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Theory of Brillouin scattering on a surface grating: Role of surface polaritons
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In a recent paper [W. M. Robertson et al. , Phys. Rev. B 41, 4986 (1990)l an empirical and unex-

plained selection rule governing light scattering by surface acoustic waves on corrugated metal surfaces
has been found experimentally, whenever a surface polariton acts as in intermediate state given rise to
a Rayleigh wave replica in the spectra. The replica occurs only when the scattered light is s polarized,
independently of the incident polarization. In this paper the Brillouin cross section for a corrugated
surface is evaluated theoretically within the extinction-theorem formalism and the above-mentioned
selection rule is shown to be valid in the limit of large dielectric constant.

Due to technical progress in high-resolution and high-
contrast spectrometers, Brillouin scattering has become an

important tool to investigate the dynamical properties of
nontransparent solids. ' When the light penetration
depth is comparable with the phonon wavelength, the in-

cident light is scattered inelastically by the fluctuating
dielectric inhomogeneities generated by thermal waves
(elasto-optic coupling) and gives information on the
phonon modes in the region underneath the surface. For
an opaque material such as a metal, where the light
penetration depth becomes very small, the scattering
occurs only in the vicinity of the surface, thus making
Brillouin scattering particularly suited to study long-
wavelength surface phonons. In the latter case the cou-
pling occurs mainly via the ripple mechanism ' which

acts as a dynamical grating still causing a shift in frequen-

cy (Doppler eff'ect)

Ng=N;+0

as well as in momentum parallel to the surface

frequency A but different momenta Q, Q' with Q'=Q
+6, where 6 is a two-dimensional (2D) grating momen-
tum. Second, it generates diffraction coupling the light
channels K, K', with K'=K+6. The first fact causes an

0 gap in the Rayleigh wave at the Brillouin-zone edge;
the second makes possible the light coupling with the sur-
face polariton (SP) which can occur at particular angles

8;, Hf. This second effect has been observed by Robertson
et al. ' and gives rise to a Rayleigh replica in their spec-
tral intensity. The strange thing, however, is that this
second peak appearing at a higher frequency is present
only for s-polarized scattered light while it is absent for p
polarization. ' ' Moreover, the result turns out to be in-

dependent of the incident polarization. From these
findings the authors of Ref. 15 suggest an empirical selec-
tion rule as in their Table I which can hardly be accepted
to hold in general. In fact, for in-plane scattering and per-
fect antireflection

Kg = —K;

Kg =K;+Q. the time-reversal symmetry imposes for the cross section
2

The signs + and —refer to absorption or emission of a
phonon of energy 0 and parallel momentum Q (anti-
Stokes and Stokes processes), and Kf; denote the scat-
tered and incident parallel momentum of the photon,

Kg =(ruf/c)sinef,

K; = (ru;/c)sin19;,

(3)

(3')

where Oj and 0; are the azimuthal angles of the scattered
and incident light, respectively. As in Ref. 11, here and in

the following sections we use capital letters for vectors in

the (x,y) surface plane, thus r =—(R,z) and R:—(x,y), ac-
cordingly.

Recently in the experiments by Robertson et al. ' '
surface Brillouin spectra have been measured on a silver
grating rather than on a flat surface. The introduction of
a grating has two consequences. First, it modifies the pho-
non spectrum since it mixes phonon modes with the same

(s)

z =g(R —ut)+u-, (6)

where the shear-vertical phonon displacement u- gives rise
to the ripple contribution. The elasto-optic contribution
can be included on the same footing. In Eq. (6)

z =g(R) (7)

defines the (static) 2D grating surface and u=—(ut, u-) is

the elastic displacement evaluated at the surface grating.

The latter equation shows the equality of the mixed polar-
ization intensities, thus the breakdown of the empirical
selection rule for this particular channel.

A quantitative comparison with the experiment can be
done extending the plane surface theory of Ref. 11 to a

grating. This is accomplished generalizing the extinction
theorem formalism '" to a dynamical grating
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o' 1 tof cos Bf AN([ref ctP(~ )

Z b«. —I~f —w l)bx.,-K„q+Gl(~~.,[wq]).,PI .Jl 2

daif d ftf (2tr) c costli 2p Nf toi nQ ,G.

