe-V0
0.12-

o 010-
Z
W 0.08

.o 0.06
0.04

s0 002
0.00 l

Zo -0.02-
-0.04-

~ ~

0.00:
0.0 0.2 0.4 0.6 0.8 1.0

Atomic concentration of Cr
0.0

I I I I

0.2 0.4 0.6 0.8 1.0
Atomic concentration of V

0.20
(c) Cr-Mo

E0
0.15—

I
Z 0.10-
C

~
0

0.05—
0

0.00'
V$

X

~ ~~ ~ ~r

gJ

-0.05 I I I I

0.0 0.2 0.4 0.6 0.8 1.0
Atomic concentration of Cr

0.00-'
E0
0$
~) -0.01I
Z
& -0.02
0

E -0.03
0
0 -0.04
6$I

-0.05—
I I I I

0.0 0.2 0.4 0.6 0.8 1.0
Atomic concentration of Cr

FIG. 2. Heat of formation (in eV/atom) vs concentration for different bcc-based alloys. In all cases, the solid squares indicate ex-
perirnental values, and the different curves indicate the results obtained using the basis sets and correlation functions described in the
text: (i) B32-gz (long-dashed line), (ii) B32-g3 (short-dashed line), (iii) B2 g2 (solid line), and (iv) B-32+B2 (2+$3 (dotted line) for (a)-
Cr-Fe, (b) Fe-V, (c) Cr-Mo, and (d) Cr-V.
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Element

TABLE VI. Input parameters for bcc elements.

Cohesive
energy

Lattice
constant

Cr
Fe
V
Mo

0.254
0.277
0.305
0.262

2.889
3.124
2.726
3.420

0.714
0.770
0.857
0.736

4.10
4.29
5.31
6.82

2.88
2.86
3.03
3.15

with the best basis s|;t choice for each system, as dis-
cussed before. The apparent similarity seen in Cr-Fe and
Cr-Mo for their heats of formation, arises from quite
different strain and chemical energy contributions: while
the positive chemical energy is mainly responsible for the
heat of formation for Cr-Fe alloys [Fig. 3(a)], a large neg-
ative chemical energy in Cr-Mo [Fig. 3(c)] is necessary to
balance a large strain-energy contribution, absent in Cr-
Fe. Also, the symmetry seen in the heat of formation
curve for Cr-Mo is a result of completely different re-
gimes in the strain and chemical energies: linear for Mo-
rich systems and with a pronounced curvature for Cr-
rich alloys. Figure 3(b) shows, for Fe-V, how the chemi-
cal energy is solely responsible for the axis crossing seen
in the heat of formation curve.

As noted before, Cr-V provides the appropriate

grounds for testing the sensitivity of this method. Figure
3(d) displays the strain and chemical energy contribution
for the Cr-V systems. One can see how a barely notice-
able flattening in the chemical energy contribution is the
source of the unusual feature seen in the heat of forma-
tion curve. These results correspond to the basis set (ii),
which best approximates the experimental results. Final-
ly, Fig. 4 expands on the results shown in Fig. 3(d) in that
the strain and chemical energy contributions are
displayed for all four basis sets used in this work. The
strain-energy contribution (independent of b,z,v and
b vc, ) shows small differences due to the choice of
different ordered structures. The chemical energy term
dictates the behavior of the heat of formation as a func-
tion of concentration: the asymmetry seen in Fig. 3(d)
arises from the chemical behavior of the B32 structure.

0.06

0.05
E0

0.04

0.03

c 002

0.01

0.00 I

0.0 0.2 0.4 0.6 0.8 1.0
Atomic concentration of Cr
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Atomic concentration of Fe
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-0.1 0—
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0.04-

E0 0.02
0$

0.00
U)

o~ -0.02
LLJ

-0.04-

(d) Cr-V

/
/

/
/

/

/
/

/

rrrr

-0.15
0.0

I I / I

0.2 0.4 0.6 0.8 1.0
Atomic concentration of Gr

-0.06 1 I I I

0.0 0.2 0.4 0.6 0.8 1.0
Atomic concentration of Cr

FIG. 3. Strain energy (in eV/atom) (long-dashed line) and chemical energy (short-dashed line) contributions to the heat of forma-

tion (solid curve) for (a) Cr-Fe, (b) Fe-V, (c) Cr-Mo, and (d) Cr-V.
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TABLE VII. Parameters 6» and 5».
Basis set ~BA 0.04

Cr-V

Cr

Fe

Cr

Fe

Mo

(i)
(ii)
(iii)
(iv)

(i)
(ii)
(iii)
(iv)

(i)
(ii)
(iii)
(iv}

(i)
(ii)
(iii)
(iv)

0.0445
0.0443
0.0447
0.0448

0.0751
0.0757
0.0768
0.0775

—0.0228
—0.0230
—0.0222
—0.0217

—0.0246
—0.0248
—0.0238
—0.0230

0.0277
0.0279
0.0275
0.0274

—0.0644
—0.0647
—0.06515
—0.0649

—0.0215
—0.02115
—0.0226
—0.0221

—0.0060
0.0060

—0.0143
—0.0075

0.02

0.000
)& -0.02-I
~ -0.04—
0)

~ -0.06-

-0.08-

-0.10
0.0 0.2 0.4 0.6 0.8 1.0

Atomic concentration of Cr

FIG. 4. Strain and chemical contribution (in eV/atom) to the
heat of formation of Cr-V for different choices of ordered struc-
tures (see text): (i) long-dashed curves, (ii) solid curves, (iii)
short-dashed curves, and (iv) dotted curves. The sum of these
pairs of curves are shown in Fig. 2(d).

IV. CONCLUSIONS

In this paper we applied the semiempirical method of
Bozzolo, Ferrante, and Smith to the study of bcc-based
alloys. The method was used to compute the total energy
of ordered structures. The energetics of disordered alloys
was studied with the CWM and several choices of basis
sets were considered. Good agreement with experimental
results is obtained for certain choices of basis sets. The

partition of the heat of formation into strain and chemi-
cal contributions provide some insight in the physical be-
havior of the systems studied.
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