I

x2 matrix A contains the amplitude of the electric A(K, ai, K;, to;) = —2ip(K;, to;)G (K,co)The 2
field and a,P =1,2 denote the p and s polarization of the
scattered and incident fields. Here we use the nomencla-
ture of Ref. 11 and A is a linear functional of the normal
mode wq—=w"(z, R;Q), which is a Bloch solution of the
2D grating given by Eq. (7). We represent it in the ex-
tended zone scheme to make a closer connection with the
plane surface result. With this choice n still includes the
polarization index of phonon modes on the degenerate en-

ergy level 0„. Contrary to the plane surface result, Eq.
(8) shows that all normal modes with momenta

xA(K, co, K;,to;)G (K;,cg;)

and

8 = V"+ V~GV" + V"GV~ (i2)
with

G =G'+O'V~G. (i 3)

In the above equations we have used a compact notation
and the equations have been linearized in V" vertex which
contains the ripple contribution. The static part of the
corrugation (grating) is contained in V~ defined as

Q+6 =Qg =Kf —K;

are contributing in the Kf, tof K;, t0; transition, 6 being
borrowed by the static grating of Eq. (7).

The expression for AK [wq] is easily found once we
solve the equation for

V~(K, to, K', to') =b', „V&(K,K') .

Lowest-order solutions for V~ V" are

V„(K,K') =(g it U(K, K'),

(i4)

A(Kf, tof, K(, co() =gAK ~ [wg]~„=I„ (is)(io)

Linearizing these equations in the elastic displacements and omitting the details which will be given elsewhere we g«
the Brillouin cross section

since it is linear in the displacements wq. Neglecting the
elasto-optic contribution and using the T-matrix formal-
ism as in Brown et al. ,

' ' ' one has the following, unless
elastic reflection is present,

V"(K, to, K', a)') =w-"(z =O, K —K')iii„-I — IU(K, K'),

(is')
where

(~ 1) KK' —K K'qq'/e —(r0/c)qKX K' z
U(K, K') = A A

,
—(ai/c)q'K&K' z e(ro/c) K K'

A A

with K, K' being unit vectors Equatio. n (1S) agrees with
Eq. (1.7) of Ref. 21, while in Eq. (1S') w.-"(z;Q) is the nor-
mal mode for a flat surface. The coupling of modes due
to grating has been consistently neglected to lowest order.
Still in (1S') we have used

I

G,,p(K, m) b, ,pG, (K,co),

G. '(K, to) =Go (K, co)

(2i)

V~, i, (K,K') G„(K',to) V~,,(K', K ),
K' y l, 2

ito —to i =o„&(co,co' (i7) (22)

and neglected terms -O(Q„/to). The quantity G in
Eqs. (11) and (13) is the Green's function for the plane
surface '

and from

Gi '(K, to) =0 (23)

G p(K, t0) =b',
,pG, (K,co),

G( (K, to) =ill(q+~p), Gz(K, to) =i/(q+p),

one recovers back the SP dispersion relation on a grating
in a small corrugation limit. '

Selecting the surface polariton contribution in Eq. (12)
one still has

where

p=—p(K, co) =[(to/c)' —K'] 't',

q—=q(K, to) = [e(co)(co/c)' —K'] 't',

2 p
= V,"p+ V$( G ) V( p + V,")G ( V'fp .

Equation (12) or Eq. (24) reduce for

(24)

(2s)

G=G +G V~G +G V~G V~G (20)

the equation can be solved by neglecting the off-diagonal
elements:

with Imq, p~ 0. Equation (13) is thus the Green's-
function equation for a grating. Rewriting it as

to the second-order perturbation theory result. Contrary
to this they both include the SP damping due to grating
and which cannot be neglected if Ime((1 as in the case of
silver The first t.erm on the right-hand side (rhs) in Eq.
(24) is the direct transition and in Eq. (8) it gives back
the ripp/e contribution to the Brillouin cross section for a
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I Kf —G I =Ksp

or, as in Fig. 1(b)

IK;+G I =Ksp,

where Ksp is given by Eq. (23), thus approximately

(26)

(27)

flat surface. " The other two terms are schematically rep-
resented in Figs. 1(a) and 1(b), respectively. We have
supposed, as in the experiment by Robertson et al. ,

' that
the scattering occurs in the sagittal plane parallel to the
grating grooves of momentum G. The phonon involved in

the scattering has energy O„=rof —ro; and momenta Q~,
Q2, while the resonance with the SP occurs if, as in Fig.
1(a),

r

COKsp= —Re
c t. +1

' Itr'2

(2S)

the SP momentum for a flat surface.
In the experment by Robertson et al. ' the final channel

is taken in such a way that Eq. (26) is satisfied, while Eq.
(27) does not hold in general, K; being arbitrary. This
means that in Eq. (24) the second term on the rhs is reso-
nant and prevailing over the third, which is thus ir-
relevant. Of course the situation would be opposite if Eq.
(27) held and Eq. (26) did not. In the latter case it would
be the second term in Eq. (24) to be dropped. Using Eqs.
(15), (15'), and (16) and selecting only resonant contribu-
tions, we can write compactly

A,tt(Kf, ruf, Ktrro;)=w "(0;Qd)-U,s(Kf, K;) —(Gw,"(0;Qd —G)

xGsp(M, tt(Kf, K;,G)BIttf GI g»+—Mtj, (K;,Kf, —
G)HAIK, .+oI,x»]

Gw„"(0;Qd+G)Gsp[M, p(Kf, K;, —G)SIKf+GI x»+Mp, (K;,Kf, G)h'IK, —GI sc»].,

where Qd =Kf —K; as in Eq. (9) and

(29)

( I ) 2 Kf (ysp —
yf )/e

M(Kf, K;,G) = Ki ysr +Kfy
,
—iGro c (30)

Still Gsp is defined in Eq. (22) with K =Ksp and gives

Gsp - +Psp— Z l(K-x I'2 (Ksp' K yspP )(Ksp' K y Psp) (31)

with y iq, p —ip wh—ere q, p are defined by Eq. (19).
From Eqs. (8), (10), (11), and (29) one determines the
Brillouin cross section. For a perfect antireflection,
defined by Eq. (4), and mixed polarization scattering, the
direct contribution —the first term in Eq. (29)—vanishes
and one recovers Eq. (5), which is indeed a general prop-
erty for this scattering channel. Vice versa if, as in the ex-
periment, ' only Eq. (26) is valid, we have, neglecting for
a moment the direct contribution,

~r-P
replica

2
Gi(Kf rof) Kf(ysp Yf)

G2(Kf, rof ) (e/rco)G
(32)

independent of the incident polarization. The equation
above gives the ratio of the peak intensities for the Ray-
leigh replica. The contribution of the direct term involves
a phonon mode in the continuum and it is thus negligible.

For a laser beam with X=5145 A as in the experi-

FIG. 1. Resonant SP conditions for an in-plane scattering geometry where the scattering plane is parallel to the grating grooves.

(a) The resonance occurs via the phonon with a parallel momentum of Q=Qz —G where Qd =Kf —K; as in Eq. (l l). (b) The reso-

nance occurs via the grating with a momentum of G. Since Qd and G are orthogonal vectors, one gets similar resonant processes, not

shown in the figures, with G —G in the lower half plane of (a) and in the upper half plane of (b).
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and

g ' =~s'p (33)

cos Of
/st nf =——

(l l) I/2

valid for le~ l )) I, we have from Eq. (32) the final result

(34)

0'p p

replica

le~i —
I sin 8fcos Bf

I«l 4(sin ef+ le(leos ()f)

sin Of

4leil'

(3s)

(3s')

ment, ' we take e~ = —10.S, ez=0.33 as the real and
imaginary parts of the dielectric constant for the Ag grat-
ing. Using

The latter equation is in agreement with the experimental
data. ' The egeetive selection rule arises in this case from
the large value of the dielectric constant and this result
can be retained valid for many metals in the optical range.
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